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Abstract—We formulate the problem of surface deformations
as the integration in the least square sense of a discrete vector-
valued 1-forms obtained as the result of applying smooth
stretching and rotation fields to the discrete differential of the
0-form defined by the vertex coordinates of a polygon mesh
graph. Simple algorithms result from this formulation, which
reduces to the solution of sparse linear systems. The method
handles large angle rotations in one step and is invariant
to rotations, translations, and scaling. We also introduce the
integration of 1-forms along spanning trees as a heuristic to
speed up the convergence of iterative solvers.
Keywords-triangle meshes; differential forms; gradient domain;
algorithms; discrete differential geometry; surface deformation

I. INTRODUCTION

Methods for surface deformation have natural applications in

engineering, modeling, and character animation. While many

methods have been proposed in recent years, there is still a

strong interest for simple and effective algorithms. In the

classical theory of surfaces, a surface patch is defined by a

smooth 3D-valued parametrization function of two parame-

ters. In the language of differential forms these functions are

referred to as 3D-valued differential 0-forms. The two partial

derivatives of one of these 0-forms are three dimensional

vector fields which define a 3D-valued differential 1-form.

A simple approach to surface deformations is to modify this

1-form by locally stretching and rotating its two component

vector fields, and then solve for a parametrization function

whose partial derivatives match the component vector fields

of the modified 1-form.

We formulate the discrete analog of this approach for

deformations of graph embeddings, resulting in an extremely

simple algorithm. The underlying graphs play the role of

the domains of the parametrization functions, and polygon

meshes are treated as particular cases of graph embeddings.

The integration of a modified discrete vector-valued 1-form

is performed in the least-squares sense, and reduces to the

solution of a sparse Laplacian system of linear equations.

Fast integration of 1-forms along spanning trees results in

approximate solutions which speed up the convergence of

iterative solvers. The deformations are controlled by smooth

stretching and rotation fields associated to vertices and edges

of the graph, which can be constructed in various intuitive

ways. Large angle rotations are handled in one step, and the

method is invariant to rotations, translations, and scaling.

Figure 1 illustrates the algorithm.

Contributions: The first contribution of our work is a

simpler formulation of mesh deformation/editing using 1-

Figure 1: Algorithm overview. A: Polygon mesh vertex
coordinates define a 3D-valued 0-form x on the mesh graph
G. B: 1-form v is initialized as the differential dx of x
(only one of the two opposite vectors associated to each
edge is shown). C: Smooth rotation and stretching fields
are created, for example from values attached to handles.
D: Rotations and stretching fields are applied to the 1-
form v; E: An initial estimate of the deformed 0-form x
is computed by integrating v along a spanning tree of G. F:
The energy function minimizer x is refined using an iterative
solver. G: The result minimizes the quadratic energy function
‖ dx− v ‖2.

forms which can be used to unify previous results and

leads to simpler algorithmic implementations. The second

contribution is a spanning tree integration heuristic to speed

up the convergence of iterative linear solvers.

As discussed in an excellent survey [2], linear variational

surface deformation methods have been developed for edit-

ing detailed high-resolution meshes like those produced

by scanning real-world objects. Many of the mesh de-

formation algorithms mentioned in this survey are based

on variational approaches where an energy function which

combines approximations of first and second fundamental
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Figure 2: Various deformations of the bar shown in the
upper left corner performed in a single integration step.
Arbitrary large rotations and twists do not require multiple
steps.

forms is minimized. Since the first and second fundamental

forms are non-linear functions of the surface geometry,

accurate approximations of them usually leads to non-linear

optimization problems. Therefore, simplifications are made

to transform the energy function into a quadratic function

of free variables, which is minimized by solving a simple

sparse linear system. A common feature of the most recent

contributions is to represent the surface with differential

coordinates, and through a variational formulation minimize

how much these differential coordinates change while the

surface undergoes large deformations under the constraints

that determine the operation being performed. It turns

out that in some of these earlier works the differential

coordinates are not rotation-invariant with respect to the

global coordinate system. As a result, the details in the

deformed mesh are distorted, and the distortion depends

on the location and orientation of each detail with respect

to the global coordinate system. In [9], [16], [13] it is

shown that transforming the differential coordinates with

respect to given constraints improves results, as long as

deformations are not too large, and the shapes are not too

complex. In [10] rotation-invariant differential coordinates

are introduced using the discrete analog of Cartan’s moving

frames [7]. Here a different orthonormal frame is attached

to each vertex of the mesh. Solving first for the rotations

and then for the positional constraints preserves the rigidity

of the local details. The approach is attractive because it

only requires the solution of two (large and sparse) linear

lest squares problems. However, the geometric meaning of

the quantities being minimized is not clear. These problems

are partially addressed in [8] through a volume preservation

scheme, but the algorithms remain quite complex.

