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Abstract. We present an analytical water diffusion model for inferring important
microstructural properties such as axon radius, orientation, and packing density
using low-q angular Double Pulsed Gradient Spin Echo (double-PGSE) NMR,
taking into account finite gradient pulses. The MR signal attenuation obtained
from Single Pulsed Gradient Spin Echo (single-PGSE) NMR reflects the under-
lying microstructural properties that restrict the molecular diffusion within. Esti-
mating these properties using single-PGSE, however, requires prior knowledge of
axon orientation and high q-values, inhibiting clinical application of these meth-
ods. Our simulation results are the first to use low-q angular double-PGSE ex-
periments without prior knowledge of the axon orientation to demonstrate the
feasibility of estimating axon radii of the typical human brain tissue range (1 to
5µm). Along with axon radius, we were also able to infer other important mi-
crostructural properties such as axon orientation, axon packing density and water
diffusivity.

1 Introduction

Diffusion MRI, which measures the diffusion of spins in tissues, is a popular tech-
nique in brain research for assessing a number of neurological disorders. Current dif-
fusion MRI brain studies rely on indirect diffusivity-based measures such as fractional
anisotropy (FA) as biomarkers for major microstructural changes [1, 2]. The fact that
FA is a nonspecific summation index of the observed diffusion signal over the entire
voxel makes it unable to distinguish between different microstructural changes in axon
radius, orientation, packing density and myelin permeability [3]. Studies have shown
that neuronal changes in these microstructural properties are detected in early stages of
brain diseases [4, 5] and has been observed to be location specific and axon radius size
selective [6, 7]. Measuring and analyzing these specific disease-affected microstructural
changes in vivo may provide earlier indications of brain diseases such as multiple scle-
rosis (MS) and Alzheimer’s disease (AD).

One approach to measure axon size uses diffraction patterns of diffusion MRI signals
whose frequency is related to sample compartment size [8]. This approach imposes no
geometric model. Weng [9], however, showed that the measurements from diffraction
patterns did not match the microscope measurements in an excised rat brain. From sim-
ulation experiments, Lätt et al. [10] concluded that the lowest identifiable axon radius
using current scanners is 10µm, while human brain axon radii usually range from 0.3
to 5µm [11].

Alternatively, microstructural properties can be extracted by constructing a geomet-
ric model of the underlying tissue in which water molecules are diffusing and ana-
lyzing the experimental MR signals [12]. Different microstructural properties can be
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accounted for using the geometric model such as axon radius, packing density, orienta-
tion, etc. Assaf et al.[13] constructed a two-compartment CHARMED model for Single
Pulsed Gradient Spin Echo (single-PGSE) experiments. In further work, they designed
AxCaliber [14] to measure the Axon Diameter Distribution (ADD) of excised nerve
tissues [14] and in vivo rat corpus callosum [15], assuming prior knowledge of axon
orientation. Multi-diffusion DWI measurements let AxCaliber to classify axons using
ADD since restricted diffusion is exhibited at different times relative to axon radius.
Using single-PGSE approach, however, required prior knowledge of axon orientation,
lengthy data acquisitions and high q-values (11 hr and qmax = 51108m−1 in [14]),
which can be difficult to achieve with current clinical scanners.

The Double Pulsed Gradient Spin Echo (double-PGSE) sequence (Fig. 1a) first pro-
posed by Cory [16] has been shown to reduce eddy current distortions [17]. It contains
two pairs of diffusion gradients G1 and G2 separated by mixing time tm that can be
applied at any angle. Mitra [18] theoretically predicted the angular dependence of sig-
nal intensity on the angle between the two gradients G1 and G2; this makes it possible
to distinguish restricted diffusion from Gaussian diffusion, and thus to determine the
sizes of axons using moderate gradient strengths with angular double-PGSE experi-
ments. Mitra’s theory, however, considered for only limiting cases of double-PGSE
experiments, not taking into account finite duration of the diffusion time or mixing
time. These limiting cases are difficult to achieve and Koch [19, 20] has shown that vio-
lating these conditions generally leads to underestimation of pore size and eccentricity.
Özarslan [21] provided a theoretical solution for the angular dependence of NMR signal
intensity in restricted geometries for arbitrary timing parameters. Shemesh [22] tested
and verified this angular dependence of the signal decay [21] in well-controlled experi-
ments using water-filled microcapillaries of known diameters (5− 20µm).

