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In Vivo Measurement of 3-D Skeletal Kinematics
from Sequences of Biplane Radiographs: Application

to Knee Kinematics
Byoung-moon You, Pepe Siy, William Anderst, and Scott Tashman*

Abstract—Current noninvasive or minimally invasive methods
for evaluating in vivo knee kinematics are inadequate for accurate
determination of dynamic joint function due to limited accuracy
and/or insufficient sampling rates. A three-dimensional (3-D)
model-based method is presented to estimate skeletal motion
of the knee from high-speed sequences of biplane radiographs.
The method implicitly assumes that geometrical features cannot
be detected reliably and an exact segmentation of bone edges
is not always feasible. An existing biplane radiograph system
was simulated as two separate single-plane radiograph systems.
Position and orientation of the underlying bone was determined
for each single-plane view by generating projections through a 3-D
volumetric model (from computed tomography), and producing
an image (digitally reconstructed radiograph) similar (based
on texture information and rough edges of bone) to the two–di-
mensional radiographs. The absolute 3-D pose was determined
using known imaging geometry of the biplane radiograph system
and a 3-D line intersection method. Results were compared to
data of known accuracy, obtained from a previously established
bone-implanted marker method. Difference of controlledin vitro
tests was on the order of 0.5 mm for translation and 1.4 for rota-
tion. A biplane radiograph sequence of a canine hindlimb during
treadmill walking was used for in vivo testing, with differences on
the order of 0.8 mm for translation and 2.5 for rotation.

Index Terms—2-D/3-D image registration, digitally recon-
structed radiograph (DRR), high-speed biplane radiographs,in
vivo measurement, three-dimensional (3-D) model-based motion
analysis.

I. INTRODUCTION

T HE in vivo measurement of dynamic knee kinematics is
important for understanding the effects of joint injuries

and diseases, and evaluating treatment effectiveness. Static mea-
surement methods cannot accurately reflect loads encountered
during typical movements, and often fail to reliably predict out-
come [1]. Therefore, treatments aimed at improving knee func-
tion should be evaluated using data obtained from dynamic mea-
surement methods. This requires the determination of six de-
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grees of freedom (DOF) pose (position and orientation) of ob-
jects to be estimated during dynamic activities.

The most commonly used methods for assessing dynamic
movement rely upon skin-mounted or bone-implanted markers.
However, external skin-mounted markers are unable to accu-
rately represent motion of the underlying bone due to move-
ment of soft tissue relative to bone [2]–[7]. To overcome the in-
herent inaccuracy of skin-mounted markers, markers have been
mounted on skeletal pins inserted into the underlying bones
[7]–[9], or inserted directly into the bones [10], [11] to measure
skeletal kinematics. Though these studies provide some of the
best available quantitative data during movement, requirement
of skeletal pins or radiopaque markers has limited application
for human studies.

Previously, texture-mapped two-dimensional (2-D) models
have been used for tracking the human motion in the sagittal
plane [12]. In [12], human motion was captured by a video
camera and a standard human geometric model was posed on
the manually segmented joint positions. The texture pattern of
the body image was mapped into the geometric model, and tem-
plate matching was applied for obtaining the best-matched po-
sition between the texture-mapped model and the image. This
approach does not appear to be sufficiently accurate for in-depth
kinematics analysis due to movements of soft tissue.

Existing three-dimensional (3-D) techniques, such as com-
puted tomography (CT) and magnetic resonance imaging
(MRI), allow assessing movements of the underlying bone
directly [13]–[15]. However, CT/MRI are not yet capable of
achieving high frame rates required for estimating dynamic
function. In addition, the restrictions imposed by the imaging
environment (typically a small-diameter cylindrical space)
prevent full-motion kinematics measurement.

The assumptions and limitations of existing methods de-
scribed above have impeded accurate measurement of human
kinematics under dynamic conditions. These limitations may
be overcome by fluoroscopic/radiographic imaging, which
enables direct visualization of bone.

Spine position and orientation have been determined using a
pattern intensity or gradient-based registration between projec-
tions through 3-D CT data and 2-D fluoroscopic images [16],
[17]. However, the method was described using high-quality
static phantom images and has not been applied to high-speed
in vivomotion images, which are generally noisy and lower res-
olution, and may be contaminated with motion artifacts.

A few researchers [18]–[21] have applied image-processing
techniques for assessing motion of total knee arthroplasty
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(TKA) components from fluoroscopic images. These studies
used known edge (and silhouette) information of the metal
components to calculate the similarity between digitally
reconstructed radiographs (DRRs) and actual fluoroscopic
images. This approach works reasonably well because of the
high contrast, well-defined edges created by the dense metal
components. However, this method can only be used to study
individuals who have undergone joint replacement surgery.
Similarly detailed edge information is generally not available
from the underlying bone in high-speed radiographic images.

