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Abstract

We present SciVL, the Scientific Visualization Modeling Language,
a new way to describe scientific visualizations of multivariate, two-
dimensional datasets. Our goal was to create a language with which
a user could rapidly prototype complex and precise data-driven vi-
sualizations as well as facilitate their modification during the iter-
ative design process. Our language can combine three types of ba-
sic visual elements: discrete icons, color planes, and streamlines in
layers. A text file fully describes the resulting image and controls
the different elements’ layering, appearance, relative locations, and
spacing, including the mapping assignments of any of these charac-
teristics to data variables. In addition the language supports exten-
sions to include other basic visual elements and to accommodate 3D
data. An interdisciplinary scientific visualization course that syn-
thesized the efforts of computer scientists as well as graphic design
and illustration students inspired us to choose the three basic types
of visual elements. A review of graphic design literature and feed-
back from expert visual designers provided us with an anecdotal
evaluation of our design’s adequacy for the visual language. We
have applied our language to fluid flow and polarimetric radar data
visualizations. These visualizations elucidated some issues in our
framework, such as limited handling of different types of 2D data
and the perceptual efficacy of our icon- and streamline-placing al-
gorithm. In sum, the visual language we present, in conjunction
with the simple text interface used for generating the visualiza-
tions, accomplishes our primary goal of providing a way to quickly
describe and modify complex data-driven visualizations for two-
dimensional, multivariate datasets.

1 Introduction

1.1 Motivation

One of the main challenges facing those in the field of scientific vi-
sualization is the length of the development process. Like a software
engineering project there are design, implementation, and evalua-
tion phases, but for visualizations this process is nested. First the
programmer, the scientist, and the designer must work together to
choose informative, visually pleasing, computationally feasible “vi-
sual elements.” We use the term visual element to mean a graphic
used in the visualization, such as “A semi-transparent gray trian-
gle to show velocity, with area tied to speed and orientation to di-
rection” or “A plane that is transparent where pressure is below a
threshold and otherwise red, where saturation varies based on the
pressure value.”

Once these have been selected the programmer must go through the
normal development cycle to produce a system that creates output
images. Then all three get back together to review the results and,
almost certainly, iterate on the whole process.

Rapid prototyping is a natural answer to this problem: if users can
swiftly and easily create prototype visualizations without the long

development process then they will converge on a solution much
faster.

A second impetus for this work was our desire to “optimize” visu-
alizations. We observed that, with the ability to represent a visual-
ization as an abstract data object, we could use traditional optimiza-
tion algorithms, like genetic algorithms. Optimization would allow
us to answer questions like “What is the best way to show velocity,
vorticity, and pressure in one image?” or “Is binding color to one
variable and transparency to another an effective way to show two
independent variables?”

1.2 Goals

Given these motivations we decided to create a language that would
describe visualizations.

For rapid prototyping we determined that the language must be sim-
ple, expressive, and flexible. Simple so that users would not have to
learn complicated syntax to design a visualization, expressive so a
wide variety of visualizations are possible, and flexible so it is easy
to make modifications to an existing file.

For optimization we wanted the language to be hierarchical and also
break down in to small “genes.” The hierarchy would allow easy
“crossover” operations when running the genetic algorithm (swap-
ping a portion of one visualization in to another). Breaking down
each component of a visualization in to a gene is crucial to allow
fine-grained optimization.

We also wanted the language to lead us towards a great understand-
ing of how to do “good” multivariate visualizations. Ideally the lan-
guage would allow us to determine which visual elements work
well together to show different data variables.

1.3 Our Approach

Given these design goals we developed SciVL: The Scientific Visu-
alization Modeling Language, which provides a way to abstract the
representation of a visualization. With the ability to represent vi-
sualizations as simple text files, designers could rapidly prototype
their solutions by creating a SciVL file that describes their desired
visual elements. Then they would supply this file and a dataset to a
rendering engine, producing a prototype image.

SciVL would allow optimization since its whole purpose is to be an
abstract representation of a visualization.

Currently, SciVL is only used for 2D visualizations, but the lan-
guage itself has the features necessary for three dimensions.

