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Abstract We present and compare two low-dimensional visual representations, 2D
point and 2D path, for studying tractography datasets. The goal is to facilitate
the exploration of dense tractograms by reducing visual complexity both in static
representations and during interaction. The proposed planar maps have several
desirable properties, including visual clarity, easy tract-of-interest selection, and
multiscale hierarchy. The 2D path representations convey the anatomical familiarity
of 3D brain models and cross-sectional views. We demonstrate the utility of both
types of representation in two interactive systems where the views and interactions
of the standard 3D streamtube representation are linked to those of the planar
representations. We also demonstrate a web interface that integrates precomputed
neural-path representations into a geographical digital-maps framework with asso-
ciated labels, metrics, statistics, and linkouts. We compare the two representations
both anecdotally and quantitatively via expert input. Results indicate that the planar
path representation is more intuitive and easier to use and learn. Similarly, users are
faster and more accurate in selecting bundles using the path representation than the
2D point representation. Finally, expert feedback on the web interface suggests that
it can be useful for collaboration as well as quick exploration of data.

1 Introduction

Diffusion-weighted MRI (DWI) enables neural pathways in the in vivo brain to
be estimated as a collection of space curves, called a tractogram. The study of
tractograms (i.e., tractography) has important applications in both clinical and
basic neuroscience research on the brain. Tractograms have visual complexity
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Fig. 1 2D point representation linked with a streamtube representation in an interactive tractogra-
phy visualization tool

proportional to the intricacy of the axonal brain connectivity and, with increasing
DWI resolutions, this complexity is becoming greater and greater. It is thus often
difficult for practitioners to see tract projections clearly or identify anatomical
and functional structures easily in these dense curve collections. This is important
because, for example, a clinical study of a neurodegenerative disease sometimes
involves selecting more than 30 tracts of interest (TOIs) manually across different
datasets. Therefore, it is necessary for tractography visualization tools to provide
means to reduce and help cope with visual complexity at both the interaction and
data representation levels.

We believe two concepts, abstraction and filtration, can be applied to represen-
tation of datasets to help users overcome the difficulties of visual complexity. While
abstraction involves simplification and generalization, filtration here entails cluster-
ing and hierarchization. With these ideas in mind, we proposed low-dimensional
point representations for better interaction with fiber tracts in [19], along with [7].
Driven by known embedding methods, embedding in two-dimensional space pro-
vides an interesting window into the manifold space of neural connectivity and
helps in fine selection of tracts. Figure 1 shows a snapshot from a tractography
visualization tool that uses the point representation. A drawback of point repre-
sentations is, however, that coordinate axes in the low-dimensional space lack an
anatomical interpretation. It is clear from evaluations in [7, 19] that having a frame
of reference, anatomical or otherwise, is important for users. Motivated by this
problem, we introduced in [20] two-dimensional neural paths that have the desirable
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Fig. 2 Schematic 2D path projections of tractograms as part of a standalone interactive system
(left) and as a web-accessible digital map (right). The digital map interface easily incorporates any
tract-associated information, including labels, links, metrics, and statistics. Shown in the pop-up
window on the right is the “brain view” of the selected tract

properties of low-dimensional representations while preserving meaningful and
familiar coordinates. Figure 2 shows screenshoots of a tool and its web interface
that uses the neural path representation.

Here, we provide a unified discussion of our earlier work on planar point and
path representations of tractograms [19, 20]. Since diffusion imaging is the source
of all the data used in our work, we give an elementary introduction to DWI in
the following section. We then discuss related work on tractography and web-based
visualizations.

2 DWI

Diffusion-weighted magnetic resonance imaging (DWI) measures the diffusion rate
of water molecules in biological tissues in vivo [25]. Since tissue characteristics,
geometric or otherwise, at a given point affect the diffusion rate, measured diffusion-
rate information is an indicator of the tissue characteristics at the point. In particular,
water in fibrous tissues such as brain white matter (a collection of myelinated
axons) diffuses faster along fibers than orthogonal to them. Therefore, it is possible
to estimate fiber trajectories computationally using diffusion models such as the
tensor model that quantify anisotropic diffusion. Diffusion imaging based on fitting
second-order tensors to DWI sequences is known as diffusion-tensor magnetic
resonance imaging (DTI) [4]. Fiber trajectories are computed from DTI data by
integrating bidirectionally along the principal eigenvector of the underlying tensor
field. This process, called fiber tracking, yields a dense collection of integral curves
(i.e., a tractogram). All the tractograms used in our work were obtained using a
deterministic fiber-tracking algorithm in DTI volumes.
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3 Related Work

