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1 Introduction

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI or DTI) is emerging as an important technology

for elucidating the internal structure of the brain and for diagnosing conditions affecting the integrity of

nervous tissue. DTI measurements of the brain exploit the fact that the network of fibers has a characteristic

microstructure that constrains the diffusion of water molecules within it. The direction of fastest diffusion is

aligned with fiber orientation in a pattern that can be numerically modeled by adiffusion tensor. DTI is the

only modality for non-invasively measuring diffusion tensors in living tissue, making it especially useful for

studying the directional qualities of brain tissue. Application areas include neurophysiology, neuroanatomy,

and neurosurgery, as well as the diagnosis of edema (swelling), ischemia (brain damage from restricted

blood flow), and certain types of brain tumors.

One of the fundamental problems in understanding and working with diffusion tensor data is its three-

dimensional and multi-variate nature. Each sample point in a DTI scan can be represented by six inter-related

values, and many features of interest are described in terms of derived scalar and vector fields, which are

logically overlayed on the original tensor field. Thus, the central tasks of DTI visualization include:

1. Determining which aspects of the tensor field will be graphically conveyed,

2. Determining where that information must be displayed and where it can be ignored,

3. Visually abstracting the DTI quantities into the computer graphics primitives with which the visual-

ization is ultimately expressed.
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This chapter gives background on the acquisition and mathematics of diffusion tensor imaging, and then

surveys the current vocabulary of visualization methods used with DTI. We finish with some open questions

which remain the area of diffusion tensor visualization.

2 Diffusion Tensor Imaging

Appreciating the origin and physical significance of acquired scientific data is the first step in a principled

approach to its visualization. This section briefly reviews the physical and mathematical underpinnings of

diffusion tensor imaging.

Scientific understanding of the physical basis of diffusion converged at the beginning of this century.

In 1827, Robert Brown discovered the Brownian motion, which underlies the thermodynamic model of

diffusion. He observed that pollen grains suspended in water exhibit a zigzag “random walk.” This motion

was hypothesized by Desaulx in 1877 to be the result of thermally energetic water molecules repeatedly

colliding with the pollen grain. Einstein confirmed this in 1905 as part of developing his mathematical

model of diffusion as a dynamically expanding Gaussian distribution [14]. The path of the pollen grain

suspended in water is just a visible indicator of similar Brownian motion of all liquid water molecules,

whether in pure water, a porous medium, or biological tissue.

Many materials have intrinsic structural properties that constrain diffusion so that diffusivity is greater in

some directions than in others; this is calledanisotropy. If there is no directional variation in diffusion rates,

the diffusion is calledisotropic. Biological tissues often appear anisotropic, because cell membranes and

large protein molecules limit the motion of water molecules; this is termedrestricted diffusionby Cooper

et al. [8]. Dissections and histological studies have taught us that the gray matter of the brain is largely

isotropic, at the scale of MR scans, while the brain’s white matter is more anisotropic, arising from the

alignment of myelinated neuronal axons, which preferentially constrain water diffusion along the axon di-

rection. Thus, via the mechanism of diffusion, the physical microstructure of white matter tissue enables

imaging of the neural pathways that connect the brain. DTI imaging measurements have been validated

within acceptable error on the fibrous muscle tissue of the heart [31, 16].

The measurement of diffusion in biological tissue is achieved with magnetic resonance imaging (MRI).

In 1946, Purcell [29] and Block [6] independently discovered the nuclear magnetic resonance effect. Water

molecules contain hydrogen nuclei with uncoupled spins. In a strong magnetic field, the uncoupled spins
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cause the nuclei to align with and precess around the magnetic field direction, generating, in turn, a weak

magnetic field aligned with the stronger ambient magnetic field. A second outside magnetic field can perturb

this weak magnetic field; the magnetic resonance signal results. In 1950, Erwin

Hahn discovered an important NMR signal called the spin echo [15], and noted that the spin echo signal

was perturbed by the diffusion of water molecules. Diffusion MR takes advantage of this effect and thus

can measure hydrogen self-diffusivity in vivo. It is generally believed that the quantities we measure with

diffusion MR are a mixture of intra-cellular diffusion, inter-cellular diffusion, and the exchange between the

two sides of the cell membrane [34, 32, 33].

