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Interactive Volume Rendering of Thin Thread
Structures within Multivalued Scientific Datasets
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Abstract—We present a threads and halos representation for interactive
volume rendering of vector-field structure and describe a number of addi-
tional components that combine to create effective visualizations of multi-
valued 3D scientific data. After filtering linear structures, such as flow lines,
into a volume representation, we use a multi-layer volume rendering ap-
proach to simultaneously display this derived volume along with other data
values. We demonstrate the utility of threads and halos in clarifying depth
relationships within dense renderings, and we present results from two sci-
entific applications: visualization of second-order tensor valued magnetic
resonance imaging (MRI) data and simulated 3D fluid flow data. In both
application areas, the interactivity of the visualizations proved to be im-
portant to the domain scientists. Finally, we describe a PC-based imple-
mentation of our framework along with domain specific transfer functions,
including an exploratory data culling tool, that enable fast data exploration.
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I. I NTRODUCTION

We describe a thread and halo technique suitable for interac-
tive volume rendering of thin linear structures together with a
number of components that make it useful for visualization of
multivalued 3D scientific data. Two scientific applications drive
our volume-rendering work: understanding brain anatomy and
pathology, and understanding blood flow in coronary arteries.
These driving applications have provided the problems, and, as
Brooks suggests, the extent to which our application facilitates
the solution of these problems helps to evaluate and guide our
algorithm and tool development [1].

Creating comprehensive and accurate visualizations for ex-
ploring 3D multivalued data is challenging. The first challenge
is to create visualizations in which the data nearer to the viewer
does not excessively obscure that farther away. The second chal-
lenge is to represent many values and their interrelationships at
each spatial location.

Interactive volume rendering with user controlled transfer
functions can provide a promising approach for overcoming
much of the obscuration problem. By using transparency effec-
tively, transfer functions can be designed that show important
features in a dataset throughout a volume. Interactive control al-
lows a scientist to weight the relative importance (usually tied to
an opacity level) of data values or features while exploring the
dataset.

In our work, we rely heavily on volume rendering techniques.
In fact, we use a multi-layer volume rendering approach, similar
to [2] to enable us to fully represent multivalued datasets. We
also make heavy use of transfer functions and provide interac-
tive controls that are tailored to our application domains.
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The key contribution of our work is a clear volumetric vector-
field representation that can be rendered interactively. Datasets
that can benefit from this representation are common in fluid
flow research and medical imaging. Our thread and halo rep-
resentation, shown in Figure 1, together with direct volume
rendering, provides clear visual indications of complex lin-
ear forms, depth relationships among multiple densely packed
threads, and changing data values along the length of the thread.
In this paper, we demonstrate that our threads and halos tech-
nique can be incorporated into a multi-layer volume rendering
scheme and displayed at interactive frame rates on modern con-
sumer graphics cards. We also describe the benefits of such an
implementation for our scientific collaborators.

In the next section we discuss related work. We then describe
our layered volume rendering framework, threads and halos, and
our interactive controls. Results for our two driving applications
are then presented and discussed along with some conclusions
from this work.

II. RELATED WORK

Below we survey relevant work in diffusion tensor field vi-
sualization, vector field visualization, and hardware-accelerated
volume rendering.

A. Visualization of Diffusion Tensor Fields

There are several approaches to visualizing diffusion tensor
imaging (DTI) datasets. Pierpaoliet al. [3] used a 2D array of
ellipsoids to visualize a 2D diffusion tensor field. To give a more
continuous visual appearance, Laidlawet al. [4] normalize the
ellipsoids. They also use concepts from oil painting, mapping
data components onto brush strokes and building up the strokes
in multiple layers, to represent more values in the data. None of
these 2D methods generalize well to 3D.

Kindlmannet al. [5] attacked the problem of obscuring data
points in 3D with a direct-volume-rendering approach: at every
data point they assign an opacity and color based on the under-
lying diffusion tensor dataset. However, it is still difficult to
pick out anatomically distinct regions of the brain and under-
stand their connectivity. The direct volume rendering portion
of our work is similar to this approach, but makes connectiv-
ity information more apparent by using a coloring and lighting
scheme based on diffusion magnitude and diffusion anisotropy
measurements.

Delmarcelle and Hesselink [6] introduced hyperstreamlines, a
method that captures all of the attributes of tensors along a path.
In our visualizations we represent the type of diffusion along a
path through color coding rather than a change in cross section
shape.