Tractograms are often visualized with streamlines or variations of streamlines in
3D [23, 29]. Reflecting the intricacy of the connectivity in the brain, these 3D
models are generally visually dense. Consequently, typical interaction tasks over
tracts, such as fine bundle selection, are often difficult to perform and have been a
focus of recent research [1,2]. Concurrently with Chen et al. [7], we proposed planar
point representations to improve interaction with DTI fiber tracts [19]. There are,
however, differences between these our work and Chen’s. First, we use hierarchical
clustering to create multiscale representations, which makes the exploration of large
datasets easier, both visually and computationally. Second, while our work uses a
simple force-based embedding method, Chen et al. uses the SMACOF algorithm,
an iterative method that minimizes the metric stress of multidimensional scaling
(MDS) using majorization [9]. And third, we use the embedding procedure also
to create a “nice” coloring in which colors of data points perceptually reflect the
relationships among them.

To address concerns of experts about insufficient anatomical context in the 2D
point representation, we recently introduced 2D path representations [20], which are
also projections of fiber tracts into a plane, but as planar curves rather than points.
One of the advantages of 2D projections is that they can be naturally integrated into
a web-based digital geographic map framework. Basic data visualization has been
available on the web for many years but was usually limited to traditional techniques
such as bar graphs and charts. More recently, however, visualization research started
targeting this environment and advanced applications have emerged. ManyEyes [26]
paved the way for everyday data visualization, with subsequent studies such as [27]
and [8] proving the need for accessible web visualization. While web-development
toolkits such as [5] greatly aid web visualization development, large-scale web-
visualization is limited by inherent browser capabilities, as demonstrated in [21].
Alternatively, stand-alone systems have been made available as applets or can be run
as client applications directly from websites. However, users still must control the
parameters involved in producing visualizations, specify their data queries and learn
the system features. This often constitutes an undesirable overhead. Yet another
approach, most similar to our work from an implementation standpoint, is to use
Ajax (asynchronous JavaScript and XML) technology to perform the rendering on
the server side and serve images asynchronously to the client browser. The essential
difference between the present work and traditional offline visualization systems is
that we separate interaction and display from rendering and computation. Our brain
maps differ by eliminating user effort in creating visualizations, instead assigning
this task to experts, and by using the Google Maps API, which is an Ajax framework
for interactive display of pre-rendered images. Closest to our work in this latter
aspect are X:MAP [28] and Genome Projector [3], which present genome browser
tools implemented using the Google Maps API. We extend this idea to a new domain
and demonstrate its usefulness for tractography datasets.
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4 Methods

Both point and path representations are projections of fiber tracts onto the plane:
Each tract is represented with a 2D point in the former and a 2D curve in the latter.
Formally, given a polyline form of a fiber tract C 2 R

n�3 with n vertices in 3-space,
its point representation is obtained with a map �point W Rn�3 ! R

2 and its path
representation is obtained with another map �path W Rn�3 ! R

m�2 .
Generation of these two representations shares three common steps. First, we

obtain a whole-brain tractogram by fiber tracking in a diffusion-tensor volume fitted
to a given DWI brain sequence. Second, we compute similarities between all pairs
of tracts within the tractogram, obtaining a similarity (or affinity) matrix. Third,
using the similarity matrix from the previous step, we run a hierarchical clustering
algorithm on the tractogram, obtaining a clustering tree (dendrogram).

We create the 2D point representation of the tractogram by embedding the tracts
in the plane with respect to the similarity matrix, using a simple iterative force-
directed method. We use the hierarchical clustering tree to create multiscale point
representations. For the path representation, we first pick a cut on the clustering
tree and obtain a clustering. Then, by treating cluster centroids as pivots, we
create projections of tractograms onto the major orthogonal planes as curves. We
render these 2D curves stylistically using heuristics determined by the topology and
geometry of the corresponding tracts and tract clusters.

We give details of these steps in subsequent sections.