The method described in this paper fits into the linear

framework described above, because a deformation is com-

puted by minimizing a quadratic energy function with lin-

Figure 3: 0-forms and 1-forms on a graph G = (V,E),
where V is the set of vertices, E is the set of edges, and E′

is the set of oriented edges.

ear constraints imposed by user, and solving this problem

reduces to the solution of a large and sparse Laplacian

linear system. However, our energy function does not include

approximations of first and second fundamental forms. Also,

our conceptually simple approach, which alleviates most

shortcomings of recent methods by formulation, explains

a number of earlier algorithms, such as Laplacian smooth-

ing [14] and Poisson image editing [12], as special cases.

The proposed method can also be regarded as a differential

coordinates preservation approach. But neither explicit local

frames are constructed and saved, nor local coordinates are

computed with respect to local frames for detail transfer.

II. PROBLEM FORMULATION

To emphasize the simplicity of the proposed approach, and

to make the paper self-contained, we present the discrete

problem formulation and solution directly in its most ab-

stract form for graph embeddings. More extensive treatment

of discrete differential geometry concepts in the geometry

processing literature include [11], [6], [4], [15]. Detailed

discussion of discrete differential forms can be found in [3].

A. Discrete Vector Valued Forms on Graphs

We consider a finite non-oriented graph G = (V,E) com-

posed of a set of vertices V and a set of edges E, embedded

in R
D. We are primarily interested in the case D = 3

and graphs obtained from polygon meshes, but the cases

D = 2 and D = 1 are also of practical interest. The

embedding is defined by vertex coordinates xi ∈ R
D, each

one associated with a vertex i ∈ V . We refer to such a

mapping x : V → R
D as a discrete D-dimensional 0-form,

and to the pair (G, x) as a graph embedding. We refer to

a mapping v : E′ → R
D such that vij + vji = 0 for each

edge (i, j) ∈ E as a discrete D-dimensional 1-form. We

denote by E′ the set of oriented edges of the graph: (i, j)
and (j, i) are the same edge in E, but they are regarded

as different and opposite in E′. Figure 3 illustrates these

concepts. From now on all the 0-forms and 1-forms will be
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Figure 4: Exact and not exact 1-forms.

discrete D-dimensional, and defined on the same graph G.

The differential of a 0-form x is the 1-form dx defined as

dxij = xj−xi for each oriented edge (i, j) ∈ E′. A 1-form

v is called integrable or exact if a 0-form x exists so that

dx = v, in which case the 0-form x is called an integral
of v. Figure 4 illustrates these concepts. Note that if v is

integrable, the integral is not unique: it is defined up to an

additive constant in R
D. If the graph G has cycles, then not

every 1-form is exact.

B. Deformations of Graph Embeddings

We apply deformations to a graph embedding (G, x) by first

modifying the differential 1-form dx, and then integrating

the result. More specifically, the process comprises the

following steps:

1) computing the differential 1-form dx;

2) creating a smooth stretch field on the graph edges:

σij = σji > 0 for each edge (i, j) ∈ E;

3) creating a smooth rotation field on the graph edges:

Rij = Rji for each edge (i, j) ∈ E;

4) applying the smooth stretch and rotation fields to the

1-form dx to produce a modified 1-form v:

vij = σij Rij dxij (i, j) ∈ E′

5) integrating the 1-form v to obtain a deformed 0-form

x′.

The deformation process is driven by the smooth stretch and

rotation fields, which can be constructed in various ways,

including painting interfaces. Our current implementation

only supports handle-based construction of these fields using

constrained smoothing from values attached to the handles.