Radiographic images result from a combination of the extent
of absorption of both bone and soft tissues. Lower extremity
bones have smooth, rounded contours and are covered by
varying amounts of soft tissue. Thus, edge information may not
represent the exact boundary of the bone, and often cannot be
extracted at all from the radiographic images if soft tissues are
thick enough. Rapid (up to 2 m/s) bone movement encountered
during typical dynamic studies causes significant motion
blur at standard video rates, further obscuring edge detail
and impairing tracking accuracy. Though available pulsed
fluoroscopy systems can reduce blur, typical pulse widths
still allow considerable movement during the exposure. For
example, a bone moving at 2 m/s shifts 10 mm during 5-ms
pulsed exposure. Since one of the goals of this project is to
obtain submillimeter accuracy, it is desirable to limit motion
during frame acquisition to 1 mm or less—this would dictate
an exposure time of 500s or less. Since pulsed systems are
not generally capable of such short exposures (particularly
at 250 frames/s), it is necessary to limit exposure duration
by electronically shuttering the video camera. This leads to
increased radiation exposure to maintain adequate mR/frame
and/or reduced image quality due to quantum mottle effects.
These problems are further aggravated by the limited resolution
and dynamic range of high-speed video cameras (512512

8-bit pixels or less), relative to modern fluoroscopy systems
(1024 1024 10- to 12-bit pixels).

Thus, a new approach was needed based on the assumption
that it is not always feasible to identify specific features from
the bone. The 3-D pose of the bone can instead be determined
by similarity matching (based on texture information and rough
edges of bone) of DRRs with the 2-D radiographic images,
taking advantage of the redundancy available from two-view ra-
diographs.

Methods for acquisition and processing of radiographic
image sequences, development of 3-D bone models and deter-
mination of 3-D bone pose are described below. A series ofin
vitro and in vivo experiments are then presented to evaluate
algorithm performance.

II. M ATERIALS AND METHODS

A. Data Acquisition

A high-speed biplane radiograph system (Fig. 1) has been
constructed at the Herrick-Davis Motion Analysis Labora-
tory (Henry Ford Health System, Detroit, MI) for obtaining
high-speed (250 frames/s) biplane radiographic image se-
quences during movement [22]. The system consists of two
150-kVp X-ray generators (Shimadzu model UD150B-10 with

Fig. 1. Configuration of the biplane radiograph system (top view). A global
reference coordinate system for the biplane system and two local coordinate
systems (single-plane) are shown.

Varian A-262 inserts; 0.6-mm nominal focal spot size), two
30-cm image intensifiers (Shimadzu model AI5765HVP), and
two high-speed video cameras (JC Labs HSC-250, 512240

8-bit pixels, 250 frames/s), configured in a custom gantry to
enable a variety of motion studies. This system was set up in a
configuration commonly used for gait testing (60interbeam
angle, X-ray source to object distance 1.3 m, and object to
intensifier distance 0.5 m). This configuration provides a
large, open area suitable for either treadmill-assisted or free
walking, running, etc. A 567-marker grid was used to correct
distortion introduced by the image intensifiers and associated
optics [23]. Additionally, a white-field image [acquired from
the X-ray system with nothing in the field of view (FOV)] was
used to perform a log-based correction for image intensity
nonuniformity.

To minimize motion blur during rapid limb movement,
the video cameras were electronically shuttered to 1/2000
s for all tests. This limited motion during each video frame
exposure to 1 mm or less for bone velocities up to 2 m/s. X-ray
beam currents many times greater than typical fluoroscopy
were, therefore, necessary to provide sufficient per-frame
illumination and reduce noise due to quantum mottle. Tests
were typically performed with a continuous 100-mA, 70-kVp
protocol, enabling nearly blur-free imaging with per-frame
exposure and image quality similar to standard (nonpulsed, 30
frames/s) fluoroscopy. For studies with lower bone velocities,
shutter speed and beam current could be proportionally reduced
to maintain similar mR/frame exposures, while still limiting
bone motion to less than 1 mm during the shutter period.
This would maintain the same level of image quality while
either reducing subject exposure or enabling longer duration
acquisitions. For example, if bone speed does not exceed 1 m/s,
shutter speed could be reduced to 1/1000 s and X-ray beam
current reduced to 50 mA with no loss of image quality.