Several improvements to the basic concept of integrating
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Fig. 1. Interactive renderings of a human brain dataset. The renderings (top) show collections of threads consistent with major white-matter structures: IC=internal
capsule, CR=corona radiata, CB=cingulum bundle, CC=corpus callosum, diagrammed on the bottom. Components of the tensor-valued data control thread direction,
color, and density as described in the text. Direct volume rendering simultaneously shows the ventricles (labeled V) in blue for anatomical context.

Fig. 2. Left: a direct-volume-rendered layer showing regions with different diffusion anisotropy. Right: a thread layer showing both the anisotropy and diffusion
direction. The two layers are combined in the center image which shows significantly more information and requires little additional visual bandwidth.

paths along the principle eigenvector field were suggested in
[7] and [8], mainly to stabilize the propagation in isotropic re-
gions. Basseret al. [9] calculated the trajectories of neural
fibers in brain white matter that were generated from the dif-
fusion tensor field by integrating along the eigenvector with the
largest eigenvalue. Zhanget al. [10] used this method to gener-
ate streamtubes to visualize continuous directional information
in the brain. We extend Zhang et al.’s algorithm to continue
streamtubes through areas with planar anisotropy. In addition,
we filter the resulting paths into a densely packed thread volume
rather than representing them as polygonal models.

B. Visualization of Vector Fields

Of the extensive work on creating effective vector field visu-
alizations, the following two papers are most closely related to
our work. Interrante and Grosch [11] visualized 3D flow with
volume line integral convolution (LIC). As they demonstrated
with offline rendering, their visibility-impeding halos improve
depth perception and help make complex 3D structures easier to
analyze. Our technique builds on this work to produce a similar
effect interactively.

Zöckleret al. [12] introduced illuminated field lines to visu-
alize 3D vector fields. Our illuminated thread representation is
similar, but our volumetric rendering approach renders at a rate
independent of the tube or line complexity and combines with
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Fig. 3. Three thread volumes showing brain connectivity information (the front of the head points right). Shown without halos on the left, with halos in the center,
and after slightly shifting the halos away from the viewer to brighten the threads on the right.

our other volumetric layers to create visualizations that convey
more information.

Li et al. [13] presented a volumetric texture based method to
visualize 3D vector fields. They scan convert properties of the
streamlines into a volumetric texture and then use these proper-
ties to look up color and opacity information in an appearance
texture. Our approach differs in that our threads, while individ-
ually less visually complex, are much thinner and more densely
packed; we also represent data more complicated than vector
fields.

C. Hardware-Accelerated Volume Rendering

Cabralet al. [14] introduced a 3D texture approach for vol-
ume rendering using view-aligned slices that exploit trilinear in-
terpolation. In addition, we make significant use of hardware
texture compression to reduce texture memory consumption.

There are also several volume-rendering implementations
that make use of dedicated hardware [15] or distributed hard-
ware [16], that are capable of visualizing multi-valued volumet-
ric datasets.

Our multi-layer volume rendering is closely related to the
two-level volume rendering presented by Hauseret al. [2]. In
this scheme, the two levels are an object level and a global
level. Different rendering styles, such as direct volume ren-
dering, maximum intensity projection, or value integration, are
used for each level. Our system is based on the same concept of
rendering multiple volumes of information into the same visual-
ization space. However, we use separate volumetric datasets for
our layers of information, rather than classifying a single vol-
ume of data as either focus or context. In some cases our halos
and threads could be conceptualized as together forming afo-
cuslevel for the visualization with any additional direct volume
rendered layers forming thecontextlevel.

Kniss et al. [17] use interactive transfer functions operat-
ing on directional derivative values to select boundaries in
scalar-valued datasets. We use this technique to visualize our
scalar-valued datasets, although with less sophisticated interac-
tive manipulation widgets. In [18], multi-dimensional trans-
fer functions and dual-domain interaction are applied to multi-
variate meteorological data. They found, as we did, that multi-
dimensional transfer functions provide a powerful tool to ex-
plore multivariate datasets.

Lum and Ma [19] implemented a hardware-accelerated paral-
lel nonphotorealistic volume renderer that uses multi-pass ren-
dering on consumer-level graphics cards. Their system em-
phasizes edges or depth ordering using artistically motivated
techniques. Like Lum and Ma, we utilize multiple rendering
passes to enhance visual cues, but our rendering is targeted to
exploratory visualization of multi-valued data, which has signif-
icant implications for the interface, implementation, and results.

