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Diffusion tensor MRI is used to define trajectories that reflect
the long-range order of in vivo white matter (WM) fiber tracts.
Fiber tracking is particularly prone to cumulative error from
noise and partial volume along the length of the trajectory
paths, but the overall shape of each path is anatomically
meaningful. By considering only the long-range similarity of
path shapes, a method of constructing 3D maps of specific
WM structures has been developed. A trajectory is first com-
puted from an operator-selected seed voxel, located within
the anatomical structure of interest (SOI). Voxels from the
same structure are then automatically identified based on the
similarity of trajectory path shapes, assessed using Pear-
son’s correlation coefficient. The corpus callosum and pyra-
midal tracts in 14 patients with multiple sclerosis, and in
10 healthy controls were mapped by this method, and the
apparent diffusion coefficient (ADC) was measured. The ADC
was significantly higher in patients than in controls, and
higher in the corpus callosum than in the pyramidal tracts for
both groups. Using this method the different functional struc-
tures in the WM may be identified and mapped. Within these
maps, MRI parameters can be measured for subsequent
comparison with relevant clinical data. Magn Reson Med
47:967–972, 2002. © 2002 Wiley-Liss, Inc.

Key words: diffusion tensor; tractography; multiple sclerosis;
corpus callosum; pyramidal tracts

The diffusion tensor imaging (DTI) modality is a recent
development in MRI. Data acquired by DTI is used to
construct a diffusion tensor in each voxel (1–3). The tensor
describes the quantitative apparent diffusion properties
local to that voxel through its eigenvalues and eigenvec-
tors. This is fundamentally different from other modalities
wherein each voxel contains only a scalar signal intensity.

Diagonalizing the diffusion tensor yields three eigenval-
ues, each of which measures the apparent diffusion coef-
ficient (ADC) in one of three orthogonal directions. In the
brain, the random motion of the water molecules in cere-
brospinal fluid (CSF) and gray matter (GM) ensures largely
isotropic diffusion. In the white matter (WM), restricted
movement of water perpendicular to the direction of the
fiber tracts results in anisotropic diffusion, so that one
eigenvalue is significantly larger than the others. The larg-
est eigenvalue is associated with the major diffusion vec-
tor, which has been shown to point parallel to the fiber
tracts (4) and provides a means of mapping specific tract
bundles (5–8). The method described here utilizes the
major diffusion vector to define trajectory paths that reflect
the underlying shape of these bundles.

Analysis of specific WM structures is important because
the functional role of each is different. The ability to iden-
tify and segment a single structure would allow a detailed
assessment of damage within it, and a subsequent compar-
ison with relevant clinical data (9). With conventional
MRI, a brain atlas may be used to map the different regions
(10). This is, however, subject to error due to intersubject
anatomical variability (8,9). Since the advent of DTI, sev-
eral groups have attempted to utilize the vectorial infor-
mation available from the diffusion tensor to identify dif-
ferent structures. Specific WM tract bundles have been
identified by computing trajectories initialized from
within regions of interest (ROI) (5,11). This method was
used by Basser et al. (5) to map the pyramidal pathways
and the corpus callosum, and produced anatomically
plausible results. The problem indicated by the study was
the ability of trajectories to jump to adjacent structures via
noisy or partially volumed voxels. Further, the final result
was sensitive to the placement of the ROI; trajectories
emanating from the ROI might therefore execute a different
path for a small displacement in start position, reducing
the repeatability of such methods. Jones et al. (6) used a
different approach based on a compatibility measure that
considered both the vectorial data and the anisotropy of
the diffusion coefficients. The method compared the
26 nearest-neighbor voxels in order to cluster those with
high compatibility. This resulted in groups of voxels
within a single structure having the same classification.
However, the classification was incomplete and resulted
in fragmentation of the structures.

In this work we describe a method of producing a 3D
map of a specific WM structure of interest (SOI). It relies
on the long-range similarity of WM fibers from the same
tract bundle, and the anatomical plausibility of trajectories
as defined by DTI (5). From an initial seed point, a 3D
connected region is grown to include only voxels from the
same anatomical SOI. The trajectory originating from each
potentially connected voxel must correlate sufficiently
strongly with the seed trajectory for a connection to be
made. Therefore, only the trajectory shapes are important
in our technique, rather than the details of the paths,
which may not be so reliable. We use the method to map
the corpus callosum and the pyramidal tracts in
14 patients with multiple sclerosis (MS), and in 10 control
subjects. We then compare the apparent diffusivity within
these structures.