For in vivo testing, subject radiation exposure was minimized
by selecting a specific phase of motion for study (e.g.,heelstrike
during gait), and precisely synchronizing X-ray exposure to the
event of interest (using accelerometers and/or optical sensors
and an electronic timer). Additionally, collimators are used to
limit beam size to the sensitive area of the image intensifiers,
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and restrict primary exposure to the peripheral limb. Experience
with this system during walking, running and jumping studies
has shown that adequate data can usually be obtained with only
0.5 s X-ray duration, generating estimated entrance exposure of
approximately 110 mR/test (times two for biplane studies). A
typical knee study might consist of three trials each of two dif-
ferent movement activities, for a total entrance exposure of ap-
proximately 1.3 R. This level of radiation exposure is consistent
with other diagnostic radiography procedures (e.g., CT scan)
and, thus, can generally be justified for diagnostic or research
purposes on a case-by-case risk/benefit basis. To maintain radi-
ation exposure within reasonable levels, studies requiring mul-
tiple assessments must be intelligently designed to minimize
the total number of trials required for each subject. At Henry
Ford Health System, research protocols specifying multi-trial
testing repeated three times over a two-year period have re-
ceived Human Rights Committee approval.

A biplane radiographic image sequence of a canine hindlimb
available from a prior study [24] was used for development
and testing. The right tibia had four bone-implanted radiopaque
markers (1.6-mm tantalum beads). This allowed determination
of six DOF motion parameters with high accuracy (errors of 0.1
mm for translation and 0.22for rotation) using the previously
developed bone-implanted marker method [22]. A comparison
was performed between the bone-implanted marker method and
the 3-D model-based method for evaluation of accuracy.

A CT scan of the canine hindlimb was obtained (GE Hi-speed
Advantage) to generate a volumetric model for tibia/fibula.
Forty-nine 1.0-mm-thick transverse-plane slices (512512
pixels, 0.488 mm resolution) were acquired from the joint
line to 5 cm below from the joint line. Segmentation of the
CT-scanned bone was manually performed by thresholding the
slices to isolate the bone from soft tissues. Radiopaque marker
signatures were identified manually and replaced with the mean
values from surrounding voxels to eliminate influences of the
markers. The volumetric model was resampled using a bilinear
interpolation function to the same resolution as radiographic
images acquired with the biplane system.

B. Overview

The 3-D model-based method is based on the assumption that
a properly oriented projection through a 3-D volumetric model
will produce an image similar to the radiographic images. First,
imaging geometry of the biplane radiograph system was deter-
mined based on a reference coordinate system [25]. The biplane
system was simulated on an SGI workstation (Octane SI with
texture option) as two single-plane radiograph systems based
on these parameters.

An overview of the process for the single-plane radiograph
systems is provided in Fig. 2. The algorithm consists of four
major components: volume visualization (model projection),
image preprocessing, similarity measurement, and optimiza-
tion. In the volume visualization step, a 3-D texture-mapping
technique is used to project through the 3-D bone model and
generate a DRR. During the preprocessing step, a set of image
processing algorithms (edge extraction, image enhancement)
is applied to extract the coarse edge of the bone. Similarity
between the DRR and the radiographic image is determined

Fig. 2. Overview of the process for measuring the bone position and
orientation from the single-plane radiograph system.

with a correlation. An optimization algorithm iterates motion
parameters until the maximum similarity is obtained. Once
six DOF of the center point of the bone model are estimated
from each single-plane system, the absolute 3-D position and
orientation of the bone in the reference coordinate system are
determined using a 3-D line intersection method and the known
imaging geometry of the biplane system.

C. Determination of Imaging Geometry

Imaging geometry was determined using a 12-marker 3-D
calibration cube. The calibration cube was put in the view area
of the biplane system, and biplane radiographs were acquired.
Positions of each marker were calculated to determine the con-
figuration of the biplane system relative to the global refer-
ence coordinate system using the direct linear transformation
(DLT) method [25]. Each single-plane system, green and red
(denoted by “g” and “r,” respectively), of the biplane system
was described with its extrinsic and intrinsic parameters. Ex-
trinsic parameters consist of the position and rotation of the
X-ray source of the single-plane system in the global refer-
ence coordinate system. For the green (red) system, a position
vector, , a rotation matrix, , were de-
termined from the DLT method. Intrinsic parameters include
the principal point and the principal distance of the single-plane
system (Fig. 3). The principal point, , is the location
in the image plane of the green (red) system, perpendicular to the
center of the X-ray beam. The principal distance, ,
is the distance from the X-ray source to the principal point of
the green (red) system. The intrinsic parameters, along with the
size and resolution of the radiographic image, were sufficient to
accurately simulate two single-plane radiograph systems. The
extrinsic parameters were used to reconstruct the biplane system
for determining the absolute 3-D pose of the bone in the global
reference coordinate system.