Here, we propose an analytical water diffusion model based on Özarslan’s theory [21]
for inferring microstructural properties by constructing a geometric model of the under-
lying microstructure using low-q angular double-PGSE experiments that accounts for
finite gradient pulses. Unlike single-PGSE methods [14, 15], our model does not re-
quire prior knowledge of axon orientation. We demonstrate the feasibility of estimating
axon radii in typical human brain tissue ranges (1 to 5µm), along with axon orientation,
axon packing density, and water diffusivity with qmax of 25553m−1 using Monte Carlo
simulation data from Camino [23, 24].

2 Methods

2.1 Analytical Model from double-PGSE
Geometric Axon Model We first construct a geometric model of the axons within
which water molecules are diffusing in order to analyze the MR signal we obtain in
double-PGSE experiments. Our geometric model has two compartments (Fig. 2): (1)
The intra-axonal compartment: the space inside the axons with radius a represented
by non-abutting cylinders, and (2) The extra-axonal compartment: the homogeneous
substrate space outside the axons. These two compartments are denoted as i and e below.
The boundary of the axons is assumed to be impermeable (no exchange between the two
compartments).

Double-PGSE Experiments The double-PGSE sequence (Fig. 1a) is the simplest
form of multi-PGSE, first proposed by Cory [16]. The double-PGSE experiments are
sensitive to restricted diffusion even in the condition of long diffusion wavelength
(γδGa)2 � 1, also known as small-q regime (2πqa)2 � 1 (where a denotes axon
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radius, q denotes wave number defined as q = γδG

2π , γ is the gyromagnetic ratio of the
spins, δ is the pulse duration and G is the gradient strength). Özarslan [25] showed that
when two diffusion gradient pulse pairs are used (as in double-PGSE), the wave num-
ber q necessary for nonmonotonicity is exactly half the wave number in single-PGSE
experiments [26]. This sensitivity of the double-PGSE makes it possible to probe small
compartments using relatively low wave numbers q. In a double-PGSE acquisition se-
quence, two encoding intervals of gradientsG1 andG2 can be applied at any angle with
an angle ψ between them. The two encoding intervals are separated by mixing time tm
with diffusion time ∆1 and ∆2 and pulse duration δ1 and δ2. Özarslan [21] theoreti-
cally predicted the angular dependence of the signal intensity on the angle between the
two gradients ψ for arbitrary parameters of the double-PGSE when the long diffusion
wavelength condition (γδGa)2 � 1 is met.

Analytical Model We propose an analytical water diffusion model aimed at estimating
microstructural properties without prior knowledge of axon orientation, using angular
double-PGSE based on [21]. The model analyzes the MR signal we obtain in double-
PGSE experiments given the two-compartment geometric model described earlier. The
intra-axonal compartment in the model exhibits restricted diffusion, while the extra-

(a) Double-PGSE Acquisition Sequence (b) Experimental Setup

Fig. 1: (a) Double-PGSE acquisition sequence with two encoding intervals of gradient
G1 and G2. (b) Experimental setup. u = (1, θ, φ) defines the arbitrary axon orientation.
G1 is fixed on the X-axis and G2 angle varied linearly on the XOY plane. β1 and β2
denote the angle between G1, G2 and u respectively.

Fig. 2: Geometric axon model. (a) Schematic view of axon; (b) Single cylinder repre-
senting axon with radius a; (c-d) 2D and 3D view of non-abutting rectangular arrange-
ment of cylinders representing axons.
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axonal compartment exhibits hindered diffusion. We model the combined normalized
MR signal attenuation from these two compartments as:

E = (1− f)Ee + fEi (1)

whereEe andEi are the normalized MR signal attenuation in the extra- and intra-axonal
compartments respectively, and f is the volume fraction of the intra-axonal compart-
ment, reflecting axon packing density.