1.4 Related Work

A number of authors have investigated and classified the basic ele-
ments of a visualization in different ways. Bertin[1] and Tufte[2, 3]



present, in similar ways, examples of successful and unsuccessful
information visualization displays. They go further and analyze the
reasons and, in the case of Bertin, present an initial set of visual
elements and features that can be tied to data variables to represent
information. Our classification is based, in part, on these authors’
findings.

Cleveland et al.[4] include a classification of perceptual tasks that
viewers of the visualizations need to perform to extract information
from them. Indeed, the design process must be informed by the ul-
timate goal of the visualization. Our current implementation does
not explicitly include design rules that trigger changes in the visu-
alization depending upon the task at hand. The overall design of the
language has been made so these kinds of rules could be included.

Our list of visual features for each type of element has been based,
not only on feedback from expert designers and graphic design
literature[5], but also on a compilation of the most common visual
features researchers in computer graphics and visualization have
used to represent visual information. Some of the most relevant
work has been made by Interrante[6] and Taylor[7]. They defined
textural features to represent data variables and explored ways to
synthesize those textures based on their color, transparency or den-
sity. Our layers can be seen as individual overlapping textures repre-
senting information. The visual features try to capture the flexibility
and expressiveness accomplished by Interrante and Taylor.

Ware[8] compiled visual perception and graphics to generate in-
formation visualization displays that optimally exploit the capa-
bilities of the human visual system. SciVL tries to avoid a large
“space” of possibilities by minimizing the number of styles and vi-
sual elements–without losing representation power.

One of the boons of collaborating with design and illustration ex-
perts was their feedback on any omissions in visual elements or any
redundancy in the styles specified in our language.

Visualization systems have been created to allow scientists to de-
sign and test their own data visualizations. The basis of most of
the systems is not perceptual optimality, but rather user flexibility
to try different designs quickly. Interactive GUIs are used to help
bind data variables to the available visual elements. Glyphmaker[9]
is a tool that allows users to create their own complex icons with
variable binding.. Our set of tools for the user is more limited but
we believe it to be sufficient, until formal studies evaluate their full
potential. As far as we could tell, however, streamlines and color-
planes do not appear in GlyphMaker.

AVS[10] goes even further by presenting the user with pro-
grammable modules that the information travels through. The mod-
ules form networks that ultimately represent the visualization de-
sign. Our text description of the visualization also contains com-
plete information to generate the final image and requires no pro-
gramming knowledge. Our current language and rendering system
are not as sophisticated as AVS or similar packages, but their sim-
plicity of use and expressive power will be shown through our initial
results later in this paper.

1.5 Paper Organization

In Section 2 we will discuss in detail our methods, including the
design of SCiVL and the rendering system. In Section 3 we will
present our results and discuss how the system meets our goals and
also provide anecdotal feedback from users. Then in Section 4 we
will look at work in progress and future work that leverage the ad-
vances made by SciVL. We end in Section 5 with our conclusions.

2 Methods

We focus on how the language describes a visualization.

A SciVL file uses an arbitrary number of layers to build up a vi-
sualization. There are three different layer types: icon, colorplane,
and streamline. Each layer defines some number of visual elements
that will be used to visualize the dataset. During rendering, all the
layers are composited together to produce the final image, as shown
in Figure 1.

2.1 Values: Specifying “Numbers”

When reading about these layers it is important to realize that the
properties we will mention are not given number values but instead
one of three more abstract values: constant, random, or data-driven.
A specific visual element will likely have many instances (appear
many times) in the final visualization. The SciVL file determines,
for each property of the element, if that property is constant, ran-
dom, or data-driven across each instance. We now look at this idea
in more detail.

A constant value is the simplest: a number is directly specified in
the file and is used for each instance of the visual element. In the
following example, the width of the border for the icon will always
be two units:

BORDER WIDTH Constant 2.0

A random value specifies a range of possible values, to be sampled
uniformly. In this example the border width will randomly vary be-
tween 1.0 and 3.5 units for each instance:

BORDER WIDTH Random 1.0 3.5

A data-driven value can be used in two different ways. The first is to
sample the specified data variable at the icon’s location and use the
resultant number. In this example, the underlying data is a gradient

Figure 1 An example of the layering system. The SciVL file specifies the
visual elements in each layer and whether the properties are constant, random,
or data-driven. Then the rendering system composites the layers to produce
the final image.