D. Volume Visualization

With the geometry of the imaging system known, DRRs can
be generated from the 3-D bone model using volume visual-
ization methods [26]–[33]. Perspective (rather than parallel)
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Fig. 3. Imaging geometry of the single-plane radiograph system (red).
Principal distance,PD, is from the X-ray source( S) to the principal point
( PP ) in the image plane and the principal point is the origin of the image
plane.X axis andZ axis of the image plane are parallel to those of the X-ray
source.

projection rendering is required to accurately represent the
cone-beam X-ray image formation process. Additive re-projec-
tion [26] or ray-casting methods [27], [28] are commonly used
for this purpose. However, these methods are computationally
intensive, particularly for iterative methods. Restriction of the
CT bone model to specific regions [16], [31] and/or precom-
puting a library of ray integral values have been proposed to
accelerate the rendering process [32]. However, for tracking
arbitrary orientations of large bones moving through significant
volumes, the computational cost of precomputing the required
number of rays approaches that of ray-casting.

To significantly reduce rendering time, perspective pro-
jections were generated using a hardware-accelerated 3-D
texture-mapped volume rendering method [33], implemented
using the OpenGL graphics library on an SGI Octane worksta-
tion. The entire 3-D model volume data was downloaded into
texture memory once. To simulate a desired 3-D orientation, the
volume was rotated to orient the bone properly and re-sampled
in memory to create equally spaced planes perpendicular to the
principal axis of the X-ray beam. Each pixel of the DRR was

Fig. 4. CT model projection. The CT model is re-sampled with equally spaced
planes along the viewing direction and DRR is generated by summing pixel
values along projected rays from the X-ray source to the image plane.

Fig. 5. DRR using a 3-D texture-mapped rendering method and a ray-casting
method (VTK [27]). (a) Radiographic image of a tibia segment and four
radiopaque markers. (b) Three–dimensional texture-mapped rendering method.
(c) VTK’s ray-casting method. 128� 128� 64 volume data (256 gray level) of
the tibia segment were used to generate these images. In the VTK’s ray-casting
method, scalar opacity transfer function and color transfer function were
defined from 0 to 0.005, and 5.0 to 16.0, respectively. The elapsed time to
render was about 7 s for the VTK’s ray-casting method and 0.3 s for the 3-D
texture-mapped rendering method.

calculated by summing re-sliced pixels along a ray constructed
from the X-ray source to the image plane (Fig. 4). This reduces
rendering time by a factor of about 20 (see Section IV), at the
cost of a slight reduction in the quality of the resulting DRR
(relative to traditional ray-casting), as shown in Fig. 5.

E. Image Preprocessing

Relative to conventional fluoroscopic images commonly used
for 2-D/3-D image registration [16], [31], radiographic images
obtained from high-speed video cameras are noisy and resolu-
tion-limited, complicating the feature-extraction process. This
situation is worsened by the inherent irregularity of tissue den-
sity and distribution. The combination of these factors can make
reliable detection of anatomical features, such as bone edges,
difficult or impossible. Thus, it is desirable to extract a feature
set using all available information on the bone, rather than only
external edges or intensity information. This was accomplished
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Fig. 6. Preprocessing of a real radiographic image and DRR. (a) An image acquired from the biplane radiograph system. (b) Edge-information added radiographic
image (region of interest). (c) DRR generated through the bone model. (d) Inverted and edge-added DRR. (e) Radiographic image overlapped with DRR after the
best matching.

by using a combination of edge and intensity information (tex-
ture information projected through 3-D volume of bone/model)
based on the assumption that even imperfect edge data can serve
as useful features for improving matching between the DRR and
actual radiographic images.

Both the DRR and the radiographic images are preprocessed
prior to matching, to maximize similarity. First, the DRR is in-
verted and contrast-enhanced using a histogram-equalization al-
gorithm [34], [35] [see Fig. 6(c)]. Then a simple edge algorithm
(Sobel edge detector [34], [35]) is applied to extract edges from
both DRR and radiographic images. The edge information is
then added back to the original images [see Fig. 6(b) and (d)],
combining both edge and texture information. The edge infor-
mation helps to drive the optimization toward the correct so-
lution, improving initial algorithm convergence. However, ac-
curacy with edge information alone is limited due to spurious
edges in the radiographic images from the soft tissues, which do
not appear in the DRRs. Thus, addition of the intensity/texture
information leads to more accurate matching than is possible
with edge information alone.

F. Similarity Measurement

To determine optimal position matching, a metric for sim-
ilarity between two images is required. Pattern intensity [16]
and gradient difference methods [17] have been suggested for
the DRR and fluoroscopic images. These studies assumed that
image quality is high, and that soft tissue structures have a rel-
atively small role in the intensity distribution in fluoroscopic
images. Because high-speed radiographs are noisy and con-

trast-limited and there is a great deal of soft tissue motion
during dynamic studies, detectable edges and features in the
actual radiographs differ from those in the DRRs. Thus, these
assumptions are no longer valid and a different approach was
required.

