
Inferring Axon Properties with d-PGSE MRI using Analytical Water Diffusion Model 
 
Introduction      

We present an analytical water diffusion model for inferring axon properties using low-q angular double-pulsed gradient spin 
echo (d-PGSE) NMR, taking into account finite gradient pulses. Estimating these properties using s-PGSE, however, requires 
prior knowledge of tissue orientation and high q-values, inhibiting clinical application of these methods[1]. Emerging methods for 
estimating orientationally invariant fibers using s-PGSE requires protocol optimization for the specific axon radius being 
estimated[2]. Our simulation results demonstrate that using low-q d-PGSE MRI, important axon properties including axon caliber, 
water diffusivity and axon volume fraction can be extracted in both orientationally known and unknown tissue.  
Method 
Imaging Protocol    The d-PGSE sequence is the simplest form of multi-PGSE, first proposed by Cory[3]. Two pairs of diffusion 
gradients and G are applied at any direction with angle 1G 2 ψ between them. The two encoding intervals are separated by mixing 
time with diffusion time and and, pulse duration and . In angular double-PGSE experiments, the diffusion time, pulse 
duration, and mixing time are fixed and we vary the angle 
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ψ . Shemesh et al.[5] validated Özarslan’s[4]  d-PGSE signal-decay 
dependency theory in well controlled experiments using water-filled microcapillaries.   
Analytical  Model    
We propose an analytical water diffusion model for estimating axon properties based on Özarslan’s theory[4] with two 
compartments:  1) The intra-axonal compartment – the space inside the axons with radius a represented by parallel non-abutting 
cylinders exhibits restricted diffusion, and (2) the extra-axonal compartment – the homogeneous substrate space outside the axons 
exhibits hindered diffusion. The two compartments have no water exchanged and denoted with subscript i and e, respectively. We 
model the combined normalized MR signal attenuation from the two compartments in the geometric model as: , 
where is axon volume fraction. We model the normalized MR signal attenuation in the extra-axonal compartment with the 
Gaussian diffusion distribution: 

ie fEEfE +−= )1(

f

))
3

)((exp( 2
2

2
1

22 δδγ −Δ+−= GGDEe . The two encoding intervals have the same diffusion time and pulse 

duration. We further decompose the normalized MRI signal in the intra-axonal compartment  into two components: parallel and 
perpendicular to the axon orientation: . We use a discretization scheme for the gradient waveform[6] to approximate it 
by a train of impulses using a series of propagators and derive  
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Experiments    
Our model was fitted into two diffusion experiments with Monte-Carlo simulation using Camino [7, 8]. In the first experiment, 

we assumed a known axon orientation aligned in the z-axis and repeated for axon radii )](9,7,5,3,2,1[ ma μ= and . In the 
second experiment, we assumed an unknown orientation for axon radii 
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)m](5,4,3,2,1[a μ= with orientation )3/,6/,1( ππ=ur and 
. The axon volume fraction and water diffusivity  in both experiments.  )/(4.0max mTG = 7.0=f sme /2 29−=D

Results     We used a Markov Chain Monte Carlo (MCMC) procedure to get samples of the posterior distribution of the model 
parameters given the data. Fig. 1 is our main estimation results showing the estimation-sample histograms of axon radius a . Along 
with axon caliber, we also extracted axon volume fraction  and water diffusivity (data not shown)[9, 10]. Overall, we were able 
to extract accurate estimates of these axon properties. It is worth noticing that when axon caliber gets smaller (

f D

ma μ2≤ ), we 
observed an underestimation of the axon caliber dimension.  
Conclusions      
Our estimation results demonstrate the feasibility inferring axon properties using d-PGSE without prior knowledge of tissue 
orientation. We conclude that modeling microstructural properties using d-PGSE acquisition may be advantageous 
in extracting underlying microstructural properties as it utilizes signal intensity dependency on gradient-pair direction to 
compensate for high-q requirement in s-PGSE experiments. 
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Figure 1: Histogram of posterior distribution on axon radius a. Left:
estimation in orientationally known tissue. a Right: 
estimation in orientationally unknown tissue. a
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