We use the exponential parametrization of rotations [5],

which enables us to define rotations with a single vector

per vertex. Once the user defines rotations at the handles we

create a smooth rotation field over the mesh by propagating

rotations using Laplacian smoothing with hard constraints.

Faster direct solvers could be used for this purpose, but our

Figure 5: Integration of 1-forms along paths.

current proof-of-concept implementation does not support

them. It is important to note that the same Laplacian systems

of linear equations must be solved both for creating the

smooth rotation and stretching fields as for integrating the

modified 1-forms. The user can also attach stretching factors

to handles and similarly create a smooth stretching field over

the mesh using Laplacian smoothing.

Linear constraints resulting from geometric constraints, such

as specifying some vertex positions, or angles formed by

edges, can also be applied. For example, for polygon meshes,

specifying face normal vectors results in linear constraints on

the vertex positions. However, our current implementation

does not support linear constraints.

III. INTEGRATION OF 1-FORMS

In this section we give a short overview of integration of 1-

forms. In Section 3.1 we describe how 1-forms are integrated

along paths. Since the modified 1-form v is usually not

integrable, in Section 3.2 we discuss how to integrate a

1-form in the least-squares sense, and in Section 3.3 how

to integrate 1-forms along spanning trees to speed up the

convergence of iterative linear solvers.

A. Integration of 1-forms along Paths

1-forms are entities to be integrated along paths, as figure

5 illustrates. The integral
∫

γ
v of a 1-form v along a path

γ = (i0, i1, . . . , in) in the graph G (a sequence of graph

vertices such that each pair of consecutive vertices is an

oriented edge), is defined as the vector sum

∫
γ

v =
n−1∑
h=0

vihih+1 = vi0i1 + vi1i2 + · · ·+ vin−1in .

The value of this integral is a D-dimensional vector. Note

that the vertex indices in a path can repeat, and in particular,

a path can be closed (i0 = in). If two paths γ1 and γ2 have

the same endpoints, there is no guarantee that the integral

of v along the two paths will be the same. However, the

integral of an exact 1-form v = dx only depends of the path

endpoints:

∫
γ

dx =
n−1∑
h=0

(xih+1 − xih
) = xin − xi0 . (1)

In particular, the integral of an exact 1-form along any closed

path is equal to zero.

253



Figure 6: A spanning tree of a mesh graph.

B. The Quadratic Energy Function

Since not every 1-form is a differential of a 0-form (i.e.,

exact) and thus integrable we integrate a 1-form in the least-

squares sense by minimizing the following quadratic energy

function of a 0-form x

φ(x) = ‖ dx− v ‖2 =
∑

(i,j)∈E

μij ‖xj − xi − vij ‖2 (2)

with the 1-form v regarded as constant. Minimization of this

simple energy function drives our algorithm. The norm ‖.‖
inside the sum is the �2 norm, and {μij > 0 : (i, j) ∈ E} are

positive graph edges weights. The 1-form v is exact if and

only if a 0-form x exists that yields zero energy φ(x) = 0.

Note that in the absence of additional constraints, φ(x) does

not have a unique minimum: if x and y are 0-forms such

that yi−xi is a constant in R
D, independent of i ∈ V , then

dx = dy, and so φ(x) = φ(y). However, in general (i.e., for

sufficiently complex graphs and 1-forms), this is the only

uncertainty in the solution. Specifying the location in R
D

of one vertex xi0 , or of the vertex centroid x̄ = 1
|V |

∑
i xi

is sufficient to make the solution unique.

The energy function φ(x) of equation (2) can be written as

the sum of D terms, with each term function of one of the

D coordinates of the unknown 0-form:

φ(x) = φ1(x1) + · · ·+ φD(xD)

where xh is a |V |-dimensional vector composed of all the

h-th coordinates of the 0-form values, and

φh(xh) =
∑

(i,j)∈E

μij (xh
j − xh

i − vh
ij)

2 h = 1, . . . , D

Since the constraints do not mix the different coordinates in

our case, the problem reduces to solving D linear systems

with the same Laplacian matrix [14]. Fast direct solvers

based on Cholesky and LU factorizations (i.e., TAUCS,

SuperLU, and NAG) for sparse linear systems exist, and

they have been used to drive mesh deformation algorithms

in the past. A very useful discussion and evaluation of

sparse direct solvers for mesh editing can be found in [1].