In 1973, Lauterbur described the principles of NMR imaging [20]. He encoded positioning information

on NMR signals using gradient magnetic fields and the imaging reconstruction algorithm. As a result,

NMR imaging pinpoints the location where the signal is generated. This invention lead to a new medical

diagnostic instrument. In 1985, Bushel and Taylor combined the diffusion NMR and MR imaging technique

to create diffusion weighted imaging [35]. A diffusion weighted image (DWI) is a scalar-valued image

usually capturing diffusion rate information in one direction. In a DWI, the effect of diffusion on an MRI

signal is an attenuation; the measured image intensity can be related to the diffusion coefficient by the

following equation [21]:

~I(x; y) = I0(x; y)exp(bD)

where I0(x; y) represents the voxel intensity in the absence of diffusion weighting,b characterizes the

diffusion-encoding gradient pulses (timing, amplitude, shape) used in the MRI sequence, andD is the

scalar diffusion coefficient.

Anisotropic diffusion information can not be effectively represented in a scalar-valued DWI. In 1992,

Basser et al. described the estimation of the diffusion tensor from the NMR spin echo [3]. The diffusion

tensor,D, captures directional variation in the diffusion rate.

D is a3� 3 positive symmetric matrix:

D =

0
BBBB@

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

1
CCCCA

b is also now a 3 x 3 matrix, and it represents the diffusion encoding. The equation becomes:
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(a) Linear anisotropic diffu-
sion

(b) Planar anisotropic diffu-
sion

(c) Isotropic diffusion

Figure 1: Ellipsoids represent diffusion tensors according the the eigensystem of the tensor: the eigenvalues
are the radii of the ellipsoid, while the eigenvectors determine the orientations of the axes

~I(x; y) = I0(x; y)exp(�
P3

i=1

P3
j=1 bijDij)

A diffusion tensor has three real eigenvalues,�1; �2; and�3. Each has a corresponding eigenvector,

v1;v2; or v3. A diffusion tensor is geometrically equivalent to an ellipsoid, with the three eigenvectors of

the diffusion tensor matrix set as the radii of the ellipsoid. The ellipsoid will match the shape that water

diffuses to from the data point in a fixed amount of time. The ellipsoids in Figure 1 depict the three types of

spatial diffusion.

In regions of complex diffusion anisotropy, such as the area where two fiber bundles cross or touch each

other, a tensor does not accurately model the diffusion process. These areas of ambiguity can be addressed

with a diffusion model that has more degrees of freedom than a second-order tensor. Tuch et al. acquire

diffusion information in hundreds of directions to better resolve ambiguity [12, 13].

3 Approaches for visualizing DTI data sets

3.1 Overview

DTI visualization is challenging because the data has high information content. A tensor field contains

three-dimensional patterns of matrix values, and there is no single well established method of displaying

such information. Another challenge for DTI visualization methods is keeping the results properly grounded

in the specific application domain for which the data was originally acquired. Without such a grounding, a

visualization is unlikely to provide answers and generate new hypotheses about scientific problems.

Many DTI visualization approaches use a combination of scalar, vector, and tensor methods, contracting
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the tensor to appropriate scalars or vectors for a particular application. These derived fields can be used in

many ways in visualization applications, and we will show a number of examples. In some cases, they are

sufficient alone. From a practical standpoint, the use of derived fields is also an important strategy in keeping

the information in the visualization to its essential minimum. Much of 3D DTI visualization struggles with

precisely this issue: which regions in the tensor field should contribute to the final visualization. The design

of a visualization method is often a compromise between being informative and being legible. Part of what

makes DTI visualization an exciting research topic is that the rules and strategies governing this design

process are still being discovered.

3.2 Scalar metrics

A common visualization approach involves contracting each tensor in a DTI to a scalar, reducing a DTI

dataset to a scalar dataset. A carefully designed scalar metric can extract useful information while reducing

the effect of noise. Some scalar metrics are rotationally invariant, which means that they do not depend

on the coordinate system in which the tensor was measured. This tends to be a useful quality; without it,

knowledge of the coordinate system must always be carried along with the metric for proper interpretation.

The trace of the diffusion tensorTr(D) = D11 + D22 + D33 measures the mean diffusivity; it is

rotationally invariant. It is demonstrated that, after induction of stroke, images representing the trace of

the diffusion tensor provide a much more accurate delineation of affected area than images representing the

diffusion in one direction only [36].