4.1 Image Acquisition and Fiber Tract Generation

DWI brain datasets used in this paper were acquired from healthy volunteers
on a 1.5T Siemens Symphony scanner with the following acquisition param-
eters in 12 bipolar diffusion-encoding gradient directions: thickness D 1.7 mm,
FOV D 21.7 cm � 21.7 cm, TR D 7,200 ms, TE D 156 ms, b D 1,000, and NEX D 3.
For each DWI sequence, the corresponding DTI volume was obtained by fitting
six independent parameters of a single second-order tensor at each voxel to the
12 measurements from the DWI sequence [4]. We generate fiber-tract models
of the whole brain by integrating the major eigenvector field of the diffusion
tensor field bidirectionally starting at seed points. We use the second-order Runge-
Kutta integration method. Since the tensor field is sampled on a volumetric grid,
we evaluate its value at non-grid positions using tricubic interpolation during
the integration. We use a constant integration step size of 0.5 mm and stop the
integration when we reach an area of gray matter, low linear anisotropy, or low
signal-to-noise (SNR) ratio.
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4.2 Measuring Similarities Between Fiber Tracts

We quantify the similarity between two tracts using the distance measure discussed
in [10]. This measure tries to capture how much any given two tracts follow a
similar path, while giving more weight to the points closer to tract ends. Given two
integral curves Ci D fC 1

i ; : : : ; C m
i g and Cj D fC 1

j ; : : : ; C n
j g that are represented as

polylines with m and n vertices respectively, we first find mean weighted distances
dij and dj i , and then determine the maximum of these two distances as the distance
Dij between the two curves:

dij D 1

m

mX

kD1

˛i
kdist.C k

i ; Cj / (1)

dj i D 1

n

nX

kD1

˛j
kdist.C k

j ; Ci/ (2)

Dij D Dj i D max.dij ; dj i / (3)

The function dist.p; C / returns the shortest Euclidean distance between the point
p and curve C . Also, ˛k D 1

Z
ejk�.mC1/=2/j2=�2

, where the normalizing factor Z DPm
kD1 ejk�.mC1/=2j2=�2

. We set the parameter � automatically, proportional to LC ,
the length of the fiber tract, such that � D �LC , where � 2 .0; 1�. We set � D 0:5

for the datasets used for this paper.
We compute the distance between each pair of integral curves as explained

and assemble the measures to create a distance matrix. Note that our measure
is symmetric and positive definite but does not necessarily satisfy the triangle
inequality and, therefore, is not a metric. While our approach is independent of
a particular similarity measure, good results in practice require a good similarity
measure—one that reflects users’ understanding of the similarity between data
points (i.e., tracts) and works well for the task at hand.

4.3 Clustering

For a given tractography dataset we compute a clustering tree using an average-
linkage hierarchical clustering algorithm on the tract distance matrix (e.g., [11]). We
choose the average-linkage criterion because it is less sensitive than the minimum-
linkage to broken tracts that might occur because of tracking errors. The output of
the clustering algorithm is a hierarchical tree called a dendrogram. The height of the
tree can be thought as the radius of the bounding ball of the dataset—in the units
of the similarity measure used. Any horizontal cut on this tree provides a clustering
of the dataset. Therefore, for example, the root node represents a clustering with a
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single cluster containing all the data points. Conversely, the leaf nodes correspond
to a clustering where every data point is a cluster.

We obtain a clustering of tracts by manually setting a cut threshold on the
dendrogram. This threshold can be also interactively changed by user to control the
coarseness of the clustering. A constant cut at 60 % of the clustering tree’s height
gave consistent results across the six datasets we experimented with.

4.4 Planar Projections of Fiber Tracts

4.4.1 Fiber Tracts as Embedded Points

We use a simple iterative force-directed method for embedding tracts in the
plane [12]. Embedding is a one-to-one smooth mapping from fiber tracts to points
in the plane that preserves the “structure” of the fiber tracts. In this context, the
distance matrix computed can be considered a manifestation of the structure in the
fiber tract space.

For a given dataset with M tracts, we start with M corresponding points, all
initially placed at the origin. We then iteratively adjust the positions of these
points by moving the pairs of points closer to or further from each other to match
with the corresponding Dij entries in the similarity matrix. To achieve interactive
performance, we use a stochastic sampling technique described in [6] for updating
the “forces” between data points. Briefly, instead of computing forces on a point
xi from every other point in the dataset, we limit the points acting on xi to
xj 2 F D fNi [ Sig, where Ni and Si are disjoint sets with a constant size.
We iterate over data points and resample Si each time by uniformly randomly
selecting points from the whole dataset. For a randomly selected point xk , if Dik

is smaller than maxxl 2Ni Dil , the maximum distance from xi to any member of Ni ,
then xk is assigned to Ni , otherwise it is assigned to Si . Ni loosely represents the
neighborhood of the point iterated.