Figure 2 Border width realized using four different “values.” The upper left image uses a constant, the upper right a random value, and the bottom two use a
gradient variable. The dataset used is a gradient ranging from zero at the left to one on the right.

that ranges from 0.0 on the left to 1.0 on the right. Thus, the width
will vary between 0.0 and 1.0 among the instances placed across
the image.

BORDER WIDTH Variable gradient

The second syntax allows the data variable to be “scaled” in to a dif-
ferent range instead of directly using the number sampled from the
data. This final example specifies that width should be dependent
on the gradient but instead of using the sampled number it should
be scaled in to the range [1.0, 5.0]:

BORDER WIDTH Variable gradient 1.0 5.0

The four resulting images are shown in Figure 2.

There is a minor subtlety to consider when dealing with values,
however. There are two types of properties in a SciVL file, those
that require a value between zero and one (“normalized”) and those
that accept any number. Transparency, for instance, must be nor-
malized while border width need not. Therefore, when a value is
specified for a normalized property it must be sanity checked by
the engine. This simply means that a constant and the random/data-
driven ranges must be within [0, 1].

Figure 3 Icons created by the example files.

2.2 Icon Layer

An icon layer consists of an arbitrary number of icons and fully
describes the “look and feel” of each one by providing values for

Figure 6 Vorticity visualized with red (clockwise) and green (counter-
clockwise) circles. The size of the circle is proportional to the magnitude of
the vorticity. Failures are used to prevent the icons from appearing when the
magnitude is very low. Instead of having the icons simply disappear, creating
a false threshold, transparency allow the icons to gradually fade out.



Figure 4 Different discrete icons.

Figure 5 The basic properties of an icon controlled by SciVL. The left image shows color changing, specfically saturation. The middle image shows orientation
and transparency, and the right image shows texture. Again we use a gradient dataset.

the many properties of an icon. The features of an icon that control
its size and shape are: path, size, and shape. The path is simply a list
of points that the icon will “follow” when it is rendered, forming
the “spine” of the icon. This controls the size of the icon in one
direction. The size value controls the size of the icon in the other
direction. Shape is one of rectangle, triangle, ellipse. Consider the
following examples (note this is not actual SciVL syntax):

PATH (0, 0) (5, 0)
SIZE 2
SHAPE rectangle

PATH (0, 0) (3, 0) (2, 3)
SIZE (3, 0)
SHAPE triangle

The resulting icons are shown in Figure 3. More complicated icons
are seen in Figure 4.

Note that each point on the path is treated as an offset from the point
preceding it. Also, a triangle has two sizes, one for the base width
and a second for the tip width.

An icon has traditional visual attributes: color, transparency, tex-
ture, and orientation. Examples are shown in Figure 5.

There are two properties of an icon that relate to the rendering al-
gorithm: Poisson area and failures. Poisson area controls how close
the icon can get to another icon in the same layer. This property
allows icons to range from a high degree of overlap to wide separa-
tion. See Figure 7 for examples.

Failures specify certain areas of the visualization that an icon should
not appear in, causing icons to gradually become fully transparent
as they approach areas in the image where they are no longer useful.
There is no need, for instance, to show a turbulent charge icon when
pressure is very small, as shown in Figure 6.

Finally, an icon can have a border which has three properties: width,
color, and transparency. These are shown in Figure 8.

2.3 Colorplane Layer

A colorplane is a simple construct which allows continuous regions
of color in a visualization. A colorplane is created by uniformly tes-
sellating a plane with many vertices. The SciVL file is responsible
for controlling the appearance of each vertex by specifying: failure,
color, transparency, and texture. If a texture is activated then it is
stretched so there is no repetition. Then the SciVL file is consulted
to determine the color and transparency for each vertex. The failure
condition acts the same as it did for an icon; when the condition



Figure 7 These images show different Poisson areas for an icon. In the upper left icons are uniformly close together and in the upper right they are uniformly far
apart. In the bottom left they are spread apart in x but close in y and vice versa in the bottom right.