We model the normalized MR signal attenuation in the extra-axonal compartment
with Gaussian diffusion distribution:

Ee = e−γ
2δ2De(G

2
1+G

2
2)(∆− δ3 ) (2)

Here, we assume that the two encoding intervals of gradients G1 and G2 have the same
pulse duration (δ1 = δ2 = δ) and diffusion time (∆1 = ∆2 = ∆).

We further decompose the normalized MR signal attenuation in the intra-axonal com-
partment into two components: parallel (Ei//) and perpendicular (Ei⊥) to the axon ori-
entation. Thus the combined MR signal attenuation in the intra-axonal compartment Ei
is:

Ei = Eintra// × Eintra⊥ (3)

By discretizing the gradient waveform, we can approximate it by a train of impulses
using a series of propagators and derive:

Ei// = e−γ
2δ2Di(G

2
1 cos2 β1+G

2
2 cos2 β2)(∆− δ3 ) (4)

Ei⊥ = C +A(G2
1 cos

2 β1 +G2
2 cos

2 β2)−B(G1G2 cosβ1 cosβ2) (5)

where,

C = 1−A(G2
1 +G2

2)−B(G1G2 cosψ) (6)

A = 2γ2a2
∞∑
n=1

Sn

[
2δ

ωn
− 1

ω2
n

(2− 2e−ωnδ + e−ωn(∆−δ) − 2e−ωn∆ + e−ωn(∆+δ)

]
(7)

B = 2γ2a2
∞∑
n=1

Sn
ω2
n

[
e−ωn(tm−δ) − 2e−ωntm + e−ωn(tm+δ) − 2e−ωn(∆+tm−δ) + 4e−ωn(∆+tm)

−2e−ωn(∆+tm+δ) + e−ωn(2∆+tm−δ) − 2e−ωn(2∆+tm) + e−wn(2∆+tm+δ)

]
(8)

We define:
• sn = 1

α4
n−α2

n
; wn =

α2
nDi
a2 ; αn are the roots of the derivatives of the first-order

Bessel functions satisfying the boundary condition: J ′1(αn) = 0
• cosβ1 = u · G1 and cosβ2 = u · G2, where u = (1, θ, φ) is the unit vector

that defines the arbitrary orientation of the axon in polar coordinates (θ is the polar
angle measured from the Z axis, and φ is the azimuth angle measured on the XOY
plane from the X axis in the counter clockwise direction). β1 and β2 denote the
angles between G1, G2 and u respectively. (Fig. 1b)
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The experimental parameters must satisfy two conditions:
• The long diffusion wavelength condition: (γδGa)2 � 1.
• The diffusion time condition: ∆ > a2

2Di
, diffusion periods must be long enough for

spins to probe the boundary and experience restricted diffusion.
The axon parameters we aim to extract from the model are:
• a, the axon radius
• u = (1, θ, φ), the axon orientation
• f ∈ (0, 1), the volume fraction of the intra-axonal compartment
• Di and De, the diffusivity of the intra- and extra-axonal compartments

2.2 Axon Parameter Estimation Procedure
Experimental Setup In order to estimate the underlying microstructural properties
and validate our analytical model, we performed several simulation experiments. The
benefit of using simulation data is that the ground truth about the microstructural prop-
erties is known and controllable. Figure 1a illustrates the double-PGSE sequence used
in our experiment: the experimental parameters of this acquisition sequence were de-
scribed in section 2.1. We assume an unknown arbitrary orientation vector u = (1, θ, φ)
for the axon (Fig. 1b). The first gradient pair G1 is aligned on the x-axis and we
varied the second gradient pair G2 in the XOY plane by changing the angle ψ be-
tween G1 and G2 and keeping their magnitude constant. In this setup, we can evaluate
cosβ1 = sin θ cosφ and cosβ2 = sin θ cos(φ− ψ).