4.4.2 Using Embedding to Color Fiber Tracts

Given a similarity measure, a good coloring of fiber tracts should reflect the
similarities between the tracts such that similar tracts are assigned to similar colors
and different tracts are assigned to different colors. Embedding fiber tracts in
perceptually uniform color spaces, which are subsets of R3 , provides a practical
way to approximately achieve this goal. A perceptually uniform color space is an
empirically constructed color space in which the Euclidean distances between color
triplets are approximately proportional to the perceptual differences between them.
L*a*b* and Luv are two common examples of such color spaces [13].

Embedding fiber tracts in the L*a*b* space is the general coloring scheme used
in the interactive tools presented here. For this, we compute an approximation of the
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L*a*b* color gamut, as visible on the right panels of Fig. 6, and use it as a container
for force-directed embedding. To avoid having to adjust a repulsive container
force, which would likely need a steep, hard-to-control gradient, we perform a
physically accurate simulation with container contact detection. The embedding
begins in the center of the gamut and is gradually expanded until most of the space
is filled. During implementation we observed that the largest distances are often
embedded along the luminance axis, the vertical (in paper coordinate frame) axis
of the color gamut. This is problematic because luminance offers little resolution
and can be interpreted as a lighting effect. We therefore apply a “flattening”
force at the beginning of a simulation cycle to force large distances to lie in the
horizontal plane (a*b*-plane). These force components, acting on the luminance
axis towards the center of the gamut, wear off as the embedding moves towards
a steady state. The force computation used is the same as for the 2D embedding,
with straightforward 3D modifications. In terms of interaction, the color embedder
supports only collapsing and color grabbing.

4.4.3 Fiber Tracts as Planar Curves

For a given tractography dataset, we create schematic views of fiber tracts projected
on the sagittal, coronal, and transverse planes.

We start by obtaining a clustering of the dataset by picking a cut on the already
computed hierarchical clustering tree. We then create simple orthogonal projections
of tracts on each plane. Suppose the sagittal plane is aligned with the xy-plane
and let v D .x; y; z/ 2 R

n�3 be a vertex of a tract. Then the projection onto the
sagittal plane is given by the simple equation �.v/ D .x; y/. We cull out tracts
that do not contribute significantly to the projection. If the ratio of projected tract
length to true tract length is under a threshold value, we remove the tract from the
corresponding cluster. We set the culling threshold to 0:65 for the projections used
in our experiments. Finally, we compute a centroid for each cluster by choosing the
tract with the smallest maximum distance to any other tract in the cluster. We found
that for illustration purposes it is desirable to avoid broken tracts. We therefore
weigh the centroid selection to favor longer tracts by dividing the maximum distance
from each tract to any other tract by the tract’s length.

We opted for a non-photorealistic rendering of brain projections to avoid their
interpretation as 3D views and to harness users’ intuitions about 2D maps. The
rendering assumes a given clustering with assigned centroid tracts, which can be
computed as described in the previous section. The centroid tracts will define a
schematic neural skeleton on top of which the non-centroid tracts are scaffolded.
Projections of centroid curves are smoothed prior to rendering to achieve a
schematic representation and to reduce clutter. This is done by sampling a number
of evenly distributed control points (five in our implementation) along the tract
projection and using them as control points for a piecewise cubic spline with 30
segments. The thickness of a centroid curve is proportional to the square root of
the number of tracts in the bundle. Once centroid tracts are represented as 2D
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a b

Fig. 3 (a) Schematic tract-cluster representation. (Top) 2D projections of a tract bundle, with an
associated centroid curve (yellow), are determined from a hierarchical clustering of initial 3D
tracts. (Middle) The centroid curve is smoothed by a spline and the endpoints of non-centroid
curves are clustered using their initial 3D coordinates (four clusters); for each cluster, three control
points linking the center of the cluster to the centroid spline are computed. (Bottom) Splines are
run from each curve endpoint through the control points of its corresponding cluster. (b) Depth
ordering of 2D paths. For each segment of a 2D spline, we locate a corresponding segment on the
3D curve from which the spline was derived by traveling the same fractional distance along both
curves. The depth of the 2D segment is the same as the depth of the middle of its corresponding
3D segment

splines, endpoints of non-centroid curves are linked to their cluster’s centroid spline
following the procedure illustrated in Fig. 3a. First, the endpoints of non-centroid
curves in a bundle are clustered based on the endpoints’ initial 3D coordinates. Two
endpoints are placed in the same cluster if the distance between them is less than
2 mm. Then, for each such endpoint cluster we compute three control points that
link the geometrical center of the endpoint cluster to the centroid spline: the first
point is the center itself, the second is a point on the centroid spline closest to
the center point, and the third is determined by traveling from the second point
down the centroid spline, towards each curve’s other endpoint, for a predefined
distance (e.g., half of the distance between the first two points). Ultimately, splines
are run from each tract endpoint through its cluster’s three control points, thus
linking each endpoint to the centroid path. The thickness of these endpoint linkage
splines gradually increases from unit thickness (i.e., single-tract thickness) at the
tract endpoint to a thickness proportional to the square root of the endpoint cluster
size, where it merges with the centroid spline.