METHOD

The macroscopic shape of functionally specific WM struc-
tures reflects the long-range order of the constituent fiber
tracts. In simple structures each tract is highly similar in
shape, differing only by a trivial spatial translation. In
more complex structures, such as the corpus callosum,
there is a slow variation in the shape of the fiber tracts in
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addition to a translation. Trajectories defined using DTI
have been shown to reflect the local shape of the tract
fibers (5). The task of identifying a specific SOI in WM is
therefore reduced to identifying connected voxels in the
diffusion tensor data that yield similar trajectories. Here
we have used Pearson’s correlation coefficient (12) to de-
fine the similarity between trajectories.

Clinical Data Acquisition

We applied our method to 14 patients with MS, and
10 healthy controls. Approval was obtained from the local
ethics committee, and all subjects gave informed consent.

MRI

All subjects were scanned in a clinical imaging system at
1.5T (Magnetom Vision; Siemens, Erlangen, Germany). We
used a spin-echo, echo-planar, diffusion-weighted se-
quence (128 � 128 matrix, TE � 103 ms, TR � 6000 ms,
time per echo � 0.8 ms, number of echoes � 96, voxel
dimensions 2 � 2 � 4 mm). Diffusion weighting was
achieved by the application of Stejskal-Tanner diffusion
gradients (13) with bmax � 1000 s/mm2. Seven images are
necessary to construct the tensor: six in the presence of
noncolinear diffusion gradients, and one with no gradient
field (2). A total of 15 axial slices were imaged, sampling a
volume that encompassed the lateral ventricles and in-
cluded the cerebral peduncles and midbrain in the most
caudal slices.

Postprocessing of MRI Data

Echo-planar imaging is highly susceptible to magnetic
field inhomgeneities, leading to significant spatial distor-
tion of the acquired data. We make a correction for this
distortion (14) before using the data to construct the ten-
sor.

The necessity for reasonable acquisition times in a clin-
ical environment dictates the resolution and signal-to-
noise ratio (SNR) of MRI data. With the current imaging
technology, DTI suffers from a significant degree of noise
for any useful voxel size. Parameters derived from the
diffusion tensor, including the major diffusion vector, may

be highly sensitive to such noise. In an attempt to counter
this we apply Gaussian filtering to the MRI data, which
results in more robust tensor-derived parameters (15–17)
and better contrast between the WM, CSF, and GM.

Tensor Digitalization

The processed MRI data is used to construct a 3 �
3 symmetric diffusion tensor D in each voxel. The three
apparent diffusion coefficients (ADCs) �i are obtained from
the tensor by solving the characteristic equation (18) (D –
�iI) � 0, where I is the identity matrix. The three orthog-
onal diffusion directions then follow from the cofactors of
the matrix (18) (D – �iI).

Images

Three image types derived from the tensor are used. The
first is a scalar map of relative anisotropy (RA), as defined
in Ref. 2, which measures the relative differences between
the three ADCs. These images are of high intensity in WM
but low intensity in GM and CSF, as shown in Fig. 1a. The
ADC image, Fig. 1b, is also a scalar map, where each voxel
contains the mean of the diagonal elements of D. This
reflects the direction-averaged apparent diffusivity within
the voxel. In the third image type, each voxel contains the
normalized major diffusion vector. To visualize the vecto-
rial information, a different color is used to denote each
direction and the vector is scaled so that its magnitude is
equal to the RA (an example is shown in Fig. 1c). Here we
use blue to represent the x component, green to represent
the y component, and red for the z component. The length
of each vector component is represented by the intensity of
the relevant color.

Image Processing

Since we are interested only in the WM, the GM and CSF
are removed using a semiautomated seeded region grow-
ing method on the RA images. The resulting WM map
defines the limits for our tractography procedure.

