DTI Fiber Clustering in the Whole Brain

Song Zhang and David H. Laidlaw
Brown University Providence, RI, USA http://vis.cs.brown.edu

Introduction

DTI tractography methods generate streamlines that correlate with the rientations of the neural fibers in the white matter. Researchers sudying neuroanatomy label white matter with fiber tracts comprised f groups of neural axons running in proximity to one another. These tracts provide a useful abstraction of the white matter structures; they can be used for identification and quantification of neural fibers However, due to variation across subjects in white matter, labeling hese fiber tracts by hand can be time-consuming and error-prone. Tluster the fiber tracts from the path set generated from a brain DTI data set. The task becomes more challenging when we cluster the paths over the entire brain instead of a region of interest since no human input of the tract information will be implied. We present our experiments in unsupervised clustering of a dense set of fiber path
generated from a whole brain DTI data set.

Generating paths

The head of a normal volunteer was imaged in a Siemens Symphony 1.5 T scanner. Three slice packets were acquired sagittally and interleaved to acquire a data volume of was used, with three b values $(0,500,1000)$ in 1.7 directions. We put seeding proints on a regular grid every 0.85 mm with small jittering. When the seeding distance is below 1.3 mm , doubling the number of the seeding points results in an almost constant increase in the number of paths. This indicates that our sampling of the paths in the white matter is
sufficiently dense to avoid missing links between paths in the same tracts. We used the streamtube algorithm [3] to generate streamlines from these seed points. The integration stops when the linear anisotropy value is below 0.15 , the streamline transcends the data boundary, or the signal-to-noise ratio provided by T2-weighted image is below a certain threshold. The initial path set is shown in (c). Since some of the paths might cause artificial linking as shown in (e) and (f), we set a threshold on the average linear anisotropy along the path in order to remove paths that are in ambiguous regions. We also remove the paths that are too similar. Some paths stop within ambiguous regions
the white matter. They can be considered spurious paths and might cause artificial linking between anatomically unrelated tracts. We cull again to remove those paths the do not project into the gray matter. The paths after the culling process are shown in (d).

c

Take home messages

- Clustering streamlines from tractography results gives us an help classify distinct fiber tracts.
- Setting distance function and thresholds are key to the clustering results.
© Culling streamlines according to anatomical constraints prove helpful for better clustering results.

a

b

Clustering streamlines

We used agglomerative hierarchical clustering methods [4] to cluster the streamlines. The general algorithm starts with n singleton
clusters and forms the sequence by successively merging clusters. The algorithm works as follows:

1. Given a set of n singleton clusters

Merge the two nearest clusters
. Repeat 2 . until the specified number of clusters are generated. the "nearest" cluster, we have to define the distance between two paths using the following equation

where s farameterizes the arc length of the longer trajectory, and dist(s) is the shortest distance from location s of the shorter trajectory
o the longer trajectory. Tl ensures that we label two trajectories as different if they iffer significantly over any portion of the arc length. This property creates a between any two paths from two clusters is used for the distance between thestance the method is called the nearest-neighbor cluster algorithm, or minimum algorithm.

e

f

Results

(c) shows the path set without the endpoints constraint. There are about 11,000 paths, many of which are short paths that stop within the ambiguous white matter regions, which could potentially create artificial links between fiber bundles. (d) shows the 6,000 paths after the culling process. Fiber bundles in (a) and (b) a visualize around 100 bundles that contain 10 or more paths. Fro the top view of our model (a), the two cingulum bundle tracts are clearly indicated as two clusters; the corpus callosum form several bundles that run into the outer brain without much divergence within the bundles. Groups of U fibers also form distinct bundles. From the side view (b), the internal capsule is clustered in several bundles that are coherent along the pathways.

Related work
Ding et al. [1] proposed DTI fiber classification and quantification. They defined a corresponding segment ratio and employed that ratio together with the mean distance over the corresponding segments to delineate the similarity between two streamlines. The similar streamlines whose seeding points are near the original
streamline seeding point are grouped into a bundle. Corouge $e t$ [2] proposed a clustering algorithm that propagate the cluster to the neighboring fibers. They also employed three distance measures based on the point sets on the pair of streamlines. We used a similar clustering algorithm on a dense set of paths over the whole brain. Early results showed that a lack of paths within a tract or spurious paths between tracts can lead to possible false classifications. We propose strategies in setting seeding points, path minimize the misclassifications.