Many the scalar metrics derived from DTI measure the anisotropy of diffusion in different ways. Douek

et. al. defined an anisotropic diffusion ratio (ADR)ADRxz =
Dxx

Dzz
for the anisotropy index [10]. Gelderen

et. al. calculated a measure of diffusion anisotropy as the standard deviation of the three diffusion coeffi-

cientsA =
q

1
6

p
(Dxx�Dav)

2+(Dyy�Dav)
2+(Dzz�Dav)

2

Dav
to study the stroke [36]. Both of these metrics are

rotationally variant.

Basser et. al have calculated rotationally invariant anisotropy metrics from the diffusion tensor [4]:

relative anisotropy

RA =

p
(�1�<�>)2+

p
(�2�<�>)2+

p
(�3�<�>)2p

3<�>

and fractional anisotropy

FA =
q

3
2

p
(�1�<�>)2+

p
(�2�<�>)2+

p
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�2
1
+�2

2
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3

where< � >= �1+�2+�3
3
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Figure 2: Barycentric space of diffusion tensor shapes

Pierpaoli et al. compared the two kinds of metrics and showed that rotationally invariant metrics con-

sistently show a higher degree of anisotropy than their variant analogs [27]. But becauseRA andFA are

calculated over one diffusion tensor, they are still susceptible to noise contamination. Pierpaoli et al. calcu-

lated an inter-voxel anisotropy index, thelattice index(LI), which locally averages inner products between

diffusion tensors in neighboring voxels.LI has a low error variance and is less susceptible to bias than other

rotationally invariant metrics.

Scalar anisotropy metrics such asFA andRA convey how anisotropic a diffusion distribution may be,

but they do not convey whether the anisotropy is linear, planar, or some combination. In terms of ellipsoid

glyphs, cigar-shaped and a pancake-shaped ellipsoids can have equalFA although their shapes differ greatly.

Westin et al. [39] more completely model diffusion anisotropy with a set of three metrics which measure

linear, planar and spherical diffusion:cl =
�1��2
�1

, cp =
�2��3
�1

, andcs =
�3
�1

, respectively. By construction,

cl + cp + cs = 1. Thus, these three metrics parameterize a barycentric space in which the three shape

extremes (linear, planar, and spherical) are at the corners of a triangle, as shown in Figure 2.

One way to qualitatively compare some of the metrics described above is is shown in Figure 3 where

we sample their values on a slice of DTI data from a brain. Notice that the trace (Tr) is effective at distin-

guishing between the cerebral-spinal fluid (whereTr is high) and the brain tissue (lowerTr), but it fails to

differentiate between different kinds of brain tissue. High fractional anisotropyFA, on the other hand, in-

dicates white matter, because the directional structure of the axon bundles permits faster diffusion along the

neuron fiber direction than across it.FA is highest inside thick regions of uniformly anisotropic diffusion,
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(a)Tr: trace (b) FA: fractional
anisotropy

(c) cl (green) andcp (magenta)

Figure 3: Different shape metrics applied to one slice of a brain DTI scan

such as inside the corpus callosum, the bridge between the two hemispheres of the brain. Finally, while both

cl andcp indicate high anisotropy, their relative values indicate the shape of the anisotropy.

3.3 Eigenvector Colormaps

When diffusion tensors are measured with MRI, each tensor is represented by a3 � 3 symmetric matrix;

the values in the matrix are measured relative to the coordinate frame of the MRI scanner. Because they are

real-valued, diffusion tensors have three real eigenvalues and three orthogonal eigenvectors. The eigenval-

ues are all non-negative, because negative diffusivity is physically impossible. The eigenvectors define the

orientation of the diffusion tensor. Themajor or principal eigenvector is associated with the largest eigen-

value and defines the direction of fastest diffusion. This direction can have significant physical meaning. In

DTI scans of nervous tissue, the principal eigenvector is aligned with the coherent fibers.

A common the visualization goal is to depict the spatial patterns of the principal eigenvector in regions

where it is meaningful, rather than a complete depiction of all the tensor information. Visualizing these

patterns is often an important step in verifying that a given DTI scan has succeeded in resolving a feature of

interest. A simple spherical colormap of the principal eigenvector is the standard tool for this task, which

first assigns an (R,G,B) color according to the (X,Y,Z) components of the principal eigenvector,v1:

R = abs(v1x); G = abs(v1y); B = abs(v1z);
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(a) Axial: X and Y (b) Coronal: X and Z (c) Sagittal: Y and Z

Figure 4: Eigenvector colormaps shown on axis-aligned slices, with three different slice orientations. The
two axes within the slice are given with the anatomical name of the slice orientation.

and then modulates the saturation of the RGB color with an anisotropy metric. The direction of the principal

eigenvector is numerically ill-defined when the tensor is isotropic, or has mostly planar anisotropy, in which

case the visualization should not imply a particular direction with the hue of the RGB color. Thus, the

saturation is modulated bycl. Also, note that by design, the same color is assigned tov and�v. This also has

a mathematical justification. The sign of eigenvectors is not defined. Numerical routines for their calculation

may return either of two opposing vectors, both of which should be visualized identically. Figure 4 shows

three examples of the the eigenvector colormap applied to the principal eigenvector.