WM Tractography

The procedure for mapping tracts from an initial point r0

to a final point rN, through all intermediate points rn, is
summarized by the equation

FIG. 1. a: RA image. b: ADC image. c: Major diffusion vector, scaled by RA.
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rn�1 � rn � hVn�1 [1]

and shown graphically in Fig. 2. Here h is a step length
parameter and Vn is derived from the major diffusion
vector using a fourth-order Runga-Kutta method (19). The
trajectory can only be defined once the initial conditions r0

and V0 have been specified.
The step length h is established such that convergent

results are obtained, i.e., halving the step size has no effect
on the trajectory path; here we use h � 1 mm, which is half
the smallest linear dimension of a voxel. To obtain Vn, the
MRI data is interpolated in three dimensions using a linear
Lagrange interpolating polynomial (19). The major diffu-
sion vector may then be calculated as a continuous, nor-
malized vector field E(r). Then, for n � 0,

Vn�1 �
1
6

�k1 � 2k2 � 2k3 � k4�, [2]

where

k1 �
Vn � E�rn�

�Vn � E�rn�� E�rn�, [3]

k2 �
Vn � E�rn � h/2k1�

�Vn � E�rn � h/2k1��
E�rn � h/2k1�, [4]

k3 �
Vn � E�rn � h/2k2�

�Vn � E�rn � h/2k2��
E�rn � h/2k2� [5]

and

k4 �
Vn � E�rn � hk3�

�Vn � E�rn � hk3��
E�rn � hk3�. [6]

Defining Vn in this way ensures that Vn � Vn–1 � 0, i.e., the
angle subtended between successive vectors is �90°. This
is necessary since the sign of E(r) is arbitrary. This step-
wise mapping procedure defines a trajectory, as depicted
in Fig. 2, which continues to a point rN. The trajectory is
terminated when a predefined stopping criteria is met.

A complete trajectory path R is defined in two parts.
First,

Rn � rn�0 � n � N� with V0 � E�r0�

describes a trajectory moving away from r0 in an initial
direction E(r0). Second,

R	n � rn�0 � n � N
� with V0 � 	E�r0�

describes a trajectory moving away from r0 in an initial
direction –E(r0). The complete trajectory is described by Ri

[–N
 � i � N], where N
 and N are the termination points.
For the purposes of correct comparison of trajectories, it is
necessary to occasionally reverse this definition such that
Rn� rn [0 � n � N] with V0 � –E(r0) and R–n � rn [0 � n �
N
] with V0 � E(r0).

Stopping Criteria

Left to itself, a trajectory would continue until its path
reached the edge of the data defined by our WM map.
Unfortunately, the reliability of the tracking is compro-
mised by the noise and degree of partial volume in the
image, meaning that trajectories tend to jump between
adjacent WM structures. This usually happens when a
trajectory undergoes a sharp change in direction. We apply
a maximum allowable rate of change of direction, accept-
ing only gentle curvature along the trajectory, in an at-
tempt to constrain the path to one structure only. We find
that a maximum of 10° per 1-mm step allows anatomically
reasonable curvature while stopping trajectories that un-
dergo unexpected directional changes. We further apply a
lower RA threshold of 0.05; a trajectory passing through a
voxel with RA lower than this is immediately terminated.
This low RA threshold serves only to terminate the proce-
dure at the edge of the WM data. A higher threshold is
undesirable because it could potentially stop trajectory
paths from traversing regions of abnormally low RA, such
as MS lesions (20).

Correlations Between Trajectories Originating From
Different Voxels

The method used in this study requires the measure of
similarity between different 3D trajectories. Two trajectory
paths, Ri

n [–N
i � n � Ni] and Rj
n [–N
j � n � Nj],

originating from voxels i and j, respectively, may be com-
pared using the vector form of Pearson’s correlation func-
tion,

rij �

�
n�	a

b

�Rn�p
i � Rn�p

i � � �Rn�q
j � Rn�q

j �

�� �
n�	a

b

�Rn�p
i � Rn�p

i �2�� �
n�	a

b

�Rn�q
j � Rn�q

j �2� .