Evaluation of several different correlation strategies sug-
gested that general normalized correlation [34], [35], applied to
summed edge/intensity images, is robust even in the presence
of these differences between actual radiographs and DRRs. The
correlation equation used for this study is

(1)

where:
radiographic image;
DRR generated from the 3-D CT model;
mean of the DRR;
mean of radiographic image in the region under the
DRR.

However, this is computationally intensive, especially if the size
of images to be compared is large (as is often the case with
medical images). A new Quadtree-based normalized correlation
method was employed to reduce search iterations and improve
optimization efficiency. A predefined search space of the ra-
diographic image is divided into four quadrants (Fig. 7). The
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Fig. 7. Quadtree-based correlation. Correlation space is divided into four
regions. The region with the best match is subdivided again. This process is
repeated until the region size is reduced to 4� 4 pixels.

Fig. 8. Determination of 3-D bone position. P ( P ) is position of
the X-ray source of the green (red) system relative to the reference coordinate
system. P ( P ) is the best-matching location in the green (red) image
plane expressed in the reference coordinate system. The mid-point of the line
segment “C” is chosen as the optimal 3-D position.

average correlation value ( , , , ) of each
quadrant is calculated from correlation values
of four corner points of the corresponding quadrant (2). The
quadrant with the best correlation is further divided for the next
step (3). For example, if is the optimal, , ,

, and are calculated. This procedure continues
until the size of a quadrant reduces to 44 pixels. In the
final step, all pixels of the optimal quadrant of the radiographic
image are correlated with the DRR. The coordinate of the pixel
with the best match is chosen as the location of the bone center
in the image plane ( and , see Fig. 8). The value
of the correlation function at this point is used as an indicator
of the quality of match for the optimization process described
below. For a maximum expected frame-to-frame translation of
20 pixels (40 40 pixel search region), the efficiency of the
Quadtree algorithm is clearly illustrated. Conventional sequen-
tial correlation would require 1600 image multiplications to find
the best matching position, whereas the Quadtree-based corre-
lation method requires only 40 multiplications.

At the first iteration

for quadrant

for quadrant

for quadrant

for quadrant (2)

At the second iteration,

for quadrant

for quadrant

for quadrant

for quadrant (3)

G. Optimization

The downhill Simplex method [36], [37] is used to adjust es-
timated bone position and orientation until optimal similarity is
obtained. The Simplex method requires points as starting
points, where is the number of DOFs of the function being
optimized. Then the simplex method travels through the param-
eter space by reflection and contraction. Estimating 3-D kine-
matics would typically require simultaneous optimization of all
six motion parameters (three positions and three rotations). But,
in this study, movements parallel to the image plane (typically
less than 20 cm) were considered small relative to the distance
from the X-ray source to the bone (approximately 150 cm).
Thus the effects of translations parallel to the image plane on
the appearance of the projected bone were considered negligible
(the validity of this assumption is addressed in the Discussion).
The center of the bone model was constrained to move along
the principal axis (Fig. 3) and only three rotation parameters
and the distance perpendicular to the image plane (out-of-plane
position) were controlled by the optimization process to gen-
erate DRRs. The remaining two DOF parameters (in-plane po-
sition) were directly determined from correlation by finding the
best-matching location in the image plane. This reduction of op-
timization variables from six to four dramatically improved op-
timization efficiency.

The optimization routine began with five predefined vertices
(four DOF plus one, as required for Simplex) as the starting
points. An initial guess was determined manually for the first
frame or selected as the optimal position of the previous mo-
tion frame. The remaining four vertices were selected to span
the range of physiologically valid bone orientations. DRRs for
each vertex were generated from the 3-D model using the known
imaging geometry of a single-plane system and four DOF pa-
rameters (three orientation parameters and out-of-plane position
parameter) controlled by the optimization process. Then two
in-plane position parameters were determined from correlation
between the DRRs and the radiographic images. Each reflection
or contraction continued to update the three rotation parameters
and the distance perpendicular to the image plane, based on the
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previous similarity calculations. The optimization routine was
terminated when the distance of points moved in that step was
fractionally smaller in magnitude than some tolerance.

To check for local minima, the Simplex routine then restarted
from the optimized point, and was allowed to converge again.
If the new solution differed from the previous solution by more
than a specified tolerance (typically, 1for rotation), the original
solution was rejected as a local (nonglobal) minimum, and the
routine was restarted from the new optimum point.