3.4 Glyphs

A glyph is a parameterized icon that represent the data with its shape, color, texture, location, etc. Over

the years, researchers have come up with multiple glyphs suitable for DTI visualization. We review and

compare some of them here.

Diffusion ellipsoids are surfaces of constant mean-squared displacement of diffusing water molecules at

some time� after they are released at the center of each voxel. Ellipsoids are a natural glyph to summarize

the information contained in a diffusion tensor [27]. The three principle radii are proportional to the eigen-

values and the axes of the ellipsoid aligned with the three orthogonal eigenvectors of the diffusion tensor.

The size of a ellipsoid can be associated with the mean diffusivity. The preferred direction of diffusion is

indicated by the orientation of the diffusion ellipsoid. Arrays of ellipsoids can be arranged together in the

same order as the data points to show a 2D slice of DTI data. Laidlaw et al. normalized the size of the
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Figure 5: Arrays of normalized ellipsoids visualize the diffusion tensors in a single slice

Figure 6: Brush strokes illustrate the direction and magnitude of the diffusion: background color and texture-
map show additional information

ellipsoids to fit more of them in a single image [19] (see Figure 5). While this loses the ability to show mean

diffusivity, it creates more uniform glyphs that better show anatomy and pathology over regions.

They also described a method that uses the concepts of brush strokes and layering from oil painting.

They used 2D brush strokes both individually, to encode specific values, and collectively, to show spatial

connections and to generate texture and a sense of speed corresponding to the speed of diffusion. They

use layering and contrast to create depth. The method was applied to sections of spinal cords of mice with

Experimental Allergic Encephalomyelitis (EAE) and clearly showed anatomy and pathology (see Figure 6).
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Figure 7: The composite shape of linear, planar, and spherical components emphasize the shape of the
diffusion tensor.

In a still image it is often hard to tell the shape of an ellipsoid with only surface shading information.

Westin et al. used a composite shape of linear, planar and spherical components to emphasize the shape of

the diffusion ellipsoids [38]. The components are scaled to the eigenvalues, but can alternatively be scaled

according to the shape measurescl, cp andcs. Additionally, the color of the glyph is interpolated between

the blue linear case, yellow planar case, and the red spherical case (see Figure 7).

Kindlmann’s approach adapted superquadrics, a traditional surface modeling technique [1], as tensor

glyphs. He created a class of shapes that includes spheres in the isotropic case, while emphasizing the

differences among the eigenvalues in the anisotropic cases. As demonstrated in Figure 8, cylinders are used

for linear and planar anisotropy, while intermediate forms of anisotropy are represented by approximations to

boxes. As with ellipsoid glyphs, a circular cross-section accompanies equal eigenvalues, for which distinct

eigenvectors are not defined.

The differences among the glyph methods can be appreciated by comparing their results on a portion

of a slice of a DTI brain scan, as shown in Figure 9. The individual glyphs have been colored with the

principal eigenvector colormap. The directional cue given by the edges of box glyphs is effective in linearly

anisotropic regions, but can be misleading in regions of planar anisotropy and isotropy, since in these cases

the corresponding eigenvectors are not numerically well defined. The rotational symmetry of ellipsoid

glyphs avoids misleading depictions of orientation, with the drawback that different shapes can be hard to

distinguish. The superquadric glyphs aim to combine the best of the box and ellipsoid methods.
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Figure 8: Superquadrics as tensor glyphs, sampling the same barycentric space as in Figure 2

(a) Boxes (b) Ellipsoids (c) Superquadrics

Figure 9: A portion of a brain DTI scan (also used in Figures 3 and 4) as visualized by three different glyph
methods. The overall glyph sizes have been normalized.

