
Case Study: Visualization and Analysis of High Rayleigh number — 3D
convection in the Earth’s Mantle

Gordon Erlebacher1 David A. Yuen2 Fabien Dubuffet2

1School of Computational Science & Information
Technology,

Florida State University, USA∗

2Minnesota Supercomputer Institute, University of
Minnesota, USA†

Abstract

Data sets from large-scale simulations (up to5013 grid points) of
mantle convection are analyzed with volume rendering of the tem-
perature field and a new critical point analysis of the velocity field.
As the Rayleigh numberRa is increased the thermal field devel-
ops increasingly thin plume-like structures along which heat is con-
vected. These eventually break down and become turbulent. Visu-
alization methods are used to distinguish between various models
of heat conductivity and to develop an intuitive understanding of
the structure of the flow.
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1 INTRODUCTION

Mantle convection is a problem of considerable interest in geophys-
ical fluid dynamics, because of the richness in the physics such as
variable properties, in particular the recent work which focusses
on variable thermal conductivity [1]. Since the late 1980’s mantle
convection has been modelled in 3-D but at relatively low Rayleigh
numbers like105 [2]. The resolution used at that time was relatively
low about 2 million grid points. Recently we have conducted some
high Rayleigh number calculations with close to108 grid points [3]
Variable thermal conductivity introduces new nonlinearities into the
temperature equation, making it looking like the Burgers’s equation
near the boundary layers, because of the presence of the square of
the temperature gradient, which dominates over the Laplacian of
the temperature. It is more difficult to solve numerically and re-
quires higher spatial resolution than for constant thermal conduc-
tivity. The spatial structures of plumes associated with variable
thermal conductivity are different from those of constant conduc-
tivity [4]. In this case study we extend our previous work on high
Rayleigh number convection [5] to even higher Rayleigh numbers
on the order of109 and improve on both the visualization tools and
techniques used in our previous attempts to visualize mantle con-
vection processes [6].

2 MATHEMATICAL MODEL

Mantle convection can be modelled as a fluid at infinite Prandtl
number subject to the Boussinesq approximation. The motion of
this fluid is solved for in a 3-D Cartesian geometry, with the vertical
axis(z) pointing downward (Figure 1). The equations of motion are
the temperature equation with variable thermal conductivity,

DT

Dt
= ∇(κ(T, p)∇T )
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and the momentum equation (which does not depend on the variable
viscosity or conductivity)

∇2u−∇p−RaTez = 0,

DT
Dt

is the substantive derivative of temperature,T is the devia-
tion of temperature from a constant reference state,u is the ve-
locity vector,p is the pressure in excess of the hydrostatic value,
T is the temperature deviation from the background state,Ra is
the Rayleigh number andez is the unit vector along thez direc-
tion which is aligned with the gravity vector. The Rayleigh number
Ra = αg∆Td3/(νκ) whereα is the thermal expansivity,g is the
gravitational acceleration,∆T is the temperature drop across the
mantle,d is the depth of the mantle,ν is the kinematic viscosity
andκ is the surface value of the thermal diffusivity. As a result
of variable conductivity, the terms on the right hand side of the
temperature equation are non-linear functions ofT as opposed to
the simple linear diffusion term in the constant conductivity case.
Boundary conditions on temperature areT = 0 atz = 0 (cold top)
andT = 1 at z = 1 (heated bottom). The dimensional tempera-
ture at the Earth’s core-mantle boundary is uncertain and may range
between 3200 K to 4500 K [7]. The physical domain has an aspect-
ratio of4×4×1 for modelling 3-D mantle convection in a cartesian
geometry. This geometric configuration has been used the past [8]
to model dynamics of mantle convection at lower Rayleigh number
than the ones considered here. The thermal mantle conductivity has
two components, the radiative conductivity and the lattice conduc-
tivity. These expressions, given in [9, 10] are based on experimental
phonon lifetimes and reflectance data.

Figure 1:Geometry of mantle convection

3 NUMERICAL METHOD

The flow is assumed to be periodic in thex− y (horizontal) direc-
tions. The grid is uniform in all three directions. We have used an
Alternating-Direction-Implicit scheme together with a finite differ-



ence method to solve the variable conductivity temperature equa-
tion. A Smolarkiewicz/finite-difference scheme is used for the con-
stant conductivity case. The momentum equation is solved in the
spectral domain using Fast Fourier Transform along the horizontal
direction and second-order finite-differences inz. Free-slip bound-
ary conditions are imposed on the horizontal surfaces, while the
vertical boundaries are impermeable.

Data from several simulations are used for this study. A low
resolution973 simulation atRa = 106 was chosen to illustrate
the time-dependent nature of the data. These simulations (for con-
stant and variable conductivity) were run for 8000 time steps, from
which data at 300 time steps was stored and analyzed to study the
time evolution of structural information. Two very high resolution
simulations atRa = 108 andRa = 109 were conducted at res-
olutions of4013 and5013 grid points respectively. This data was
generated for constant conductivity.

