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INTRODUCTION

Human visual perception is largely a
top-down process with a cognitive
model actively driving foveated vision
in a repetitive "scanpath" over
subfeatures of the scene or picture of
interest to check on and modify or
change the working hypothesis. An
image processing scheme for robotic
vision has been developed based upon
this metaphor.

Visual search has random elements but
these are often minimal in real work
cases so that searchpaths or scanpaths
can Dbe demonstrated  There under
controlled visual display conditions.
Again, artificial computer vision,
based upon a multiple adaptive matched
filter algorithm, appears to be a
reasonable engineering design. Use of
computer search aids in defining human
visual search processes.

Spatial displays for human controllers
acting in manual control modes, in
supervisory control modes, or as
interpreters of visual direction need
to be designed with careful attention
to human visual processes. Visual
enhancements with symbolic and analog
elements can be shown to be of
practical use as documented by
quantitative performance tests.
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Underlying neural mechanisms for
visual processing are of considerable

interest as scientific objects in
their own right, as metaphors for
artificial neural networks for

artificial intelligence connectionist

get-rich-quick schemes, and to
illuminate behavior studies that
depend upon these lower level
processes. Motion detection was

stimulated by the early Reichardt-
Hassenstein work in the first
cybernetic revolution in the 50's and
now has spawned a set of expanded
reichardt models. The founders of
this area, Warren McCulloch and Walter
Pitts, propounded not only the formal
neuron and the neuro-anatomically and
neurophysiolocally based model for the
control of eye movements. We are now
studying possible networks for blur
detection and the control of
accommodation, the focusing mechanism
of the human eye.

The following abstract of our panel
discussion area is largely depicted in
the figures and the figure legends.

We look forward to a stimulating
interaction among the panelists and
between the panelists and the
audience.



1. SCANPATH VISION AS A METAPHOR FOR
MODEL CONTROL OF IMAGE PROCESSING

Evidence for repetitive sequences of
saccades was presented by Noton and
Stark (1971) who used this serial
process to develop a top-down theory
that postualtes a sensory-motor schema
or cognitive model that controls
active looking. Further studies by
Stark and Ellis (1981) showed that
when only the mental states of a
subject changed, as while looking at
an ambiguous figure, the scanpath
changed; Brandt and Stark (1990, in
preparation) used imagined figures to
demonstrate that similar scanpaths
occurred even when a blank screen was
observed.

FIGURE 1: Scanpath Theory for Top-
Down Human Vision

Human visual perception is largely a
top-down process with a cognitive
model actively driving foveated vision
in a repetitive ‘"scanpath" over
subfeatures of the scene or picture of
interest to check on and modify or
change the working hypothesis. (Stark
and Krischer, 1988).

2. MATCHED FILTERS AS A MODEL FOR
VISUAL SEARCH

FIGURE 2: Top-Down Image Processing
for Robotic Control

2D projection of _-obot model with
superimposed ROI's to direct image
processing (upper left); frame-
grabbber view of robot showing 2 on-
the-scene visual enhancements to ease
thresholoding operation (lower right);
several image processing algorithms
operating within the ROI's, including
sobel operators, thresholds, these
combined and centroids with heavy
crosses superimposed (upper right);
sequencing of successive and
repetitive scanning of ROI's, updating
model in similar fashion to human
scanpath (lower left). (Stark, Mills,
Nguyen, Ngo, 1988)
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FIGURE 1: SCANPATH
MECHANISM FOR TOP-DOWN
VISION

FIGURE 2
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FIGURE 3: Adaptive Matched Filters

Shaping by modification of filters by
accepted waveforms with filters
closely approaching data vectors
(upper panel); threshold for
acceptance increases as filter forms
so as to protect memory; note
exclusion of data vector 2 from MF B
and new MF A forming (left lower
panel); results after presentation of
real ECG data; note here noise is only
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rather than gaussian white noise above
(lower right); as threshold parameters
change so also does final
classification in this adaptive phase
and consequently identification or
diagnosis in non-adaptive recognition
phase. (Stark, Okajima, Whipple, 1962)
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FIGURE 4: Learning Without a Teacher

Adaptive matched filters forming in
feature space, a 31 dimensional space
(upper panel); after full division of
space adaptive phase switches to fixed
recognition phase (lower panel);
compare important parameters
representing thresholds, convergence
limits, etc. in this space vis-a-vis
descriptions of same adaptive
processes depicted in Figure 3.
(Okajima, Stark, Whipple, and Yasui,
1963)
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FIGURE 5:

2D Matched Filter Search.

Composite template first recognizes
all instances, and then later
individual templates-matched filters
identifies particular postures of toy
robots; additive salt-and-pepper noise
makes correlation task more difficult
(upper right); cross-noise (lower
left) places an even greater burden on
cross-correlation matched filter
discrimination process; indeed we have

developed a pre-filter to help visual
search in spite of this obstacle;
clutter-noise, defined by close
resemblance to target, is of course
the severest burden (lower right), so
that simple signal processing filters
cannot aid in the discrimination task;
however matched filter scheme manages
to overcome difficulty. (Huy and
Stark, 1990, in preparation)

415



A00XN tlee 7:6. 70504

o A\ctutes0 Fo v £

stra:20

FIGURE 6:

experimental human search of 2D non-
naturalistic scenes.