Figure 8 The three properties of an icon’s border: color, transparency, and width.

is met the colorplane gradually becomes fully transparent. Color-
planes are showin in Figure 9.

2.4 Streamline Layer

A streamline allows long, continuous visual elements without hav-
ing to specify a huge number of icon offsets. Controlling the place-



Figure 10 Streamlines running through the dataset of simulated fluid flow around a cylinder. The left streamline is textured and the right has saturation varyingaccording to speed.

ment of streamlines are failures and density. Failures function dif-
ferently here: they prevent a streamline from being seeded in a spe-
cific region and also end a streamline if it enters a failure region.
Density controls how the rendering algorithm determines when the
layer is “full” and will be discussed in Section 2.7.

There are three properties which control the path the streamline
follows: vector, bidirectional, and survival. The vector determines
which values are used to integrate the streamline in x and y. The
bidirectional flag simply determines if the streamline should go in
both directions or not. The survival condition controls if and when
the streamline should stop being drawn. An example is:

SURVIVAL velocity_magnitude .8 1.2

The semantics for this statement are: “Sample the velocity magni-
tude at the seed point of the streamline. Then, as the streamline is
integrated, sample the velocity magnitude at each point. If it goes
below 80% or above 120% of the original value, end the stream-
line.”

Finally, the SciVL file also controls the color, transparency, and
width of the streamline at each point. A texture can also be applied
to the line.

Streamline examples are shown in Figure 10.

Figure 9 Two colorplanes are used to show clockwise (red) and counter-
clockwise (green) vorticity. Opacity indicates the strength of the vorticity. The
data is from a simulation of fluid flow around a cylinder.

Remember, for each of these layers,everyproperty is tied to a value
and can therefore be constant, random, or data-driven across each
instance of the visual element.

2.5 Rendering System

Once a SciVL file is completed our rendering system uses it and a
scientific dataset to produce an output visualization. We now dis-
cuss how this engine works.

At a very high level, the renderer simply loops over all layers in
the file from back to front and “fills” them in with the appropriate
visual elements. Layers are drawn back to front so occlusion and
blending function properly.

The way a layer is filled varies by type. Filling a colorplane layer is
simplest: just tessellate a plane, calculate the per vertex colors and
transparencies, and draw the plane.

2.6 Rendering an Icon Layer

An icon layer is much more complicated to fill. The essence of the
algorithm used is shown here:

list<BBox> box_list;

for (each icon in layer) {
failed = 0;
while (failed < FAIL_THRESHOLD) {

P = random point in the visualization;

if (all failure conditions met at P) {
if (totally transparent) {

++failed;
continue;

}
else save transparency for later use;

}

B = bounding box for icon if rendered at P;
scale B by icon’s poisson area;

if (B overlaps a bbox in box_list) {
++failed;
continue;

}
else {

render icon at P;
box_list += B;



failed = 0;
}

}
}

This algorithm uses a Poisson distribution to ensure, with high
probability, that the layer is as full as it can be. It tries to place
icons down at random locations in the image and quits when it can-
not find a space for the icon FAILTHRESHOLD times in a row.

2.7 Rendering a Streamline Layer

The streamline layer uses a similar idea:

bool marked_squares[streamx][streamy];
set every element in marked_squares = 0;

while (marked_squares contains a 0) {
(x,y) = a 0 element in marked_squares;
marked_squares[x][y] = 1;
P = (x,y) converted to a point;

if (all failure conditions are met at P)
continue;

add P to streamline;
do {

N = next point on streamline;
if (survival condition NOT met at N)

break;

(x,y) = N converted to array indices;
marked_squares[x][y] = 1;

if (all failure conditions are met at P)
break;

add N to streamline;
} while (N in range of visualization);

render streamline;
}

This algorithm ensures that there is a streamline running through
every “square” in the visualization where not all the failure condi-
tions are met. See Figure 11.