4 AMIRA

We have chosen the visualization package Amira [11] as the tool
of choice for the display of complex flows. Amira, similarly to
AVS, Iris Explorer, and Data Explorer, allows the user to construct
flowcharts interactively from a collection of predefined modules.
Although the three aforementioned products have longevity and are
quite capable of representing a wide variety of flow configurations,
none can do so with the efficiency afforded by Amira. Amira is
built on top of Inventor, a well-known SGI product, strongly object-
oriented, and itself based on OpenGL. While OpenInventor pro-
vides facilities for high-level interaction with the data through em-
bedded widgets and the means to attach virtually any variable to an
action, Amira interacts with the data at a higher level. For example,
it can manipulate structured and unstructured meshes, slice through
grids at interactive speeds, etc. There are sophisticated isosurface,
line integral convolution, illuminated streamlines, and volumetric
tools that harness the latest advances in texture-based visualization
algorithms. As a result, Amira can manipulate extremely large data
sets very efficiently. For example, it takes under 30 seconds to ren-
der a4003 data set on a Precision 530 Workstation (1.7 GHz Xeon
chip, 1 Gbyte memory, 400 MHz bus). All the results in this paper
were generated on this workstation.

Amira is fully extensible through a well-defined object-oriented
hierarchy of data structures that define grids and data types. Wrap-
pers around many Inventor features are also provided. The algo-
rithms discussed below have been implemented as Amira modules
written by one of the authors. They are imported into Amira and
appear as any other Amira module in the visual flowcharts. One
feature of Amira that is particularly useful is its use of Tcl as a
scripting language, which can also be used to construct modules
and enhance their functionality.

5 THERMAL PLUMES

One of the fundamental challenges when analyzing flow turbulence
is the identification of the so-called coherent structures. These have
been defined in many ways, and to date there is still no real con-
sensus. However, one definition that has appeal is to consider a
coherent structure as a localized region of the flow that remains
correlated over spatial and temporal scales much larger than the
scales of the random flow component. Examples of such structures
include turbulent spots in wall-bounded flow undergoing transition,
hairpin vortices in wall-bounded turbulent flow, and elongated dis-
sipative vortices in isotropic turbulence [12]. Such structures have
been studied extensively, but aside from vortices, there have been
very few algorithms developed to extract them. Feature extraction

is seen as a necessary component required to successfully handle
very large data sets in complex fluids.

Figure 2:Plumes in973 constant conductivity.

Figure 3:Plumes in973 variable conductivity

WhenRa is sufficiently high, the temperature field develops tur-
bulent characteristics, reminiscent of the turbulent velocity fields
found at high Reynolds number. The coherent structures associated
with the temperature field are called thermal plumes. They exist at
lower Rayleigh numbers, but develop a range of spatial scales as
Ra is increased. Plumes play an important role in the dynamics
of mantle convection because they determine the style of mantle
convection and the global heat transfer. Until recently, the conduc-
tivity was assumed to be constant. The visualizations shown herein
demonstrate that variable conductivity can change the spatial distri-
bution and the strength of the plumes, thus affecting the dynamical
processes through which heat is conducted through the mantle.

Figures 2 and 3 are six frames taken from an animation of a vol-
umetric representation of the temperature field atRa = 106. The
color map was chosen to emphasize the thermal plumes. The first
two images are at early time, the last two at times when the flow
has become quasi-stationary. Comparing the constant and variable
conductivity cases, we note that when the conductivity is constant,
the plumes develop faster and their spatial density is higher. In both
cases, the structure of the plumes is approximately constant: their
height and shape don’t vary much. On the heated plate (bottom),
the temperature develops thin structures from which the plumes em-
anate. A better understanding of these structure is a focus of current
research. Qualitatively, the thermal plumes are tube-like; they are
primarily vertical and extend from the bottom to the top plate.

As Ra is increased further, the plumes become thinner and more
irregular. WhenRa reaches the107 range, the temperature field be-
comes turbulent [5]. Figures 4 and 5 show the temperature field at
a stage when the flow is quasi-stationary. The plumes have become
more irregular, particulary atRa = 109. Many plumes no longer



Figure 4:4013 temperature field atRa = 108. Constant conductivity.

Figure 5:5013 temperature field atRa = 109. Constant conductivity.

extend throughout the mantle. To get a better idea of the structure of
the plume,x−z andx−y cross-sections are presented in Figures 6
and 7 respectively. The color maps correspond to those used in the
volume-rendered images, including transparency. This was done to
reduce accidental misinterpretation of the images when comparing
plume slices and their 3-D representations. The top frame of each
figure corresponds toRa = 108, the bottom frame toRa = 109.
From thex− z profiles, it is immediately apparent that the plumes
are thinner at higherRa. However, the thicker plumes are not im-
mediately seen from thex− y cuts. What can be deduced through
these visualizations is that the plumes originate from the heated
plate at the intersections of the “canals” of local temperature maxi-
mum. The complex structure of the temperature field near the bot-
tom plate at highRa is directly linked to the higher complexity of
the plume structure.