Our current implementation, however, does not include a

fast linear solver yet. Instead, as a proof of concept we

implemented two simpler solvers: The Jacobi and conjugate

gradient.

Figure 7: Armadillo. Left: Undeformed mesh. Center:
Result of integrating the deformed 1-form along a spanning
tree. Right: Final result after iterative refinement.

C. Integration of 1-forms along Spanning Trees

Since the quadratic energy function is convex, an iterative

solver will converge to the global minimum independently

of the initial estimates. For example, the undeformed 0-form

x can be used as initial estimate. However, the number

of steps to convergence is significantly affected by the

initial estimates, particularly if large deformations are being

performed, mainly because iterative solvers take very small

steps. The magnitude of Δxi is usually smaller than the

average edge length from vertex i to its neighbors. In

order to improve the speed of convergence for our iter-

ative minimization, we construct in linear-time a 0-form

by integrating the 1-form v along a spanning tree in the

connected graph G. Figure 6 shows a spanning tree for a

mesh graph. A spanning tree of minimum depth is optimal

for this application because it minimizes the accumulation of

integration errors along long paths. We obtain good results

constructing a maximal spanning tree with respect to edge

weights μij ‖xj − xi − vij ‖2, where x is the undeformed

0-form. Figure 7 illustrates what level of approximation we

obtain with this heuristic.

IV. RESULTS

We have developed a prototype implementation of our

algorithm in Java in a framework which uses a custom

renderer. A typical interaction scenario is for the user to

select a region or two on the model surface by painting.

Then, based on the intended deformation effect, the user sets

the rotation and/or stretch fields for selected regions while

smoothing the fields along the surface as desired. Once the

user is satisfied with the specified constraints, the program

computes the target deformation. At this point the user may

decide to modify the constraints, and iterate the process

until he is satisfied with the result. We experimented with

several mesh models including the Bunny, Bar, Armadillo,

Horse, and Hand. The results shown through Figures 1-5

are promising. Local details are preserved nicely although

our formulation do not have any explicit terms to preserve

the local frames. In general, we obtain plausible results for

arbitrary rotations and stretching in a single integration step.
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Figure 8: Hand results. Left: undeformed. Center and
Right: results obtained applying only rotations.

V. DISCUSSION

The contributions of our work are two fold. First, we

formulate mesh deformation as an integration of discrete

vector-valued 1-forms. This formulation enables a robust

and simple algorithm with the ability to provide deforma-

tion effects similar to those obtained using more complex

existing methods. Our algorithm obtains realistic-looking

deformations while preserving local details without requiring

construction and/or transfer of local coordinates and frames.

Second, we propose the integration along spanning trees of

the underlying mesh graph to speed up the convergence of

iterative linear solvers in the context of mesh processing.

Potential utility of this heuristic goes beyond our current

formulation.

In this paper we have focused on demonstrating the main

concepts of a new and simple formulation. Therefore, we

are well aware that our proof-of-concept implementation

is limited, a fact that we intend to remedy in the near

future. First, although we experimented only with iterative

solvers, our formulation results in a sparse linear system and

hence nicely suits for use of high-performance sparse linear

solvers. We plan to produce a more efficient implementa-

tion based on popular direct and/or iterative sparse linear

solvers. Second, we plan to carry out a quantitative analysis

of performance gains resulting from the integration along

spanning trees heuristic in our algorithm, as well as in other

surface deformation algorithms which reduce to the solution

of similar equations.
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and H.-P. Seidel. Differential coordinates for interactive mesh
editing. In Procs. of SMI, pages 181–190, 2004.

[10] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Lin-
ear rotation-invariant coordinates for meshes. ACM TOG,
24(3):479–487, 2005.

[11] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Visu-
alization and Mathematics III, chapter Discrete Differential-
Geometry Operators for Triangulated 2-Manifolds, pages 35–
57. Springer-Verlag, 2003.

[12] P. Perez, M. Gangnet, and A. Blake. Poisson image editing.
In Procs. of ACM Siggraph, 2003.

[13] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl,
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