Inferring Axon Properties with d-PGSE MRI using Analytical Water Diffusion Model

Introduction

We present an analytical water diffusion model for inferring axon properties using low-q angular double-pulsed gradient spin
echo (d-PGSE) NMR, taking into account finite gradient pulses. Estimating these properties using s-PGSE, however, requires
prior knowledge of tissue orientation and high g-values, inhibiting clinical application of these methods!". Emerging methods for
estimating orientationally invariant fibers using s-PGSE requires protocol optimization for the specific axon radius being
estimated'?. Our simulation results demonstrate that using low-q d-PGSE MRI, important axon properties including axon caliber,
water diffusivity and axon volume fraction can be extracted in both orientationally known and unknown tissue.
Method
Imaging Protocol The d-PGSE sequence is the simplest form of multi-PGSE, first proposed by Cory™. Two pairs of diffusion
gradients G,and G, are applied at any direction with angle y between them. The two encoding intervals are separated by mixing
time t, with diffusion time A,and A, and, pulse duration s,and s, . In angular double-PGSE experiments, the diffusion time, pulse
duration, and mixing time are fixed and we vary the angle y . Shemesh et al.”! validated Ozarslan’s!! d-PGSE signal-decay

dependency theory in well controlled experiments using water-filled microcapillaries.

Analytical Model

We propose an analytical water diffusion model for estimating axon properties based on Ozarslan’s theory!™ with two
compartments: 1) The intra-axonal compartment — the space inside the axons with radius a represented by parallel non-abutting
cylinders exhibits restricted diffusion, and (2) the extra-axonal compartment — the homogeneous substrate space outside the axons
exhibits hindered diffusion. The two compartments have no water exchanged and denoted with subscript i and e, respectively. We
model the combined normalized MR signal attenuation from the two compartments in the geometric model as: E = a- f)E, + fE;,

where f is axon volume fraction. We model the normalized MR signal attenuation in the extra-axonal compartment with the
Gaussian diffusion distribution: g, =exp(-725?D(G,? +ej)(Afg)). The two encoding intervals have the same diffusion time and pulse

duration. We further decompose the normalized MRI signal in the intra-axonal compartment E, into two components: parallel and
perpendicular to the axon orientation: g =E, xE,, . We use a discretization scheme for the gradient waveform!® to approximate it

by a train of impulses using a series of propagators and derive
E., =exp(—y262D (G} cos? p, +G,’ cos? 3,)(A 72)) and E,, =C+A(G/ cos’ B, +G,’ cos’ ;) + B(GG, c0s 8, c0s 3,) where
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Experiments
Our model was fitted into two diffusion experiments with Monte-Carlo simulation using Camino [7, 8]. In the first experiment,

we assumed a known axon orientation aligned in the z-axis and repeated for axon radii a=[123579](um)and g o5 /m)- In the
second experiment, we assumed an unknown orientation for axon radii a =[1,2,3,4,5](m) With orientation g = (1, z/6, ~/3) and
G, =0.4(T /m)- The axon volume fraction f — 0.7 and water diffusivity D = 2em?/s in both experiments.

Results We used a Markov Chain Monte Carlo (MCMC) procedure to get samples of the posterior distribution of the model
parameters given the data. Fig. 1 is our main estimation results showing the estimation-sample histograms of axon radiusa . Along
with axon caliber, we also extracted axon volume fraction f and water diffusivity D (data not shown)® *°! Overall, we were able
to extract accurate estimates of these axon properties. It is worth noticing that when axon caliber gets smaller (a <2um), we
observed an underestimation of the axon caliber dimension.

Conclusions

Our estimation results demonstrate the feasibility inferring axon properties using d-PGSE without prior knowledge of tissue
orientation. We conclude that modeling microstructural properties using d-PGSE acquisition may be advantageous

in extracting underlying microstructural properties as it utilizes signal intensity dependency on gradient-pair direction to
compensate for high-q requirement in s-PGSE experiments.
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