From these images, we deduce that plumes under high Rayleigh
number cover a very small region of the 3-D volume, which de-
creases as even highRa. Thus the problem of visualizing plumes
becomes more difficult at higherRa. This would have been difficult
to ascertain without the aid of and advanced visualization software.
The next step is to develop techniques to extract these plumes and
store them separately for analysis. We assume that a better under-
standing of their spatial distribution, their shape, and their volume
would provide geoscientists with useful information to help their
modelling efforts. Defining these plumes in a quantitatively is not
clear. Although the eye can clearly identify them from the 3D im-
ages, one must remember that the eye sees temperature integrated
along a ray. However, one clearly identifies the plumes from the

Figure 6: Typical x − z slice through the temperature field. Top:Ra = 108,
bottom:Ra = 109. Constant conductivity.

Figure 7: Typical x − y slice through the temperature field. Top:Ra = 108,
bottom:Ra = 109. Constant conductivity.

cross sections. The temperature gradient will play an important role
in identifying these plumes. Unfortunately, neither the temperature
or the gradient is constant along the plume edge (there are strong
and weak plumes). At this stage, the color maps used were gener-
ated by trial and error. A slight change in the map can easily make
the plumes disappear. We have begun investigating the rendering of
the temperature gradient field. Although the initial results are en-
couraging, we are seeking a more quantitative approach that would
allow the color maps to be correctly built ab initio.

6 VELOCITY FIELD

What is the relationship between the structure of the thermal plumes
and that of the velocity field? The temperature field clearly indi-
cates upswelling and dowswelling motion between the bottom and
top plates, but what is the precise mechanism by which this occurs?
The temperature can vary either through thermal conduction, or by
convection by the velocity field. Thus it is of some interest to better
understand the time-evolution of the velocity field.

In this paper, we consider a new use of critical points both as a
means of flow representation in a highly compressed form and as
a way to provide qualitative information about the flow. Critical
points of the velocity field are intrinsically linked to the nonlinear
dynamics of the flow [13]. In 3D flows, their structure provides
clues regarding whether pathlines intersect planes along continu-
ous curves or chaotic point distributions. In visualization, critical
points have been used as a means of simplifying the representation
of vector fields [14].

Critical points are points of a velocity field are the points where
the the flow where the velocity vanishes. The structure of the flow in
a neighborhood of a critical pointx is easily derived from the linear
approximation to the vector field aboutx. The type of the critical
point is determined by the eigenvalues of the Jacobian of the veloc-
ity field evaluated atx is often used to characterize the nature of the
flow (rotational, divergent, swirling, etc.). In three-dimensions, the
interpretation of critical points is more difficult [15].

To date, critical points have not been exploited in time-dependent
convective flows. The sparsity of critical points in 3-D flows leads
us to an alternate technique that is meant to visualize the flow from
the perspective of symmetry and global complexity. To accomplish
this, we replace the 3-D velocity fieldu(x, y, z) = (u, v, w) by
three 2-D velocity fieldsuz(x, y) = (u, v), ux(y, z) = (v, w),
anduy(z, x) = (w, u), restricted to thex − y, x − z andy − z
planes respectively. The subscriptsx, y, z remind us that these 2-D
fields are parameterized by the third dimension. Next, we compute



the critical points ofuz(x, y) in all x − y slices and assign them
a color. We do the same for the critical points in thex − z and
y − z slices. Each critical point is displayed as a small cube. We
pre-compute the critical points of the projected velocity fields that
correspond to the 300 time slices of the973 data set atRa = 106.
We have found approximately 500 and 5000 critical points in each
frame.

Figure 8:Critical points taken from 6 frames of an animation. Constant Conductiv-
ity. 963.

Figure 9:Critical points taken from 6 frames of an animation. Variable Conductiv-
ity. 963.

The results for the constant and variable conductivity data are
shown in Figures 8-9 respectively. The top-left image corresponds
to an early stage in the simulation, before the formation of the
plumes. In the top-right image, the complexity of the flow has
clearly increased, as determined by the number and more appar-
ently random distribution of the critical points. Note however, that
the variable conductivity case maintains some structure for a longer
time, consistent with the observations based on volume rendering
o the temperature. The bottom-right image is representative of the
state of the flow when it is quasi-stationary. We have constructed
a module for Amira that can interactively browse through the criti-
cal points of all 300 sets data. The animation can be controlled by
the software, or the user can interactively scan through the data for
the purpose of exploration. Work is in progress to use this tool as
a navigation device to zoom in on features of interest or to show
alternate flow representations at the times selected by the user.

7 CONCLUSIONS

We have applied state-of-the-art visualization tools to some large-
scale time-dependent mantle convection data sets to better under-
stand the underlying structure of the temperature field, which be-
comes turbulent beyond a critical Rayleigh number. We have used
the notion of critical points to construct a skeletal representation
of the flow that helps characterize inherent symmetries and com-
plexity. While volumetric rendering remains a fundamental tool
to help understand the geometric structural intricacies of thermal
plumes, there remains the task of developing robust algorithms for

automatic color map generation and plume extraction. This work is
fundamental to research activities Earthscope [16].
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