Stompelel al. [20] use nonphotorealistic (NPR) volume ren-
dering to more effectively visualize multivariate volumetric
data. They use stroke rendering to display a vector field simul-
taneously with a scalar field and produce several NPR effects,
including silhouettes. Their silhouettes help to emphasize depth
discontinuities just like our halos but will not work for features
as small as our threads because a reliable gradient cannot be cal-
culated.

D. Hair, Fur, and Thread Rendering

Several hair and fur rendering algorithms inspired our work.
Kajiya and Kay [21] introduced texels to render realistic-looking
fur. Kajiya and Kay also developed a Phong-like lighting model
for fur; our approach is similar but targets free-floating threads.
Instead of providing parameters for lighting, we store derived
values from the multivalued datasets along with tangent and
density values throughout the volume.

Lengyel [22] uses a volumetric texture approach to ren-
der short threads in real time. Unlike his short threads, our
data-defined threads remain individually distinguishable. Like
Lengyel, we use Banks’ [23] hair-lighting model but with a dif-
ferent implementation appropriate for volume rendering.

III. A L AYERED VOLUME-RENDERING FRAMEWORK

Our visualization framework has four steps. We begin with
primary multivalued volumetric data.
Calculate Derived Datasets. Since the primary data is often
difficult to interpret directly, our first step is to calculate derived
volumes of data with more intuitive interpretations. For exam-
ple, DTI datasets are second-order tensor fields. It is often use-
ful to decompose these into several scalar and vector fields to
reduce the problem of rendering a tensor field into one of ren-
dering several simpler fields.
Define Visual Abstractions. In the abstraction step, we group
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the data volumes into layers of visual representations that are
filtered into and stored in separate volumes. The most simple
abstraction is a straight mapping of a scalar value, such as speed,
to a volume. Threads are another abstraction that are good at
illustrating vector fields. Any conversion of the derived data to a
clearer visual representation fits into this step of the framework.
Map Data with Interactive Transfer Functions. The map-
ping step defines transfer functions that assign color and opacity
to the volume layers and shader programs that control lighting
parameters.
Visualize and Explore. In the final step of the framework, we
render the multiple volumes together in the same visualization
space and use interaction widgets to control the appearance of
each layer.

IV. T HREADS AND HALOS

Fig. 4. Black arrows illustrate the path of virtual viewing rays through a cross
section of a volumetric thread and halo. When the rays, coming from the
viewer’s perspective, pass through part of the dark halo volume before reach-
ing the red thread, the resulting color is a darker red than when the halo volume
is shifted away from the viewer (the bottom case).

We represent continuous directional information using
threads. We densely populate the volume with threads so as to
represent as much of the underlying data as possible. To clarify
individual threads, we add a “halo,” modeled after those pre-
sented by Interrante and Grosch [11]. Compare the images in
Figure 3 to see the depth clarifying effect of using halos with
the threads.

The threads and halos are each stored in a volume texture
that is precomputed. There is exactly one halo in the halo vol-
ume for each thread in the thread volume. Each halo follows
the same path as its thread but has a slightly larger radius. Fig-
ure 4 demonstrates how the halos extend beyond the sides of the
threads when rendered to obscure any geometry behind them.

Unfortunately, the halo also slightly obscures the thread from
a frontal view. This has the effect of darkening the thread rather
than completely hiding it since the halo is semi-transparent and
there is only a small amount of it in front of the thread. This is
seen in the darker, middle image in Figure 3. We compensate for
the darkening effect to produce images like the one on the right
of the figure by shifting the entire halo volume so that there is
less halo between the thread and the viewer.

Fig. 5. Filtering a thread into a volume (2D view). For each voxel within a
radius of two voxels from a thread, we use the shortest distance to the thread as
the input to the filter (at right). The grid on the left and the horizontal axis on
the right both show single-voxel spacing.

Fig. 6. Filtering a halo into a volume (2D view); red depicts the thread and
black the halo around it. The red curve is the filter for the thread and the black
curve is the filter with which the halo is generated. The grid on the left and the
horizontal axis on the right both show single-voxel spacing.

As illustrated in Figure 4, the virtual viewing rays that pass
through only the halo on the silhouette of each thread will pro-
duce a black color. If a portion of the halo exists in front of the
thread with respect to the viewer, as in the top of the figure, then
the viewing ray passing through this area will produce a color
partly saturated with red and partly with black, resulting in dark
red. If the halo is offset away from the viewer at a distance of
one voxel, then the viewing rays pass through far less, or none
in the case of the middle ray, of the halo volume before reaching
the red color of the thread. The result is a brighter red color for
the thread.