Simulation Data Our simulation data for double-PGSE experiments was derived from
Monte Carlo simulation for 100,000 spins in our geometric model (section 2.1) using
Camino [23, 24]. The double-PGSE sequence is simulated directly over the diffusive
dynamics using a variety of scan parameters. These experiments were repeated with five
different axon radii a = (1, 2, 3, 4, 5)µmwith the following axon parameters (which we
later try to recover): axon orientation u = (30◦, 60◦, 1) = (π6 ,

π
3 , 1); intra-axonal vol-

ume fraction f = 0.7; and the diffusivity of the intra- and extra-axonal compartments,
assumed to be the same,Di = De = 2e−9m2/s. Data were collected for three different
q-values with experimental parameters: qmax of 25553m−1, pulse duration δ = 1.5ms;
diffusion time ∆ = 40ms; diffusion gradients G1max = G2max = 0.4T/m; mixing
time tm = 5ms; ψ varied in 10◦ increments; and SNR set to 40.

Parameter Estimation We used a Markov Chain Monte Carlo (MCMC) procedure
using Gibbs sampling to get samples of the posterior distribution of the axon parame-
ters given the simulation data and experimental parameters. The estimation procedure
was implemented in MATLAB R© (R2009a, The MathWorks, Natick, MA) and open-
BUGS [27] on Linux operating system. We used gamma distribution prior for a, beta
distribution prior for f , and broad uniform priors for all the other axon parameters. Our
proposed distributions were Gaussian distribution with standard deviations chosen with
respect to the difference between model and experimental data. We ran MCMC for 1
million iterations with 10 sets of initial values for various parameters to ensure conver-
gence (burn-in period = 900,000 iterations). We gathered 100,000 independent samples
from the marginal posterior distribution of the model parameters as our estimates.

3 Results
Figure 3 demonstrates the accuracy of the analytical model and shows that the predicted
signals from our model match the physical simulation data well in our experimental
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setting. Note that (Fig. 3b) the maximum signal intensity is observed when G2 is per-
pendicular to the axon (β2 = 90◦), as expected [21], while holding G1 fixed on the
x-axis.

Table 1 and Fig. 4 show our main results. Table 1 summarizes our estimated mean
and standard deviation (std) values for axon radius a, orientation θ and φ, intra-axonal
volume fraction f , and diffusivity D. The mean and std were calculated by averag-
ing 100,000 samples drawn from the marginal posterior distribution of Markov Chain
Monte Carlo (MCMC) (section 2.2). Figure 4 shows the histogram of axon parameter
estimate packing density: a, θ, φ, f,D for each of the various true a = (1, 2, 3, 4, 5)µm
using MCMC. For comparison, in Fig. 4(b-e), the orange vertical lines in the graph
show the true values of the corresponding axon parameters from simulation data.

We observed a slight underestimation for axons whose radius less than 3µm, a =
(1, 2)µm; this was also observed in [19, 20] when th SGP limits were not met using
Mitra’s theory [18]. It is important, however, to note that these two small axon radii
recovered were still distinguishable regardless of the underestimation. We were able to
recover axon radii a = (3, 4, 5)µm with high accuracy and averaged std = 0.0747. As
shown in table 1, the estimated values for θ, φ, f and D were in close agreement with
their true value with std = (0.0039, 0.0081, 0.0059, 0.0293) respectively. Overall, our
estimation results demonstrated the feasibility of recovering axon radii in the typical
human brain tissue range without prior knowledge of axon orientation.

4 Discussions
We currently run Markov Chain Monte Carlo (MCMC) sampling algorithm for 1 mil-
lion iterations in order to ensure convergence for all initial values tested for each axon
parameter. We could speed up MCMC chain convergence if we initialize the parameters
to the true values of the simulation. We chose a longer MCMC chain to ensure conver-