[7]

In this equation the integers p and q are chosen to mini-
mize the distance |Ri

p – Rj
q|, defining an origin for the

two trajectories that ensures they are compared “in phase.”
The summation limits are defined by a � min(N
i � p, N
j

� q) and b � min(Ni – p, Nj – q). The vectorial means Rn�p
i

and Rn�q
j , are given by

Rn�p
i � �

n�	a

b

Rn�p
i [8]

FIG. 2. The principle of tractography.
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and

Rn�q
j � �

n�	a

b

Rn�q
j . [9]

The correlation coefficient rij is normalized so that –1 � rij

� 1, where 1 means an exact similarity. Negative values of
rij may mean that one trajectory is reversed relative to the
other. In this case, the trajectory Rj

n is reversed as de-
scribed above to yield a positive correlation coefficient.

Algorithm

Here we describe the algorithm used to obtain a 3D con-
nected object representing a specific WM SOI. The object
consists of member voxels that are connected to a seed point
that has been positively identified as part of the SOI by the
operator. The seed point, say voxel i, becomes the first mem-
ber of the object. Then for voxel j, which is not already a
member of the object but has at least one neighboring voxel
that is, the correlation coefficient rij is calculated. If rij is
greater than some predefined threshold, then voxel j will
become a new member of the object. This process is contin-
ued, effectively growing the seed, until no new members can
be created. The algorithm was implemented in the C pro-
gramming language using a recursive function (21).

The procedure is performed interactively. A seed is first
picked by the operator from the color major diffusion
vector image (Fig. 3). Then a region is grown from this
point based on some minimum correlation coefficient. The
minimum correlation is chosen to be as low as possible
without including voxels that are not part of the SOI. Once
an object is defined in this way it is stored. If a single seed
point is insufficient to identify all voxels within the struc-
ture, then a new seed point is picked and a new region

grown. When the operator is again satisfied that the object
grown from this seed represents some part of the SOI, it is
added to the original and stored. The process is complete
when no new seed points can be identified.

Seed Point Selection

Selection of the seed point is the most critical aspect of the
procedure. The trajectory originating from the seed must
represent the shape of the SOI. Figure 3 shows a seed point
located at the center of the splenium of the corpus callo-
sum. The resulting trajectory, shown as a 2D projection,
follows the expected path, not jumping to any adjacent
structures via noisy or partially volumed voxels. This seed
is primarily picked because of the shape of the resulting
trajectory, but also because it is of high anisotropy, indi-
cating deep WM. An object grown from this seed will
certainly be part of the corpus callosum because of its
unique shape compared to other WM structures.

To map the pyramidal tracts, seed points from the easily
identified posterior limb of the internal capsule were se-
lected. For the more complicated corpus callosum, seed
points were selected from the genu, body, and splenium.

Experimental Procedure

Using the method described above, we obtained maps of
the corpus callosum and pyramidal tracts for each subject.
Figure 4 depicts the maps obtained in one control subject.
We then calculated the median ADC value for each map,
using all voxels identified. The Mann-Whitney U-test was
used to test for differences between patients and controls,
and for regional ADC differences. By repeating the proce-
dure for five patients and five controls, we assessed the
reproducibility of these measurements.

RESULTS

The ADC values obtained are summarized in Table 1. We found
that the median ADC was higher in the patients than in the
controls for both the corpus callosum (P � 0.0018) and the
pyramidal tracts (P � 0.0123). Also, for both controls and pa-
tients the median ADC was significantly higher in the corpus
callosum than in the pyramidal tracts (P � 0.0001). The coeffi-
cient of variation on repeating the mapping was 0.6% in the
corpus callosum and 0.3% in the pyramidal tracts.

DISCUSSION

The introduction of DTI has made possible the visual
identification of specific WM structures (22); this is a di-
rect result of the vectorial information available. Yet only
a fraction of the constituent voxels can be located in this
way with certainty. The development of tractography
promises more rigorous methods of identifying these
structures by trajectory mapping of the WM fibers.

However, significant problems remain in the acquisition of
diffusion tensor data. The low SNR of diffusion-weighted
images forces the use of suboptimal image resolution. Ten-
sor-derived parameters, such as RA and the major diffusion
vector, are sensitive to these limitations (15). Tractography is
particularly prone to noise due to cumulative error along the
length of the trajectory path. This renders the end point of a

FIG. 3. Color major diffusion vector map of the WM only. The red
circle indicates the seed point, and the white line a 2D projection of
the trajectory.
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trajectory highly sensitive to its start point. These problems
need to be addressed before individual trajectories can be
used to confidently infer WM connectivity between two dis-
tant points in the brain. Still, the overall shape of the trajec-
tories has been shown to be anatomically meaningful, pro-
viding quantitatively useful data (5).