196 Ç. Demiralp et al.

We depth-order spline segments so that 2D centroid splines crossings can
indicate the depth ordering of their corresponding 3D shapes. The depth ordering is
done differently for centroid splines and non-centroid splines, since while centroid
curves are close representations of actual 3D tracts, non-centroid curves are abstract
representations obtained through the process described above. Furthermore, the
depth ordering is approximate and may produce artifacts. For centroid splines, the
depth of a spline segment is computed by finding a matching segment on the 3D
tract from which the spline was derived and taking the depth of that segment’s center
(see Fig. 3b). The matching segment on the 3D tract has its endpoints at the same
fractional distance from the start of the 3D tract as the 2D segment’s distance from
the start of the 2D spline. The depth of any non-centroid spline is determined by
averaging the depth of the corresponding 3D tract.

In the following two sections, we give details on how we use 2D neural path
representations as part of an interactive application and as standalone digital maps.

4.5 Linked Multi-view Interaction

We expect a typical use of low-dimensional representations to be as part of inter-
active applications where views and interactions of conventional representations
are linked with those of low-dimensional representations. We have developed
two interactive visualization systems using the 2D point and path representations,
respectively, to demonstrate this mode of use (see Figs. 4 and 5).

Both applications have a view of tractography data visualized using 3D stream-
tubes. Coloring is generated through the embedding of tract similarity into the
L*a*b* color space. In addition to the standard 3D viewing interactions, we
have two basic 3D selection/deselection interactions on streamtube models: sphere
selection and brushing. Sphere selection, like box selection, enables the users to
select the intersecting tracts by moving a sphere of desired radius. Brushing lets
users draw 2D curves on the viewing plane and select the intersecting tracts.

Both sphere-selection and brushing can be used to further prune the current
selection but they cannot be used to grow it. For that purpose, we provide a selection-
growing interaction that gradually adds tracts closest to the current selection.
Proximity is again determined by the distance measure discussed above.

On the 2D point representation, we provide point selection and point collapsing.
Selection is performed by clicking and dragging; multiple selection can be per-
formed to select points from non-adjacent regions. Collapsing groups a set of points
into a single clustered representation. This can be used either for easier tract bundle
selection or as a mechanism for manually refining embeddings: points belonging
to the same tract bundle can be grouped together if the embedding algorithm places
them apart. The centroid of the grouping is used in subsequent embedding iterations.
The hierarchical clustering tree provides a filtration of the dataset via cuts. Figure 6
shows how a cut on the dendrogram, which results in a clustering, provides a coarser
representation.
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Fig. 4 Coordinated DTI tractogram model exploration in lower-dimensional visualizations: 2D
embedding (upper right), hierarchical clustering (lower left), and L*a*b* color embedder (lower
right). Selection of a fiber bundle (red) in the hierarchical clustering is mirrored in the other views

In the 2D path tool, we link projective views on the sagittal, coronal, and
transverse planes to a standard 3D streamtube model. The clustering cut threshold
that defines the specificity of the projected bundles can be altered interactively
during visualization. Tract clusters in the planar projections can be selected by
drawing line segments that select intersecting bundles. A selection in any of the
planar views is mirrored in the 3D model view as well as in all other 2D projections.

4.6 Digital Map Interface

Brain mapping is one of the quintessential problems in neurosciences. We believe
that a geographical map metaphor is well suited to the visualization and analysis of
results obtained in that area. Therefore, producing a representation of the brain that
is viewed, interacted, queried, and enriched like an online geographical map was
one of the motivations behind our creation of the 2D path representation.

For this, we use the Google Maps API, an Ajax framework used to render large
maps, to interactively display our tractogram maps on the web. The Google Maps
API receives input image data in the form of a set of small images, called tiles, that
when assembled together form the different zoom levels of the map. Each zoom
level z consists of a rectangular grid of tiles of size 2z�2z. The API decodes the zoom
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Fig. 5 An interactive analysis system using linked views and planar tract-bundle projections.
Three planar representations, along the coronal, transverse and sagittal planes (bottom panels),
are linked to a 3D streamtube model (upper left) and a 2D point embedding of tract similarities
(upper right). Selections in the projection views can be made by clicking or cutting across cluster
curves and are mirrored in the 3D view. Points corresponding to the selected tracts are interactively
embedded into the plane and used to refine selections at the tract level

level and coordinates of the currently viewed map region to retrieve and display the
visible tiles. The developer can load a custom set of tiles in the API by implementing
a callback function that translates numerical tile coordinates and zoom level into
unique paths to the custom tiles.