The threads and halos are filtered into volumes using a cubic
B-spline filter that has a support of four voxels for the thread (see
Figure 5) and six voxels for the halos (see Figure 6). Since the
threads and halos are represented in volumes, the rendering time
is independent of the number of threads displayed. However,
the diameter of the threads is limited by the resolution of the
volume.

Lighting for the threads is calculated using a restricted version
of the lighting model in [23], which defines intensityI as

I = kdIt
(√

1− (T ·L)2
)p

+ks

(√
1− (T ·H)2

)n
(1)

HereIt is the combined output color from the transfer func-
tions, T the tangent,L the light vector,H the vector halfway
between the light vector and the view vector,n the specular ex-
ponent,p the excess-brightness diffuse exponent, andkd and
ks the diffuse and specular contributions respectively. Our re-
stricted lighting model assumes directional lighting and a con-
stant halfway vector for the entire volume.

We have implemented several thread lighting models, includ-
ing those of Kajiya and Kay [21], and Banks [23] with excess
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Fig. 7. A sequence of renderings of a thread density volume with increasing length threshold from left to right. The rightmost image shows only long threads.

brightness exponents ofp = 2 and p = 4. Kajiya and Kay’s
lighting model is similar to a Banks model withp = 1. Banks
actually uses a value of around 4.8. With a small exponent, the
threads become brighter and the lighting is less dramatic. We
found p = 2 to be a good value for our applications and also a
speedy one, since it does not require a square-root calculation.

V. L AYERING VOLUMES

Our volume-renderer implementation uses a single stack of
view-aligned texture-mapped slices, rendered back to front and
blended with weights 1−α andα. Each slice is rendered mul-
tiple times, once for each volume layer. Layers of each slice are
also blended with the weights 1−α andα. We render our direct
volume rendered layers first, the halos second, and the threads
third. For our applications, this is equivalent to rendering the
layers in the order of the scale of their largest structures. The
direct-volume rendered layers tend to reveal large structures and
surfaces that are easy to make out underneath the more finely de-
tailed thread and halo layers. Our intuition is that in most cases
this represents an acceptable heuristic to use when determining
layer ordering.

For direct volume rendered layers, a Phong lighting model
(Eq. (2)) is used. As in the thread lighting model described
above,It is the combined output color from the transfer func-
tions,N is the normal,L the light vector,H the halfway vector,
ka the ambient contribution,kd the diffuse contribution,ks the
specular contribution, and n the specular exponent:

I = kaIt +kdIt(N ·L)+ks(N ·H)n (2)

Visualizing multiple layers of volumetric data requires an ex-
tensive amount of texture memory. We utilize the OpenGL ex-
tension ARBtexturecompression, which provides a 4:1 com-
pression ratio. Thus, a 2563 eight bit per channel RGBA texture
can be reduced from 64MB to 16MB. With this scheme, we can
fit the multiple volume textures required in memory on com-
modity graphics cards.

VI. EXPLORATORY CULLING AND TRANSFERFUNCTION

MANIPULATION

Interactive editing of transfer functions has become common-
place in volume rendering applications. We describe several ap-

Fig. 8. The interactive exploration tool. Clockwise from upper left are a 2D
barycentric widget, a 1D widget, a 2D Cartesian widget, and a 2D Cartesian
culling widget.

plication specific transfer function modes in the following sec-
tion.

Exploratory culling applies a transfer function to an entire
thread and halo based on attributes of the linear structure it rep-
resents. This is the approach that Weiet al. take in [24] to cull
discrete particle tracks based on the track’s energy. Doleischet
al. [25] introduce a more general framework in which degree-
of-interest functions are defined to perform similar tasks. In our
approach the entire thread and its halo are classified according to
a metric i.e. thread length which is mapped to a 0. . . 255 domain.
Every voxel in the data volume belongs to one class of threads.
The cost of classifying the threads and halos for this example
is an additional byte per voxel and a 1D transfer function that
takes up 256 additional bytes of texture memory.

In our brain visualizations, both long and short threads are im-
portant and provide different types of insight into the data. We
use this culling feature to interactively select a subset of threads
to display based on their average diffusion rate or their length,
as seen in Figure 7. This approach is a significant advance over
the state of the art in this application area. Similar culling in
Zhanget al.’s [26] approach required an entire preprocessing
step taking between several minutes to several hours.