Image processing methods have been suggested to im-
prove the robustness of the vectorial data. Gaussian
smoothing was used by Westin et al. (17), and by us, to
obtain a more stable estimate of the major diffusion direc-
tion. However, this reduces the effective image resolution,
further increasing the problems with partial volume. A

least-squares B-spline interpolation scheme has also been
suggested (5) to improve the tracking process, but again
this effectively reduces resolution. More sophisticated
methods such as nonlinear smoothing (16) and statistical
regularization of the directional data (8,23) may prove to
be more useful in reducing random errors.

Further problems arise when applying DTI to a WM
disease. Abnormalities such as MS lesions lead to regions
of low anisotropy (20), where tractography is less reliable.
This results from incorrect selection of the major eigenvec-
tor, when all eigenvalues are similar in magnitude (15,24),
causing disruption of the trajectory path. The operator

FIG. 4. Fifteen axial slices of the ADC image. Red pixels indicate the pyramidal tracts. Blue pixels indicate the corpus callosum.
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method proposed by Westin et al. (17) may provide a
solution to this problem.

The method described here provides a means of locating
the voxels relevant to a single WM SOI. It relies on an oper-
ator-selected seed trajectory that conforms to the expected
shape of the relevant structure. Voxels are then identified
based on the statistical similarity of trajectories. With this
approach it is the global shape of a trajectory that is impor-
tant, rather than the fine details of its path. While the method
still suffers from the general problems of tractography, rely-
ing only on the overall shape of trajectories gives it an inher-
ent degree of noise and partial volume immunity. With the
use of advanced tracking and image processing methods, as
described above, our technique could be further improved.

We used the method to measure the ADC in the pyramidal
tracts and the corpus callosum of both normal controls and
patients with MS. The ADC was significantly higher in the
patients than in the controls, in agreement with other studies
(20,25–29). We also found that the ADC was higher in the
corpus callosum than in the pyramidal tracts for both the
control and the patient groups. This regional difference was
not observed in a previous ROI study by Pierpaoli et al. (3).
The coefficient of variation was less than 1% on repeating the
procedure, indicating a high level of reproducibility.

CONCLUSIONS

We have developed a method to produce anatomically plau-
sible maps of specific WM structures using the DTI modality.
The method was used to map the corpus callosum and py-
ramidal tract structures in patients with MS, and in normal
controls. Analyzing these structures revealed a significantly
increased ADC in the patients. We also observed significantly
higher ADC in the corpus callosum than in the pyramidal
tracts for both groups. Good reproducibility of the method is
indicated by the low coefficient of variation on repeating the
mapping. This may be due to the inherent noise immunity of
the mapping procedure.

REFERENCES

1. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N,
Chabriat H. Diffusion tensor imaging: concepts and applications. J
Magn Reson Imaging 2001;13:534–546.

2. Basser PJ, Pierpaoli C. A simplified method to measure the diffusion
tensor from seven MR images. Magn Reson Med 1998;39:928–934.

3. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor
MR imaging of the human brain. Radiology 1996;201:637–648.

4. Douek P, Turner R, Pekar J, Patronas N, Le Bihan D. MR color mapping
of myelin fiber orientation. J Comput Assist Tomogr 1991;15:923–929.

5. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber
tractography using DT-MRI data. Magn Reson Med 2000;44:625–632.

6. Jones DK, Simmons A, Williams SC, Horsfield MA. Non-invasive as-
sessment of axonal fiber connectivity in the human brain via diffusion
tensor MRI. Magn Reson Med 1999;42:37–41.

7. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking
of axonal projections in the brain by magnetic resonance imaging. Ann
Neurol 1999;45:265–269.

8. Poupon C, Mangin J, Clark CA, Frouin V, Regis J, Le Bihan D, Bloch I.
Towards inference of human brain connectivity from MR diffusion
tensor data. Med Image Anal 2001;5:1–15.