Increasing the streamline density values makes the squares smaller,
thereby increasing their number, which means more streamlines are
needed to fill them all. Decreasing the density values has the oppo-
site effect. See Figure 12 for an example.

2.8 Realization

When rendering each of these layers, the engine has to convert
SciVL values in to actual numbers. Transparency, for instance,
might have been specified as:

TRANSPARENCY Variable pressure 0.5 1.0

When actually rendering the icon we need a number, however, and
this happens through a simple process we call realization. Realizing
a constant is trivial, simply return the number specified in the SciVL
file. For a random value we generate a random number in the range
specified in the file from a uniform distribution. A data-driven value
requires looking up the appropriate variable in the dataset at the
current location of the icon and scaling the number as necessary.

2.9 Jitter

The user can also inject “jitter” in to the visualization. When jit-
ter is enabled, the user specifies a mean and a standard deviation
which defines a normal distribution. Then, whenever a value is re-
alized, we sample from that distribution to get a jitter value, which
is added to the realized value. It does not make sense to jitter certain
values when they are supposed to be continuous. Imagine a color-
plane where color is tied to a data variable. Since the plane is highly
tessellated, adding jitter at each vertex would cause a very undesir-
able, discontinuous effect. We are still considering how to control
which values should not be jittered.

Jitter was added to the system because we felt the images often
looked too precise. Slight variatons can be useful to give the visual-
izations a more “organic” feel, more like they were done by hand.
An example is shown in Figure 13.

3 Results and Discussion

At this phase in the work, our results are entirely anecdotal. In the
near future there are plans to conduct formal user studies to evaluate
our success, but for now we only present the feedback we have
received.

The first experience we had with the system was trying to approx-
imate an image from Kirby et al. We used the same simulated
fluid flow around a cylinder shown in previous examples. Once the
datafiles were in place it took under 15 minutes to design a file with
visual elements similar to those used by Kirby and under 5 minutes
to render the output image. Naturally, we did not get the elements
exactly right, but the tweaking process was extremely easy and in
less than 30 minutes from when we started we had a loose approx-
imation of their images. A comparison of the two images is shown
in Figure 14. These images are visualizing velocity (gray triangles),
vorticity (blue and yellow colorplanes), turbulent charge, and turbu-
lent current (brown and gray rectangles).

The real power of the system was demonstrated when we wanted
to create new visualizations of the same dataset. Using the SciVL
file we already had it was easy to create new visual elements by
“borrowing” features from old elements. We created four different
visualizations in about five minutes each, as shown in Figure 15.
Our initial goal of rapid prototyping was accomplished by using
SciVL.

In the previous example we ourselves were the users and designers
of the visualizations. In the future, ideally, scientists would use our
system to visualize their data by designing the visualizations them-
selves. To test this process, the image shown here was created by a

Figure 13 A jittered visualization. The mean is zero and the standard devia-
tion is .0001.



Figure 11 Our streamline seeding algorithm. In the left image one streamline has been drawn, “marking” many of the “squares” in the visualization. In the middle
image we’ve chosen a random, unmarked square to start a new streamline and marked it. In the right image we’ve begun to draw the new streamline, marking
squares as we go.

Figure 12 The effect of the density control on a streamline layer. The left image has density set to 10, the middle to 20, and the right to 30, for both x and y. Notice
how increasing the densities creates more streamlines.

Figure 14 On the left is the image created by Kirby et al. to visualize simulated fluid flow around a cylinder. On the right is our first attempt to approximate this
visualization using SciVL constructs.

polarimetry expert after a brief introductory session to SciVL and a
few test examples using artificially created 2D scalar fields.

Polarimetric radar data presents the challenge of correlating a high
number of scalar variables gathered over wide areas of terrain from
an airborne set of antenna. The expert was able to overlay three
different colorplanes so that their colors would combine to provide
a meaningful explanation of the data. He was particularly impressed
by the ease of use of our language, which allowed him to test many
different variable bindings very quickly. A resulting image is shown
in Figure 16.