The API provides basic functionality such as zooming and panning and allows
programmatic extension or customization with markers and polyline overlays,
information pop-ups and event management. The API can easily be integrated into
any webpage supporting Javascripts.

Our visualization system can render our 2D projections into a set of image tiles
instead of the screen. For each cluster, including both tract-bundled and endpoint
clusters, we export information required for interaction and browsing. Selection
information consisting of evenly spaced points along splines and thickness radii for
splines contained in a cluster is exported. In line with the tile paradigm, instead
of exporting this information to a single large file, we divide it geometrically
across corresponding tiles and write it as multiple tile-content text files. Upon user
selection, the content file of a clicked tile is fetched from the server and its data
analyzed for an intersection. This approach avoids loading and searching through
large files. A valid cluster selection is marked on the map with polyline overlays
running over tract splines contained in the selected cluster (see Fig. 7). For this
purpose, spline coordinates for each cluster are exported to files indexed by a unique
cluster identifier.



Exploring Brain Connectivity with Two-Dimensional Maps 199

Fig. 6 A clustering cut in the dendrogram view (top row) is applied to the linked 2D embedding
and 3D colorer (middle row). Points belonging to the same cluster are collapsed to their centroids
(bottom row)

Fig. 7 DTI tractography data projected onto the sagittal, coronal and transverse planes. Major
tract bundles are represented schematically by their centroid tract; individual tracts in bundles are
linked from the centroid bundle to their projected endpoints. Zooming in allows access to smaller
clusters of tracts. Bundles can be selected and pre-computed statistical data along with 3D views
of the tract bundle (“brain view”) can be displayed
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Finally, for each tract cluster we export a variety of metadata accessible during
map browsing in information boxes, as shown in Fig. 7. A short description and
links to the most relevant publications or research can be added manually for major
tracts. A few 3D poses of each tract bundle are prerendered and exported as animated
GIF images, indexed by the cluster identifier. Statistical data, in both textual and
graphical form, are computed for each cluster and written as HTML content to
cluster-indexed files. This information is loaded and displayed in tabbed information
boxes at the user’s request.

4.7 Implementation

We implemented both interactive systems in C++ using G3D and Qt libraries [14,
24]. We created the web interface for the neural path representation using the Google
Maps API [15]; it can be accessed via the url link [17].

5 User Evaluation

We compared the two representations both anecdotally and quantitatively.

5.1 Anecdotal Study: Methods and Results

In the anecdotal study we showed a prototype that implements both 2D point and
neural path representations to three neuropsychologists, all of whom were interested
in the relationship between fiber tracts and cognitive and behavioral function in
the brain. Similarly, all have used computational tools for analyzing DTI data,
though only one of them had used fiber-tract visualization tools in his clinical
research. The participants had research interests in vascular cognitive impairment,
early Alzheimer’s disease, and HIV, focusing on specific tracts and regions such as
the corpus callosum (CC), frontal lobe, basal ganglia, cingulate bundle, superior
and inferior longitudinal fasciculi, anterior internal capsule, and the uncinate
fasciculus.

Our anecdotal evaluation protocol was straightforward: we demonstrated the
prototype while asking questions and collecting participants’ feedback. Two of
the experts also tried both interfaces themselves by selecting a set of major TOIs,
the CC, cingulate bundle, uncinate anterior internal capsule, and the corticospinal
tract. There was agreement that the 2D neural path representation was more intuitive
and easier to use and learn than the 2D point representation.
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Our experts also found the web interface with the digital map interaction useful.
Although they believed that the standalone application with linked representations
would remain necessary for quantitative analyses requiring interactive fine selection,
they thought the web accessibility opened up interesting possibilities. They were
particularly excited about browsing through datasets while commuting or at home,
of quickly inspecting unfamiliar datasets, and of sharing such visualizations with
collaborators.

5.2 Quantitative Study

In the quantitative evaluation, we compared the point and path representations by
measuring user performance on a bundle selection task.