9. Riahi F, Zijdenbos A, Narayanan S, Arnold D, Francis G, Antel J, Evans
AC. Improved correlation between scores on the expanded disability
status scale and cerebral lesion load in relapsing-remitting multiple
sclerosis. Results of the application of new imaging methods. Brain
1998;121:1305–1312.

10. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain.
Stuttgart: Thieme Medical Publishers; 1988.

11. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS,
McKinstry RC, Burton H, Raichle ME. Tracking neuronal fiber path-
ways in the living human brain. Proc Natl Acad Sci USA 1999;96:
10422–10427.

12. Bland M. An introduction to medical statistics. Oxford: Oxford Uni-
versity Press; 1993.

13. Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the pres-
ence of time-dependent field gradients. J Chem Phys 1965;42:288–292.

14. Morgan PS, Moody AR, Allder SJ, Bowtell RW. Correction of distortion
in ADC maps using the reversed gradient method. In: Proceedings of
the 8th Annual Meeting of ISMRM, Denver, 2000. p 800.

15. Skare S, Li T, Nordell B, Ingvar M. Noise considerations in the determination
of diffusion tensor anisotropy. Magn Reson Imaging 2000;18:659–669.

16. Parker GJ, Schnabel JA, Symms MR, Werring DJ, Barker GJ. Nonlinear
smoothing for reduction of systematic and random errors in diffusion
tensor imaging. J Magn Reson Imaging 2000;11:702–710.

17. Westin CF, Maier SE, Khidhir B, Everett P, Jolesz FA, Kikinis R. Image
processing for diffusion tensor magnetic resonance imaging. In: Pro-
ceedings of the 2nd Annual International Conference of MICCAI, Cam-
bridge, 1999. p 441–452.

18. Boas M. Mathematical methods in the physical sciences. New York:
John Wiley & Sons; 1983.

19. Press W, Teukolsky S, Vetterling W, Flannery B. Numerical recipes in
C. Cambridge: Cambridge University Press; 1992.

20. Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH. Diffusion
tensor imaging of lesions and normal-appearing white matter in mul-
tiple sclerosis. Neurology 1999;52:1626–1632.

21. Kernighan B, Ritchie D. The C programming language. New Jersey:
Prentice Hall; 1988.

22. Virta A, Barnett A, Pierpaoli C. Visualizing and characterizing white
matter fiber structure and architecture in the human pyramidal tract
using diffusion tensor MRI. Magn Reson Imaging 1999;17:1121–1133.

23. Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, Mangin J.
Regularization of diffusion-based direction maps for the tracking of
brain white matter fascicles. Neuroimage 2000;12:184–195.

24. Martin KM, Papadakis NG, Huang CL, Hall LD, Carpenter TA. The
reduction of the sorting bias in the eigenvalues of the diffusion tensor.
Magn Reson Imaging 1999;17:893–901.

25. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion
tensor magnetic resonance imaging in multiple sclerosis. Neurology
2001;56:304–311.

26. Horsfield MA, Lai M, Webb SL, Barker GJ, Tofts PS, Turner R, Rudge P,
Miller DH. Apparent diffusion coefficients in benign and secondary
progressive multiple sclerosis by nuclear magnetic resonance. Magn
Reson Med 1996;36:393–400.

27. Droogan AG, Clark CA, Werring DJ, Barker GJ, McDonald WI, Miller
DH. Comparison of multiple sclerosis clinical subgroups using navi-
gated spin echo diffusion-weighted imaging. Magn Reson Imaging
1999;17:653–661.

28. Filippi M, Iannucci G, Cercignani M, Assunta Rocca M, Pratesi A, Comi
G. A quantitative study of water diffusion in multiple sclerosis lesions
and normal-appearing white matter using echo-planar imaging. Arch
Neurol 2000;57:1017–1021.

29. Christiansen P, Gideon P, Thomsen C, Stubgaard M, Henriksen O,
Larsson HB. Increased water self-diffusion in chronic plaques and in
apparently normal white matter in patients with multiple sclerosis.
Acta Neurol Scand 1993;87:195–199.

Table 1
The ADC Values for Patients and Controls

Corpus callosum Pyramidal tract

ADC SD ADC SD

Controls 0.77 0.027 0.71 0.016
Patients 0.82 0.044 0.74 0.022

Median ADC values (units 10	3mm2s	1).
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