3.5 Tractography

With glyph-based methods each glyph represents one diffusion tensor. Tractography, a term first applied to

DTI analysis by Basser [2], yields curves of neural pathways, which are continuous and hard to represent

using discrete glyphs. Streamlines and their derivatives are widely used for tractography results. Xue et.

al. show the result of fiber projection reconstruction by hand selecting seeding points in a ROI and show

the curves generated from them [40]. The colors represent different groups of fiber structures. Zhang et al.

used streamtubes and streamsurfaces to visualize the diffusion tensor field [41]. Streamtubes visualize fiber

pathways tracked in regions of linear anisotropy: the trajectories of the streamtubes follow the major eigen-

vectors in the diffusion tensor field; the color along the streamtubes represent the magnitude of the linear
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Figure 10: Xue et. al. show the result of tractography with streamlines

Figure 11: Red streamtubes and green streamsurfaces show linear and planar anisotropy, respectively, to-
gether with anatomical landmarks for context.

anisotropy; the cross-section shape represent the medium and minor eigenvector. Streamsurfaces visualize

regions of planar anisotropy: the streamsurface follows the expansion of major and medium eigenvectors in

the diffusion tensor field; the color is mapped to magnitude of planar anisotropy.

Zhang et al. used a culling algorithm to control the density of the streamtubes in the scene [41] so
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(a) FA = 0.1 (b) FA = 0.4 (c) FA = 0.55

Figure 12: Glyph-based visualization of a volumetric portion of a brain DTI scan (also used in Figures 4, 3,
and 9), with glyph culling based on three different fractional anisotropy thresholds.

that inside structures are visible and outside structures are still adequately represented. The metrics for the

culling process include the length of a trajectory, the average linear anisotropy along a trajectory, and the

similarity between a trajectory and the group of trajectories already selected.

A significant problem with trajectories calculated by integration happens in regions where the white-

matter structures change quickly. Pierpaoli et al. showed that incorrect spurious connections can be gen-

erated [26]. Each diffusion tensor measurement is made over a small region. If the tissue is coherent in

direction structure throughout that region, then the measurement will be consistent. Otherwise, the ten-

sor will be an amalgam of all the different values in the small region, and the major eigenvector may not

point along a tract. These problems happen where tracts cross, diverge, or are adjacent to other tissues.

Tractography is also sensitive to noise; a small amount of noise can lead to significantly different results.

Some researchers have tried to address these problems by regularizing diffusion data set [5, 42, 37]

or direction maps [28, 23]. Some researchers have explored new ways to find connectivity. Brun et al.

use sequential importance sampling to generate a set of curves, labeled with probabilities, from each seed

point [7]. Batcherlor et al. generate an isosurface of solution by solving a diffusion-convection equation [25].

Parker et al. use front propagation in fast marching tractography [24]. High angular resolution diffusion

imaging is reported to ameliorate ambiguities in regions of complex anisotropy [12, 13] and may be the best

solution to this problem, ultimately.
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3.6 Volume rendering

Glyphs and tractography communicate field structure with discrete geometry: the poly-line or cylinder

representing a fiber tract, or the faceted surface of an polygonal ellipsoid, for example. Direct volume

rendering, on the other hand, sidesteps the creation of intermediate geometry, and maps “directly” from

measured properties of the field to optical properties like color and opacity, which are then composited and

shaded [22, 11]. The mapping is performed by the transfer function, which must be carefully designed

to emphasize and delineate the features of interest, while not obscuring them with unimportant regions.

In direct volume rendering of scalar data, the transfer function often maps from the scalar data values to

opacity, although greater specificity and expressivity is possible with higher-dimensional and multi-variate

transfer functions [18]. Because transfer functions are applied without respect to position in the field, direct

volume rendering has the potential to effectively convey large scale patterns across the entire dataset.

Kindlmann et al. have explored various types of diffusion tensor transfer functions [17]; the present

discussion will focus on transfer functions of tensor shape because of their intuitive definition and useful

results.

The barycentric space of tensor shapes shown in Figures 2 and 8 captures two important degrees of

freedom (from the total six) in a tensor field: degree and type of anisotropy. This space does not represent

changes in over-all size, or changes in orientation, but nor are these crucial for visualizing the structure

of white matter fiber tracts. Figure 3(a) indicated that the trace,Tr, does not vary significantly between

gray and white matter, and typically, the structural organization that distinguishes white matter is interesting

irrespective of its orientation.