Search patterns found in

Note that unguided patterns in naive
observers followed rather regular
patterns often reminiscent of reading
em patterns. Social evolution of
printed page likely followed natural
em patterns. Also resemblance to
formal search theoretic patterns
developed in beginning of operations
research in airplane hunts for
submarines. P{d[ was generally fairly
high. See also Kraiss with suggestion
from modeling of experimental studies
that if P[d] was low then random
search performed as well as patterned
search. (Yamishita, Tharp and Stark,
1990, in preparation)
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FIGURE 7: Search paths
experimental human
naturalistic scenes.

found in
search of 3D

Note the scanpath -like quality of the
path and also the repetitive nature.
Operational definition of naturalistic
is suggested by the evidence for
familiarization and memory effects
with repetitious presentation of the
same scenes and of the same locations
of the targets, respectively.




3. ENHANCEMENTS FOR SPATIAL DISPLAYS
AND PERFORMANCE
ENVIRONMENTS

IN

VIRTUAL
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FIGURE 8: On-the-Screen Visual
Enhancements.

In our robotic control scheme we have
a model of the robot and its commanded
position and attitude; thus it is
possible to superimpose a computer
graphics outline of an important part
of the robot, forearm and gripper
(upper panel) together with its
projection on the horizontal floor;
the reference line connecting these
has been demonstrated by us to be a
most useful visual enhancement in a
number of performance studies. The
horizontal projection can be elevated
off the floor to the level of the work
piece (lower panel) and a plan grid
added as an additional visual
enhancement. Indeed these computer
graphics enhancements not only
importantly supplement the video
picture, but are actually sufficient
and efficient without the video
picture for adequate control; consider
the extreme reduction in communication
bandwidth when model parameters are
transmitted rather than video images!
(Kim and Stark, 1989)



PIN PLATrOEM

FIGURE 9: 3D Positioning Task

Cylindrical object (upper) has to be
oriented and inserted over large pin
(lower left) and then also fitted onto
curved platform (lower right) by a
series of careful repositioning and
reorientation maneuvers; necessary 3D
depth information can be provided by a
true stereo image generated by
computer graphics and displayed to
right and left eyes on human operator;
it may also be possible to provide
depth illusions by rotation of the
cylinder or wobbling of the task
setting. Stereo has been demonstrated
to be a robust and important aid to
tele-operations; the rotational motion
parallax has not improved performance
with or without co-existing stereo.
(Hirose, Liu, and Stark, 1990, in
preparation)
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4. UNDERLYING NEURAL MECHANISMS FOR
VISUAL PROCESSING
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FIGURE 10: Reichardt and elaborated
Reichardt models for velocity
detection.

R is original Reichardt model (1961),
a key feature is the non-linear
element; elaborated models, A & B by
Adelson and Bergen (1985), S & S by
van Santen and Sperling (1985), and W
& A by Watson and Ahumada, Jr. (1985),

modify by extension for particular
purposes various 1input, output and
intermediate elements to satisfy
modeling requirements of actual

experimental data; the core principles
remain the same.
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FIGURE 11: Non-Random Neural Model

Note severe constraints placed upon
model by knowledge of connectivity,

neuro-anatomy, and functional
relations of various local and more

global elements of model. It may be
that constraints in real central
nervous systems enable function;

absence may make random generation of

function unlikely in modern-day
connectionist networks. (McCulloch and
Pitts, 1947)



PANELISTS* AND THEIR CO-AUTHORS

*Lawrencé W. Stark is a Professor of
Engineering Science and of
Physiological Optics at Berkeley; his
interests range from neurological
control of movement and human vision
to engineering autonomous robots
requiring supervisory man-machine
monitoring via virtual environments.

*Stephen Ellis both teaches at
Berkeley and at NASA-Ames Research
Center as a Group Leader in the design
of Spatial Displays and Spatial
Instruments based upon knowledge of
human visual performance.

Michitaka Hirose, a Professor of
Mechanical and Information Engineering
at the University of Tokyo, has just
completed a sabbatical year exploring
virtual environments and some real
environments at Berkeley.

Won Soo Kim has contributed to our
knowledge about appropriate visual
display enhancements to make possible
human control of robots and is now
developing these methods in space
robotic applications.

*Andrew Liu is exploring use of stereo
and motion parallax clues in
quantitative experiments based upon
actual performance measures.

*Charles Neveu 1is interested in
application of neuronal models to
understand visual mechanism such as
blur detection, wused to control
complex accommodative focusing
functions.

Huy X. Ngo has recently concluded
studies in 2D matched filter wvisual
search algorithms that enabled
definition of such elements
operations as '"clutter-noise" and

and

hierarchical search with detection
preceding recognition and
identification.

*An H. Nguyen has developed an
ingenious '"model controlled image
processing scheme" based upon the
metaphor of the top-down human
scanpath theory. It has been

demonstrated to be efficient in
practical control of toy-robots as

well as providing efficient image
compression for low band-width
communication. He has also studied

human accommodation from a control
theoretics point of view.

Greg Tharp studied human stereo
performance and developed a model for
directional errors in artificial
displays. More recently he has led a
group in developing a computer
graphics matrix for both autonomous
control of robots with ccd camera
visual feedback and as well providing
for ease of display to supervisory
human operators.

Iris Hitomi Yamashita has recently
completed an exciting study of human
visual search that has provided
evidence for search patterns related
to reading eye movement patterns, but
more free of the structure of the
display pattern itself and search
patterns related to scanpaths, a top-
down repetitive sequence of localized
gaze movements to check upon details
of guessed scene, figure or object.
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