5.2.1 Applications

We used our interactive path representation system (Sect. 4.5) and the 2D point
representation tool in [7] in running the comparative study. The reason that we
used this tool instead of ours is that it had already been compared to other known
tractography tools such as CINCH, MedINRIA, and BrainApp, and was reported to
be preferable to them. Using it would give us some idea about, the relative merits, if
any, of the 2D path representation tool over not only the 2D point representation
but also these other tractography applications already compared. Chen et al.’s
application offers a brush tool that works similarly to ours in 3D and as a lasso tool
on the 2D point representation. Users can select tracts or points and then remove
them or, conversely, remove everything else from a current selection.

5.2.2 Participant Pool

Our four subjects were all familiar with neuroanatomy and tractography. They
also had experience with one or more tractography visualization tools. Our first
subject was a neuroscience graduate student working on tracing white-matter tracts
from frontal subregions to basal ganglia and the medial temporal lobe. Our second
user was a neuropsychology postdoc with 5 years’ experience with DWI in clinical
research. This user, who participated in the anecdotal study as well, studied white-
matter variation in the neurodegenerative diseases specified above. Our third subject
was a biomedical engineering graduate student who had significant tract-selection
experience working as a rater for a neuroscientist. Our last subject was a computer-
science graduate student doing research on computational DWI algorithms. Two of
the users were male and two female.
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5.2.3 Task

We measured user performance on bundle selection, a typical real-world task
tractography tools. Users were asked to select three major bundles, the cingulate
bundle (cb), corticospinal tract (cst), and right superior longitudinal fasciculus (slf),
in two different brain datasets. We chose these bundles because they represent the
easy-to-hard selection-difficulty range well and were used for evaluation in [7].

For each system, we explained to users the underlying visualization concepts
and demonstrated the basic interactions, mainly involving brushing on 2D and
streamtube representations. After this introduction, users were asked to select the
bundles (cb, cst, and slf) on two different training datasets. Following training, the
users performed the task on two different test datasets while we collected their
task-completion times. After each selection they provided subjective confidence
estimates in the range 1–5 (1: not confident, 5: very confident) for their selection
(fractional estimates were allowed). After completing the task on both systems,
users were asked to fill out a post-questionnaire qualitative feedback on their
experience. Half the users performed the task first on the 2D point-representation
tool and the other half on the 2D path tool.

5.2.4 Factors and Measures

The sole factor considered in our quantitative experiment was the type of low-
dimensional representation: 2D point and 2D path. All subjects used both types
of representation. We recorded the users’ bundle-selection times and subjective
confidence values as measures of performance.

5.2.5 Results

In order to understand if the differences between user performances on the two tools
were significant, we ran the paired t-test on our measurements. Results show that
users were significantly faster on the 2D path tool than the 2D point tool (p D 0:02).
Users were also significantly more confident using the 2D path representation than
the 2D point representation (p D 0:01). Table 1 summarizes users’ overall and per-
bundle mean performances on each tool. Figure 8 shows the difference between
the means of performance measures per user (2D-path-performance values are
subtracted from 2D-point-performance values) and the mean over users. Error bars
indicate the standard error in per-user differences.

We observed some interaction patterns worth reporting. Two distinct selection
strategies were used with the 2D path tool. Two users consistently brushed over
large areas of the projection to ensure that the targeted bundle was selected and
then relied on the 3D view to clean up the selection. The other two users aimed for
fine selections in the 2D projections and then inspected the 3D view to determine
whether any fibers had been left out. They added the missing tracts using short,



Exploring Brain Connectivity with Two-Dimensional Maps 203

Table 1 User performance on bundle selection task

Time (s) Confidence

cb cst slf Mean cb cst slf Mean

2D point 227 361 234 274 4.1 3.3 3.1 3.5
2D path 136 165 215 172 4.1 3.8 3.7 3.9
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Fig. 8 Per-user differences between (a) time and (b) confidence measurements with the two
tools. Differences are obtained by subtracting 2D-point-tool performance values from 2D-path-
tool performance values. Red squares show the mean performance difference between the tools.
Error bars around the red squares indicate the standard error of per-user differences

targeted brush strokes and then removed tubes that had been added erroneously
during this operation. These latter users seemed to have a better understanding of
the mapping between the 3D view and the 2D projections, perhaps explaining the
difference in strategies.

All subjects used the 2D point representation relatively rarely. The most common
operation was to remove points they were completely confident were not part of the
selection (e.g., half of the brain, or peripheral U-shaped bundles). However, in the
absence of a clear contextual mapping between the 2D point and streamtube views,
subjects were hesitant to perform bold operations in 2D, at least in the short run.