We provide several on-screen widgets, shown in Figure 8, to
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control transfer functions of the form 1D, 2D, and 2D barycen-
tric. Colors are manipulated within the hue, saturation, value,
and transparency (HSVα) color space. For the 1D and 2D trans-
fer function widgets, color and opacity can be controlled inter-
actively along each axis. In the multidimensional cases, the col-
ors of the axes are averaged, while the opacities are combined
multiplicatively. In our informal trials, these combination meth-
ods seemed most intuitive. The 2D barycentric manipulation
widget, shown in the top left of Figure 8, is ideal for the brain
visualization application since the space maps naturally to the
anisotropy metrics defined in [27].

VII. N EUROIMAGING RESULTS AND DISCUSSION

Our neuroimaging data are acquired using magnetic reso-
nance imaging (MRI) and are of two types: second-order tensor-
valued water-diffusion-rate images and scalar-valued anatomi-
cal images. At each point in a volume, the tensor-valued data
capture the rate at which water is diffusing through tissues. That
rate is different in different areas – in regions of pure fluid, it
is fast; in tissues like bone, it is slow. The rate of diffusion can
also be directionally dependent, particularly in fibrous tissues
like axon tracts and muscles, diffusing more quickly along the
fibers than across them. The scalar-valued data are typical T2-
weighted MR images.

Within the second-order tensor field measuring the water
diffusion rate, each valueD is a symmetric tensor with real,
positive eigenvalues. FromD we derive several other mea-
sures. First, three scalar anisotropy measures introduced by
Westin [27],cl , cp, andcs, describe how close to a line, a plane,
or a sphere the corresponding ellipsoid shape is for a given mea-
surement. Second, the trace ofD, Tr(D), is equivalent to the
sum of the eigenvalues ofD and gives a scalar measure of the
overall diffusion rate. Third, the gradient of the trace,∇Tr(D)
and its magnitude,|∇Tr(D)|, describe how the diffusion rate is
changing and in what direction; we use these quantities in light-
ing calculations for the direct volume rendered layer i.e. in Fig-
ure 2.

The fourth category of derived data is a set of threads and ha-
los through the tensor field that represent the directions of diffu-
sion. These are calculated and distributed within the volume as
described by Zhanget al. [10][28][26]. They follow the direc-
tion of fastest diffusion in linear regions. In planar regions, they
stay within the plane formed by the major and medium eigen-
vectors, following whichever is more consistent with the path to
that point. They are not present in isotropic regions.

From the T2-weighted image scalar field we derive the gra-
dient of the value and the gradient magnitude, which help de-
fine how fast the value is changing and in which directions. We
use these quantities in lighting calculations. We also derive the
second directional derivative to help define boundaries between
homogeneous regions.

Figure 9 shows the mapping from the scalar- and tensor-
valued volumes onto a direct volume rendered layer, a thread
layer, and a halo layer as seen in Figure 8. The first layer di-
rectly renders the T2-weighted image. The hyper-intense ven-
tricle regions were selected by interactively editing two transfer
functions that are combined multiplicatively to yieldα values
for the layer. Color is specified only through the transfer func-
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Fig. 9. A data-flow diagram of the rendering setup for Figure 8.

tion controlling the T2 image value and the gradient magnitude.
The second layer renders halos for the threads, and the third

layer renders the threads. The visible portions for these lay-
ers are interactively selected via three criteria. First, a transfer
function maps the anisotropy metrics to anα value. For this ren-
dering, areas of all types of anisotropy are shown. Second, each
thread and halo can be selected via exploratory culling based on
the thread’s length and on the average diffusion rate along it. In
this rendering all threads are shown. Third, the thread density is
provided directly by the precalculated thread volume. Likewise,
halo density is provided directly by the halo volume. Each of the
results for this dataset is rendered with 2563 volume textures.

Our neuroscientist collaborators gained several insights into
their data through these visualizations. Figure 1 shows detail of
a diffusion dataset from a normal volunteer. A number of large
white-matter structures are clearly visible, including the corpus
callosum, internal capsule, corona radiata, and cingulum bundle.