H. Three-Dimensional Determination of Position and
Orientation

Six motion parameters can be estimated from a single-plane
system for each frame. However, the assessment of out-of-plane
translations is unreliable with a single-plane system and the ac-
curacy for measuring out-of-plane translations is poor relative
to the accuracy for measuring in-plane translations [17], [18].
Thus, only a projection ray passing from the X-ray source,
through the center of the bone model, to the best-matching loca-
tion in the image plane was constructed from each single-plane
system. This projection ray was represented as a line segment
connecting the X-ray source (the origin of a single-plane
system) and the best-matching location in the image plane
( for the green system and for the red system).

For simulating the biplane system, Line segments (actually,
two end points) estimated from each single-plane system were
transformed to the global reference coordinate system based on
the information of the position and orientation of single-plane
systems relative to the global reference system as follows.

• The position of the X-ray source is the origin of the
single-plane system. Its location relative to the global
reference coordinate system, for the green
(red) system, was already determined from the DLT
method.

• was transformed to the reference coordinate
system by a rotation and a translation (4):

(for the green system)

(for the red system) (4)

where is a 3 3 direction cosine matrix rep-
resenting the orientation of the green (red) system with re-
spect to the reference coordinate system.
is the best-matching location in the image plane of the
green (red) system transformed to the reference coordi-
nate system.

For example, two line segments within the reference coordi-
nate system (“A” from to and “B” from to

) were constructed, as shown in Fig. 8.
Ideally, the two line segments “A” and “B” should intersect

at a point because they pass through the same point of the bone
model. However, these lines generally do not intersect due to
errors such as camera calibration, image noise, matching error,
etc. To solve this problem, the 3-D position of the bone was
determined by finding the midpoint of the shortest line, “C”,
between these two line segments using a 3-D line intersection
method [38], [39] (Fig. 8).

Orientation of the bone could be determined from
the estimated orientation of the bone model estimated
in each single-plane system assuming body-fixed– – ro-
tations [40], [41]

for green system or

for red system (5)

where
constant 3 3 direction cosine matrix of
the orientation of the anatomical bone rel-
ative to the CT model;
3 3 direction cosine matrix representing
the orientation of the CT model with re-
spect to the green (red) system, determined
from single-plane optimization;
3 3 direction cosine matrix of the bone
expressed in the reference coordinate
system.

Final 3-D orientation of the bone was determined by averaging
the rotation angles obtained from the two single-plane views

(6)

III. EXPERIMENTS

Dynamic in vitro tests were performed with a canine tibia
segment, from which soft tissue was removed. Four tantalum
spheres (1.6-mm diameter) were implanted in the bone to
enable marker-based tracking. The tibia was held fixed in a
vice attached to a computer-controlled stepper motor driven
positioning system capable of two-axis linear movement and
single-axis rotation (0.006 35 mm/step, 0.02/step). Three
tests were performed: simple translation, simple rotation, and
a combination of translation and rotation. In the translation
experiment, the tibia segment was positioned vertically (with
its long axis perpendicular to the ground) and controlled to
move parallel to the ground (in the – plane) in diagonal
directions along a 100-mm square. For the rotation experiment,
the tibia was rotated 15 internally/externally about its long
( ) axis. Finally, for combined translation and rotation, the tibia
was moved diagonally in the – plane with simultaneous

10 rotation about the flexion/extension () axis. From
each experiment, a sequence of 124 radiographic images was
acquired from the biplane radiograph system.

For the first frame of each sequence, the six motion parame-
ters were estimated manually using a window-based user inter-
face to produce DRR that appeared similar to the actual radio-
graphic image. These parameters were used as an initial guess
to start the optimization. Fig. 9 illustrates the process that the
optimization routine followed to get the best matching from the
initial guess. The optimization routine took about 80 iterations
for the initial guess and about 60 iterations for tracking the bone
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Fig. 9. An example of optimization process. (a) Manual guess. (b)–(e) Predefined vertices spanning range of expected bone motion to initialize the simplex
algorithm. (f) 10th iteration. (g) 20th iteration. (h) 45th iteration (optimized).

TABLE I
ROOT-MEAN-SQUARE ERRORS FORIN VITRO AND IN VIVO

EXPERIMENTS BETWEEN THE 3-D MODEL-BASED METHOD

AND THE MARKER-BASED METHOD

from frame to frame. The average time taken by an iteration,
which includes preprocessing of a radiographic image, model
projection and the Quadtree-based correlation, was 0.8 s for a
256 256 8 bit image (SGI Octane, dual 175-MHz pro-
cessors). The biplane image sequences were also tracked using
the marker-based method described in Section II (accuracy for
marker tracking: mm [22]). This marker-based tracking
used the same calibration cube and distortion correction images
as the 3-D model-based method, providing a common global
coordinate system for comparison. For threein vitro tests, the
root mean square (rms) differences between methods were av-
eraged 0.23 mm for transition and 1.2for rotation (Table I).
The tracking results of thein vitro test for combination of trans-
lation and rotation are plotted in Fig. 10.