Figure 13 demonstrates results of using the barycentric shape space as the domain of transfer function

which assigns opacity only. These renderings were produced with a brute-force renderer that samples each

image ray at multiple points within the field, interpolates the tensor field component-wise, calculates the

eigenvalues and the shape metrics (cl, cp, cs), and then looks up the opacity for that sample. In the left side

of Figure 13, the over-all shape of the brain is seen when opacity is assigned to highcs (isotropic) samples,

while the shape of the white matter is visible when opacity assignment is limited tocl values. Arbitrary

combinations of shape may be emphasized with this sort of transfer function (Figure 13, right). Figure 14

shows how specifying color as a function of barycentric shape can create a more informative rendering: the

color variations indicate which portions of the field are more or less planarly anisotropic.
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Figure 13: Four different barycentric opacity maps, and the corresponding renderings

Figure 14: Assigning color and opacity with barycentric transfer function

4 Open issues

Interest and activity in diffusion tensor visualization has been steadily increasing with the expanding appli-

cations of tensor imaging, increased computation and graphics capabilities for display, as well as advances

in the visualization methods themselves. There are several important open issues and design challenges that

merit consideration and further research.
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Visual design of glyphs: Glyphs must be parameterizable by at least as many variables as we intend

to display through the glyph. On the other hand, they should also be concise and compact, so that multiple

glyphs viewed next to, or on top of, each other can still usefully convey information. This is a daunting

task for depicting complex three-dimensional patterns in the tensor field. Inspiration may be drawn from

different artistic traditions of painting and technical illustration.

Seeding and culling schemes:While it is easy to survey information everywhere over a two-dimensional

domain, this is impossible in three dimensions because of occlusion. The task of glyph placement, trajec-

tory placement, or selection of any visual abstraction is a difficult problem of visual optimization; the result

must be legible in multiple contradictory ways. The interconnected nature of the white matter fiber tracks

in the brain does not make task easy. Solving this optimization may involve level-of-detail information and

user-defined regions of interest.

Computataional validation: This is perhaps the hardest part of doing scientificallyusefulvisualiza-

tion. An unresolved issue in DTI visualization is the extent to which the paths calculatd by fiber tracking

correspond to the paths of actual axons in the white matter. Locally, the fiber direction does correspond to

tissue organization, and the major “trunk-lines” of connectivity are known from neuroanatomy. However,

tractography methods can produce long and circuitous paths of purported connectivity whose actual validity

is not, and can not easily be, known. Scanning diffusion phantoms (with known connectivity) may address

this, as would advances in histological preparations.

Display devices and interaction:DTI datasets are complicated and inherently 3D. Many visualizations

involve large, complex graphical models. Recent advances in display devices may help boost the capabil-

ities and applications of the visualization. Especially promising is the use of immersive virtual reality for

displaying complex three-dimensional fields of neural structures. But questions remain about the relative

value of different display and interaction environments.

Visual validation: No one visualization method stands out as the “gold standard” by which others are

judged. Every method has advantages and limitations based on what types of information it seeks to convey,

and the specific techniques that are used to convey it. Currently, most visualization methods are judged

by their own inventors. User studies and other validation methods will help justify the methods in a more

objective way as well as evaluating different interaction environments.

Modeling: The interaction between water molecules and biological structures is vital for understanding

the information contained in diffusion tensor images. It is generally believed that the sheath outside the
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neural axons causes most of the restrictions on water diffusion. Less is known about locations where fiber

bundles diverge, cross or kiss. What is the contribution of intra-cellular diffusion, inter-cellular diffusion,

and exchange between the membranes? A physically realistic model may help us analyze the tensor data,

and then visualize the underlying structures in a meaningful way.

5 Summary

Since DTI technology emerged 10 years ago, DTI acquisition, visualization, analysis, and application have

spurred numerous multidisciplinary efforts. For scientific visualization students, the problem is especially

intriguing, because DTI’s are large three-dimensional multivariate datasets; they present many challenges

for visualization. On the other hand, the problem has real world origin, applications, and challenges: the

datasets are noisy, resolution is never sufficient, and partial volume effects limit the results. Perhaps the

greatest challenge is the breadth of knowledge necessary to truly understand the entire process, from patient

to imaging to computation to visual analysis and back to patient.

In this chapter, we have given a brief survey of the last ten years of visualization-related research,

including some of the issues that remain to resolve. We look forward to the next ten years, where we expect

much more of the tremendous potential of this imaging modality will be realized.
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