Figure 2 shows a dataset from a patient with a brain tu-
mor. Direct volume rendering captures the tumor as an opaque
mass and threads show the diffusion direction and variation in
anisotropy around it. Note the cradle of threads surrounding the
tumor. Using this exploratory visualization has enabled our col-
laborators to discover a relationship between the different types
of anisotropy around tumors. In particular, there is a notable in-
crease in planar anisotropy (shown as green) in the area around
the tumor [29].

VIII. S IMULATED BLOOD FLOW RESULTS AND

DISCUSSION

Our second scientific application involves simulated fluid
flow data on incompressible flow through an idealized model
of a bifurcating coronary artery. We have been studying how
the flow structure is related to atherosclerotic lesion formation.
Lesions tend to form just downstream of branches. They form
on the wall of each branch opposite the exit point of the other
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Fig. 10. Simulated flow, from right to left, through a model of a branching
coronary artery. Several complex structures can be seen, including reversal of
flow direction, as illustrated by the blue-haloed threads in the side branch im-
mediately downstream from the bifurcation. The semi-transparent white shell
represents vorticity magnitude and gives near-the-wall context for the threads.

branch. We hypothesize that upstream flow structures may pro-
vide important insight into why this happens. Our renderings
depict one time-step of the simulated, pulsatile flow.

The primary data for this application area is a 3D velocity
field. From this, a number of quantities are useful to derive.
Speed is one. Another is vorticity, a vector field, that is a com-
ponent of the first derivative of the velocity and captures the lo-
cal rotational component of the flow. The vorticity vector points
along the axis of rotation and its magnitude indicates the rate of
rotation.

Figure 10 shows an idealized model of a branching coro-
nary artery. Flow is from right to left, starting in the open end
and proceeding down the main artery and into the side branch.
Haloed threads, colored according to speed, are rendered to-
gether with a diaphanous shell showing relatively low-vorticity
regions. A more opaque pink section right at the point of bifur-
cation shows the region of highest vorticity.

The same flow is rendered in Figure 11. In this image yel-
low threads show vortex lines integrated through the vorticity
vector field. The semi-transparent purple form shows low-speed
regions.

These two images together show important flow features not
seen with other visualization methods, including near-wall kinks
in vortex lines and localized looping structure in the vorticity.
The interactive lighting in this visualization helped to make the
correlation between these features more apparent to our collab-
orators. The kinks tended roughly to fit into the upstream edges
of separation pockets evident in velocity images. Both of these
datasets were rendered with 2563 volume textures.

Based on the results of these visualizations, we attempted to
create an even more compelling visualization of the correlation
between velocity and vorticity by layering velocity and vorticity
lines together in the visualization in Figure 12. This visualiza-
tion has two separate sets of thread and halo volumes. To fit
both sets of threads and halos in texture memory we had to crop
the volume size to 256×256×128. Visualizing the two vector

Fig. 11. Integral curves through the vorticity vector field together with the
velocity magnitude field for the flow illustrated in Figure 10. These vortex lines
give additional clues to the flow structure, particularly in areas where it curves
and changes speed.

Fig. 12. Integral curves through both the velocity (yellow and green) and vortic-
ity (purple and pink) vector fields for the same flow as illustrated in Figure 10.
Correlations among these vector fields can represent important flow structures.

fields simultaneously clarifies correlations among features quite
dramatically. This mass of complex linear flow structures is dif-
ficult to interpret without the aid of the depth cue enhancing
halos.

Typical rendering rates for both of our application areas are
four to five frames per second. Clipping planes help isolate re-
gions of interest and increase the frame rate so that zooming in
on those sections does not significantly slow rendering rates. In
most instances, close to a one frame per second reduction in the
frame rate can be seen for each additional volume layer that is
rendered.

IX. CONCLUSION

In this paper we present a novel technique for generating and
interactively rendering a thread and halo representation for mul-
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tivariate datasets that include some fields with important linear
features, such as flow lines. This work was motivated by re-
cent advances in graphics hardware, volume rendering, halo and
other art-based rendering effects, and hair lighting models. In
addition to presenting our approach to interactively volume ren-
der thin threads with halos, we also present a successful fusion
of these varied recent research results in the form of an appli-
cation motivated by multiple scientific problems. This is an im-
portant secondary contribution of our work.

We have been driven in our exploration of these concepts by
our collaborations with scientists in both of our application do-
mains. Feedback from both groups indicates that they find our
interactive volume renderer effective in exploring both kinds of
multivalued datasets. Currently these data are often not well
understood and exploring them will lead to new scientific hy-
potheses and insights.
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