In vivo testing was performed similarly to thein vitro study.
Biplane radiographic image sequences and limb CT scans were
available from an ongoing study of canine knee kinematics.
This study utilized implanted tantalum beads (four/bone) for
tracking bone motion, thus providing a set of high-accuracy
kinematic data for comparison. Biplane radiographs of the right
hindlimb were acquired at 250 frames/s during treadmill walking
at 1.5 m/s (Fig. 11), using the radiographic protocols described
in Section II. Forty continuous frames of a gait sequence were

selected with no occlusion between legs. A CT scan of the same
limb was acquired and processed to remove tantalum marker
signatures. The tibia of the right hindlimb was then tracked
using both the 3-D model-based method and the marker-based
method, and the results were compared as described for thein
vitro study (Table I). rms differences between methods were
averaged 0.5 mm for transition and 2.6for rotation.

IV. DISCUSSION

A 3-D model-based method was presented to assess skeletal
motion of underlying bone from high-speed sequences of bi-
plane radiographs. The method is based upon optimizing sim-
ilarity between the radiographic image pairs and DRRs gener-
ated by projections through a 3-D bone model (generated from
CT). However, the matching between DRRs and actual radio-
graphic images can never be exact. The radiographic images
result from a combination of the extent of absorption of both
bone and soft tissues, and soft tissues obscure the outmost edges
of the underlying bone. In contrast, the exact outmost edges of
the bone can be obtained from the CT volume data, from which
soft tissues were removed manually. This causes an apparent
difference in size between real radiographic images and DRRs
(the projected bone looked bigger than the bone in the radio-
graphic images). This difference varies by frame and is diffi-
cult to correct. Single-plane implementation of the algorithm
resulted in bone position estimates farther away from the X-ray
source than the absolute position determined using stereo in-
formation or marker-based tracking (Fig. 12). Thus, assessment
of movement perpendicular to the image detector was unreli-
able with a single-plane system. In Fig. 12, bone was estimated
100 mm farther away from the X-ray source of the red system,
causing 20-mm errors for axis and 60-mm errors for axis
in the reference coordinate system. Similarly large errors par-
allel to the X-ray beam direction (10 times larger than errors in
other axes) have been observed previously in a CT/fluoroscopy
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Fig. 10. A comparison between the proposed marker-less method (solid lines) and the marker-based method (circles). (a)–(c) Translations. (d)–(f) Rotations.
Translation errors are largest forY axis, as seen in insert (b). Rotation errors are largest forX axis (d).

registration study of the spine [17]. By combining results from
the two views, errors in the beam axis direction are reduced to
a level similar to those in the image plane (see Table I;axis
errors versus and axis errors).

The two line segments connecting each projection source and
the coordinates of its projections onto the corresponding image

plane should theoretically intersect at a point. But these vectors
do not generally cross, due to small errors from various sources
(see Fig. 8). During the experiments described above, these two
lines typically missed crossing by only about 0.2 mm in each
axis. Single-plane systems may be somewhat better for esti-
mating bone rotation, since 3-D rotations calculated separately
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Fig. 11. Images from anin vivoexperiment. (a) A dog while treadmill walking. (b, c) 40th frame of radiographic images acquired from the green and red system,
overlapped with images simulated from CT model. (d, e) 68th frame radiographic images. Background noise was thresholded to zero.

Fig. 12. AXY (transverse) plane movement of anin vitro experiment viewed
from the top. Bone motion followed a diamond pattern. “A” is the path estimated
using biplane views (overlapped with an assumed true path determined from the
bone-implanted marker method), “B” is the path estimated from the red system,
and “C” is the path estimated from the green system. Single-plane errors along
beam direction are large, but resolved when views are combined.

for each system typically differed by only about 0.3(after the
estimated orientation from each single-plane system was trans-
formed to the common reference coordinate system).

When information from both views was combined, the rel-
ative differences between model-based tracking and marker-
based reference data were approximately 0.5 mm forin vitro
experiments and 0.8 mm for thein vivoexperiment for all axes.
These errors are similar in magnitude to the effective pixel size
of the radiographic images (approximately 0.50.8 mm with
500 240 resolution and 250 190 mm FOV). This suggests
that radiographic image resolution may be a limiting factor for

accuracy, and higher resolution cameras and/or the addition of
subpixel matching techniques may improve performance.