6 Discussion

It is important to note that our representations rely on the anatomical fidelity
of the intermediate results at each step. For example, broken trajectories due to
fiber tracking errors can reduce the effectiveness of the representation. Similarly,
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our method expects the clustering algorithm and similarity measure to provide
anatomically plausible results. However, it is difficult for a single distance measure
to capture the anatomical similarity completely. Furthermore, on the same data,
a good similarity measure for one purpose can be entirely irrelevant for another.
While the choice of similarity measure makes clustering a subjective task, clustering
algorithms themselves also have intrinsic limitations [22].

One potential limitation of the planar path representation is that bundles sur-
rounded by the other bundles similar in orientation and shape may not be clearly
visible. While we have not found this to be an issue in practice, moving projection
planes along major axes while restricting the projecting tracts to a volumetric
window moving with the projection plane can help solve potential problems.

Also, although we believe the subjects participating in the quantitative evaluation
constituted a realistic sample of the potential users of the tools presented here,
their small number limits the power of the conclusions drawn from the evaluation.
And, in general, results of user studies should be taken with a grain of salt. It is
difficult to run experiments that vary one factor while keeping all the other factors
constant. For example, an earlier study [7] compared the 2D point representation
tool with other tractography applications and reported that users were faster with
the former. However, in our user evaluation, we observed that users rarely used the
2D point representation and the brush tool dominated their interaction, raising the
question whether the performance difference in the reported evaluation was due
mainly to the brush tool or to the 2D point representation. An experiment that
replaced the brush tool with a more standard box-selection tool, say, might resolve
this question. In either case, we believe that abstract representations, including
the 2D point representation, are useful in the long run, as users gain more experience
with the mapping between brain tractograms and low-dimensional representation
primitives. In general, however, it is not realistic to expect practitioners to learn the
correspondence between the new representation and the actual fiber-tract collection
quickly, unless the tools are easily interpretable using a conventional anatomical
framework. Furthermore, in order for any tool using a new representation of
tractograms to have clinical relevance, it should provide anatomical context and
intuitive functionality for region-of-interest analysis on both conventional and new
representations.

While we have focused on planar spatial representations here, it is possible
to create abstract representations of tractograms. For example, the hierarchical
clustering tree itself can be considered as a representation of the tractogram. Or
consider the circular map of connectivities (or dependencies) in Fig. 9. We obtain
this dependency graph representation by first clustering tract endpoints using hierar-
chical clustering and setting an implicit dependency between the endpoints of each
tract. We then visualize the resulting hierarchical tree with pairwise connectivities
using hierarchical edge bundling [16], which feedback from a neuropsychologist
suggest might be useful for understanding connectivity densities and profiles.

Although DWI is the only imaging protocol to estimate the brain neural archi-
tecture in vivo, there are in vitro imaging techniques, such as the three-dimensional
electron microscopy used particularly in the emerging field of connectomics, with
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Fig. 9 Low-dimensional representations can have varying degrees of abstraction. The internal
capsule is represented with (a) streamtubes, (b) a circular connectivity map, (c) a set of embedded
points in the plane, and (d) a hierarchical clustering tree

which neural structures can be imaged on much smaller scales (e.g., individual
axon bodies) [18]. We believe that the general ideas as well as the specific
techniques presented in this paper can extend to the visualization and analysis of
visually complex axonal structures originating from these high-throughput imaging
techniques.

7 Conclusions

Combining traditional 3D model viewing and intuitive low-dimensional represen-
tations with anatomical context can ease navigation through complex fiber tract
models, improving exploration of the connectivity in the brain. We presented
two planar maps, point and path representations of tractograms, that facilitate
exploration and analysis of brain connectivity. Essentially, both representations are
created by applying abstraction and filtration on tractograms. We achieve abstraction
by simplifying and generalizing fiber tracts with points and schematic curves in
the plane. We create filtrations of tractograms by computing hierarchical clustering
trees. These help create better abstractions and also provide multiscale views of
data, which is important in reducing visual complexity and noise.
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We compare the two representations both qualitatively and quantitatively with
help of experts. Results suggest that the 2D path representation is more intuitive
and easier to learn and use than the 2D point representation. We also introduced
a novel way of making tractography data accessible by publishing neural maps
online through a digital map framework. Our representation is conducive to such
a geographic map interface by construction. This interface leads to new possibilities
for enriching tractography datasets using the mass knowledge base available on
the web. User feedback indicates that our web interface can be particularly useful
for browsing unfamiliar datasets quickly, for analysis tasks that do not require fine
selection and for sharing data in collaborative settings.
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