(a) Signal plotted against angle ψ (b) Signal plotted against the angle β2

Fig. 3: Signal predicted by our model compared with Camino simulation data [28]. (a)
Signal plotted against angle ψ between G1 and G2. Angle ψ ranged from 0 − 360o

with 10o increments. (b) Signal plotted against the angle β2 between G2 and axon
orientation u. Angle β2 had two repeated cycles ranged from 60 − 120o. In this data,
axon raius a = 3µm, experimental parameters were: G = 0.4T/m, δ = 1.5ms, ∆ =
40ms, tm = 5ms, SNR = 40.
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(a) Axon radius a = (1, 2, 3, 4, 5)µm

(b) Axon Polar Angle θ = 0.5236rad (c) Axon Azimuth Angle φ = 1.0472rad

(d) Intra-axonal volume Fraction f = 0.7 (e) Diffusivity D = 2e−9m2/s

Fig. 4: Histograms of 100,000 samples drawn from posterior distributions on (a) axon
radius a; (b-c) axon orientation (θ and φ); (d) intra-axonal volume fraction f = 0.7;
and (e) diffusivity D for each of the various true a values using Markov Chain
Monte Carlo (MCMC). Orange vertical lines show the true values in simulation:
a = (1, 2, 3, 4, 5)µm, θ = π

6 rad = 30◦, φ = π
3 rad = 60◦, f = 0.7, D = 2e−9m2/s.

The mean and std values of parameter estimates are shown in table 1. Note that some
overlapping bars may not be visible in the figure.
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Axon radius (µm) Axon Orientation (rad) Volume Fraction Diffusivity 1e−9(m2/s)

Ground truth Estimate θ = 0.5236 = 30◦ φ = 1.0472 = 60◦ f = 0.7 D = 2

1 0.754±0.084 0.507±0.005 1.068±0.005 0.716±0.004 2.170±0.013
2 1.757±0.082 0.512±0.005 1.037±0.013 0.724±0.007 2.074±0.027
3 2.943±0.107 0.519±0.004 1.087±0.013 0.705±0.002 2.115±0.037
4 3.983±0.067 0.493±0.003 1.039±0.005 0.838±0.007 2.071±0.049
5 5.004±0.049 0.490±0.002 1.013±0.003 0.741±0.008 1.945±0.019

Table 1: Summary of estimated mean values of axon parameters from the model.
Ground truth from simulation are: (a) Axon radii a = (1, 2, 3, 4, 5)µm; (b) Axon ori-
entation; u = (30◦, 60◦, 1) = (π6 ,

π
3 , 1); (c) Intra-axonal volume fraction f = 0.7; (d)

Diffusivity D = 2e−9m2/s.

gence when we draw the last 100,000 samples of the posterior distribution regardless of
the initial value, since the true parameter values are uncertain for complex white matter
structures in clinical cases.

The intra-axonal volume fraction we estimate from the model is an important param-
eter relative to axon packing density. However, it may not directly reflect the volume
fraction of the axons since only relative fractions of the axon compartment are weighted
by MRI T1 and T2 relaxation [15].

The axon orientation in our model is assumed to be arbitrarily unknown but uniform
based on the parallel fibers observed in the midsection of the corpus callosum. It would
be interesting to look into cases of fiber crossing and kissing using spherical harmonics
decomposition. In future work, we will extend our model to account for non-uniform
axon caliber distribution using gamma distribution, as it has been observed in electron
microscopy images. Although simple models like the diffusion tensor could describe
the general axon orientation, such a model can not be used to estimate important mi-
crostructural properties such as axon radius and intra-axonal volume fraction, as the
model does not encode restricted diffusion information.

5 Conclusions
We have demonstrated, for the first time without prior knowledge of the axon orienta-
tion using low-q angular double-PGSE experiments, the feasibility of estimating axon
radii of the typical human brain tissue range (1 to 5µm); other important underlying mi-
crostructural properties such as axon packing density and diffusivity can be extracted
from the analytical model as well. Although many angles are required to achieve high
angular double-PGSE resolution, these can be collected in considerably less time than
multiple high-q single-PGSE experiments using the current hardware. We conclude that
modeling microstructural properties using double-PGSE acquisition may be advanta-
geous in extracting underlying microstructural properties as it requires lower q-values
and has an inherently higher signal-to-noise ratio (SNR).
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