The main issue users had in these tests was the limited handling
of 2D data. The formatting of the datafiles has to be very specific
so we must convert any other format into our own. At this point
in the project we are concentrating on the visual language but we

are working to improve the data handling capabilities. One of the
first tasks is to allow algebraic operations on the variables within
the SciVL file. Currently, a separate datafile must be created if a
derived value is required, but it would be nice to do the following
instead (for example):

ORIENTATION Variable atan / y x

As another evaluation step, we asked a local design professor to
evaluate our visual variables. This collaborator has worked with us
on previous scientific visualization projects for fluid flow and med-
ical visualization. We presented him with a set of images showing
each individual “axis” of our visualization space. He highlighted the
expressiveness of SciVL and commented on the capability of our
icon-placement and streamline-placement algorithms. He referred



Figure 15 Our language allows us to quickly describe visually rich images for scientific visualization. These examples show six different visualizations of a 2D
fluid flow simulation in which scientific data defines the appearance of the visual elements in the image. Velocity of the flow, vorticity, turbulent charge and turbulent
current are all represented in each image. The layering of the elements and their mapping to data can be easily modified using our language. The visual elements
that form each layer can be icons of different shapes, colored planes or streamlines.

to the Gestalt grouping laws and suggested ensuring that our Pois-
son distribution does not generate unwanted patterns.

He pointed out a color-banding artifact in our HSV to RGB conver-
sion which has us considering switching to LAB color space. He
also would like to specify custom color transitons instead of lin-
early progressing through whatever space we happen to be using.
Instead the user could provide a number of colors and the system
would generate a palette.

He also suggested that jitter be controllable per attribute. We are
currently implementing this feature.

Figure 16 Example using radar polarimetry data. The image shows a color-
plane combining the total power of the signal with a measure of the phase
difference (alpha angle) between the signals from two colocated orthogonal
antenna. Shades of brown yellow show bare fields, greens show vegetated ar-
eas and blue show dihedral interactions from crop stalks or buildings.

Our system has also been used by Vote et al.[11] to produce “pre-
visualizations,” which are then fed in to the image analogies[12]
algorithm to create art-based visualizations. While there have been
minor issues with this process it is far faster than designing a pre-
visualization by hand.

4 Future Uses and Future Work

The language and rendering system we have developed are a step
in our project to optimize multivariate data visualizations using ge-
netic algorithms. We hope this system will allow us to quickly con-
verge on good visualizations and discover some general rules for
making good images. The addition of these design rules to our lan-
guage will provide non-expert designers with a way of creating bet-
ter visualizations without blindly iterating through many trials. Pre-
liminary results with a simple genetic algorithm indicate that the
basic concept is sound. Now that the language and rendering are
finished the algorithm needs to be considerably revised.

Another parallel task is using the system to create a series of im-
ages, each one using two visual variables to visualize two data vari-
ables (a gradient in x and a gradient in y, for instance). Running a
user study with these images will allow us to determine another set
of “rules” about which visual variables work well in tandem when
showing different data variables.

The main area of future work on SciVL itself is integrating it with a
GUI, a la GlyphMaker. This will allow easier and more intuitive de-
sign of visual elements. It will also allow more complicated expres-
sions; in a range, for instance, instead of specifying minimum and
maximum values and linearly interpolating, control curves would
allow the user more sophisticated control over their output.

Another use of the GUI would be to take an output visualization and
provide a “gradient” to follow to improve the visualization. A user,
by tweaking visual variables, would indicate a direction to travel in
to improve the visualization by that user’s standards.



5 Conclusions

We have presented the design of SciVL, a visual language for the
description of scientific visualizations. Our initial results are from
2D scalar and vector-field datasets. Generating these examples has
successfully evaluated, if only anecdotally, our goal of quickly cre-
ating complex and precise data-driven visualizations as well as fa-
cilitating their modification during the iterative design process. Our
ongoing collaboration with design and art experts has provided us
with reliable and accurate feedback on our language design and the
classification of visual elements and styles.

These encouraging initial steps have shown promise for the use of
our language for visualizing more complex datasets. Our main goal
is still to create a perceptually optimal classification of visual ele-
ments and styles to be used in the design and synthesis of scientific
visualizations.
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