Determining the 3-D pose of an object is a six-dimensional
(6-D) optimization problem. In this study, the 6-D search space
was reduced to four dimensions to greatly improve optimization
efficiency. During single-plane optimization, the three orienta-
tion parameters are allowed to vary, but the 3-D bone model
is allowed to translate only along the principal axis. In-plane
translation parameters are subsequently determined from cor-
relation between DRRs and radiographic images. Because of
the cone-shaped projection, the shape of the bone in the radio-
graphic image would be expected to change as the bone moves
parallel to the image plane; this effect is ignored in the DRR.
Since the movement parallel to the image detector is small with
respect to the distance from X-ray source to the bone, it is as-
sumed that the effects of this movement on the DRR will cause
acceptably small errors.

This assumption was validated by performing a test using
DRRs instead of actual radiographs. DRRs were generated with
the bone model centered on the principal axis, and also shifted
40 mm along the axis (parallel to the imaging plane). Single-
plane optimizations were performed using these DRR images as
inputs. Differences in rotations determined for the two images
were 0.1 or less for all three axes. Thus, the contribution of this
factor to the total error magnitude (Table I) is likely to be rel-
atively small. This error could be reduced or eliminated in the
future by using 6-D optimization during the final stage of the
optimization.

Convergence of the optimization algorithm was quite sensi-
tive to the quality of the initial guess for the 6-D motion param-
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eters. Experience from these studies suggests that the initial pa-
rameters should be within 5 for rotation and ten pixels for
translation of actual bone pose for reliable convergence on the
correct solution. Errors of this magnitude are easily discernable
with the graphical user interface provided. Larger errors in the
initial guess sometimes led to algorithm failure and/or conver-
gence on a nonoptimal local minima, which was not always cor-
rected by restarting the optimization from the erroneous point.
Such failures can be easily detected when results from the bi-
plane views are combined, since the two solutions will be in-
consistent. Though generating the initial guess sometimes re-
quires considerable effort on the part of the operator, this effort
is only necessary for the first frame of a motion sequence. The
fast frame rate limits frame-to-frame motion to less than the tol-
erances described above, so that each frame result provides an
excellent initial guess for the subsequent frame.

Regarding the elapsed time for generating a DRR, the shear-
warp based volume rendering method [32] is faster by a factor
of almost seven compared to a ray-casting method; transgraph-
based rendering method [31] a factor of three or five; The hard-
ware-supported 3-D texture-mapped volume rendering method
a factor of about 20. Though 3-D texture-mapped rendering
method does not seem to represent in detail information as a
ray-casting method does, the image quality of generated DRRs
is almost the same as that of high-speed radiographic image and
enough to be used for registration between DRRs and radio-
graphic images.

Total processing time for this study was 100 s/frame (two ra-
diographic images), and 3.5 hours for processing the whole se-
quence (124 motion frames, 248 radiographic images). Manual
intervention was required only for determining an initial guess
for the first frame of each view (about 5 min). This compares fa-
vorably with reported times required to determine 3-D pose of
TKA (45 min [18], 15 min [20], or 120 s [19]/frame for both the
femoral and tibial component of TKA). In [14], the reason for
high performance is that spurious edges were manually identi-
fied and deleted, and only a small amount of edge information
was used for matching. This approach is not feasible for natural
bone tracking.

The largest errors were noted in the axis rotation of the
in vivo experiment (corresponding to knee varus/valgus). This
result could be predicted, since rotation about this axis appears
as motion primarily along the direction of the X-ray beam,
and is particularly sensitive to errors in estimated bone size
and/or edge location. Accuracy of the other parameters is quite
comparable to model-based methods reported for radiographic
tracking of TKA component kinematics. Reportedin vitro
errors for 3-D TKA translation range from 0.5 mm to 1.5 mm
[13]–[16]. Reportedin vitro rotational errors are in the order
of 1.5 for these TKA studies. From the 3-D model-based
method, accuracy for translation and orientation was within
0.5 mm and 1.7 in in vitro tests. Given the difference in edge
definition between bone and dense metal components, these
comparisons are particularly encouraging. These experimental
results suggest that this is a promising method to assess bone
and joint motion accurately and without the need for implanted
radiopaque markers. The method should be applicable for
measuring normal and abnormal kinematics of the human knee,
and possibly other joints as well.

A limitation of this method is the requirement for a high-res-
olution CT scan for each subject, to generate 3-D radiographic
model of bones to be tracked. Future studies are planned to as-
sess the feasibility of using a library of stored 3-D bone models
(possibly scaled to match individual subject anthropometry),
which may eliminate the requirement for subject-specific CT
scans.
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