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ABSTRACT

While many methods exist for visualising scalar and vector data, vi-
sualisation of tensor data is still troublesome. We present a method
for visualising second order tensors in three dimensions using a hy-
brid between direct volume rendering and glyph rendering.

An overview scalar field is created by using three-dimensional
adaptive filtering of a scalar field containing noise. The filtering
process is controlled by the tensor field to be visualised, creating
patterns that characterise the tensor field. By combining direct
volume rendering of the scalar field with standard glyph render-
ing methods for detailed tensor visualisation, a hybrid solution is
created.

A combined volume and glyph renderer was implemented and
tested with both synthetic tensors and strain-rate tensors from the
human heart muscle, calculated from phase contrast magnetic res-
onance image data. A comprehensible result could be obtained,
giving both an overview of the tensor field as well as detailed infor-
mation on individual tensors.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.8 [Computer Graphics]: Ap-
plications; J.2 [Physical Sciences and Engineering]: Engineering;
J.3 [Life and Medical Sciences]: Medical Information Systems;

Keywords: Tensor, Visualisation, Volume rendering, Glyph ren-
dering, Hybrid rendering, Strain-rate

1 INTRODUCTION

Visualisation of tensor data has become even more important with
the ability to acquire tensor metrics. This can be done with, for
example, diffusion tensor magnetic resonance imaging (MRI) [1] or
strain-rate calculation from phase-contrast MRI [18, 15, 16]. Add
to that the various kinds of simulations that output a tensor field.
This paper tries to address some of the problems that arise when
visualising symmetric second order tensors in three dimensions.

1.1 Previous Work
One common way of visualising tensors is to represent the tensor
with an icon or glyph. The glyph can then represent some or all
degrees of freedom from the tensor, depending on it’s type. When
visualising tensor fields with one glyph per tensor, it is difficult to
make out continuity, because two adjacent glyphs do not form a
continuous shape. This gets even more difficult when a 3D tensor
field is studied, where occlusion becomes a problem.
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Methods for visualisation of tensor fields include various
generalisations of streamlines to tensor data, such as hyper-
streamlines [4]. Their success is highly dependent on starting
points, or seeding points.

Line integral convolution (LIC), originally a method for visual-
ising vector fields, was introduced by Cabral et al. [2] and further
improved by Hege et al. [8]. It is a powerful method that shows
direction (or, rather, tangent) of flow in a vector field. One of the
advantages of the LIC algorithm is that it has a high spatial reso-
lution. In contrast to the streamline family, no seeding points are
needed; LIC visualises the vector field in every point, more or less.
The key to the success of LIC is that it creates acontinuousrep-
resentation. To be able to do that, it assumes that the data itself is
continuous, and exploits that fact. Mostly, though, physical data
has this property, given sufficient resolution.

LIC is really designed for vector fields, and not tensor fields.
Dickinson [5] suggested that tensors could be visualised as vector
fields with the vector being the eigenvector corresponding to the
largest eigenvalue. Hsu [9] extended this, suggesting two LIC im-
ages to be calculated, one for the largest eigenvalue and one for
the next largest eigenvalue, where the image corresponding to the
second largest eigenvalue uses a shorter filter length. The images
are then added together to form the resulting image. Unfortunately,
since the ratio between the eigenvalues is not taken into account, it
fails to describe the degree of anisotropy of the tensor field, which
is often very useful.

Related to LIC is spot noise, introduced by van Wijk [17] and
later enhanced by de Leeuw and van Wijk [3]. It can be performed
in 3D, but is not adapted to tensor visualisation without modifica-
tions.

Laidlaw et al. introduced brush strokes as an alternative [13].
This method can convey the degree of anisotropy, but it lacks con-
tinuity. Also, it is oriented towards 2D visualisation.

A volume rendering approach, designed for 3D diffusion tensors,
which shares ideas with the work described in this paper, was pro-
posed by Kindlmann et al. [10]. While being good at visualising
diffusion tensors, it is unclear whether it would perform well on
strain-rate tensors. It uses a reaction/diffusion method to create a
scalar 3D texture, later applied to a shaded surface. This scalar tex-
ture has similarities to the scalar overview field we propose, though
computed in a different way.

2 METHODS

We suggest a hybrid visualisation method, consisting of volume
rendering of a scalar field for overview visualisation, retaining con-
tinuity, and a glyph rendering for detailed tensor analysis with a
much smaller region of interest (ROI), showing all degrees of free-
dom of the tensors while at the same time avoiding occlusion prob-
lems. A 3D cursor is then used to position the ROI where the glyph
is rendered.
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2.1 Scalar Overview Visualisation
For the overview visualisation, the tensor volume is decomposed
into a scalar volume, retaining a few, but important, properties of
the tensor volume. The scalar volume is created by iterated adaptive
filtering of a noise texture, inspired by image enhancement using
adaptive filtering, introduced by Knutsson et al. [7, 12]. The noise
field is low pass filtered, thereby smearing the noise spots, and then
filtered with directed high-pass filters in directions with weak eigen-
values, to cancel out the smearing, leaving spots smeared in strong
eigendirections. The result is then visualised using volume render-
ing techniques, available in different flavours on different hardware
for rapid rendering.

2.1.1 Filter Construction

First, one spherically symmetric low-pass filter,Flp, is constructed.
Various kinds of low-pass filters can be used, but we chose a Gaus-
sian low pass filter, defined in the frequency domain as

Flp(ρ) = e
− ρ2

2σ2 (1)

whereρ is the frequency (with0 < ρ < π) andσ2 being the
variance of the filter, here empirically set toσ2 = 0.09.

Then, six spherically separable directional high-pass filters are
defined. By standard convention, whenu is the frequency,ρ = |u|
andû = u

|u| . The k-th filter,Fk is defined by its radial component,
R(ρ), and directional component,Dk(û), respectively

Fk(u) = R(ρ)Dk(û) (2)

The directional part is defined by

Dk(û) = (n̂k · û)2 (3)

wheren̂k is the direction of the filter, defined as the directions of
the vertices of an icosahedron: n̂1 = c (a, 0, b)T n̂2 = c (−a, 0, b)T

n̂3 = c (b, a, 0)T n̂4 = c (b,−a, 0)T

n̂5 = c (0, b, a)T n̂6 = c (0, b,−a)T
(4)

with

a = 2
b = (1 +

√
5)

c = (10 + 2
√

5)−1/2

These six filters, when combined, are enough to create a fil-
ter with any direction, being more computationally efficient com-
pared to creating a new filter for every voxel. This is explained by
Knutsson et al. [7, 12] along with the parameter choices fora, b
andc.

The radial part of the directed high-pass filters are defined as

R(ρ) = Fs(ρ)− Flp(ρ) (5)

with

Fs(ρ) =


1 0 ≤ ρ < ρl
cos2 π(ρ−ρl)

2(ρh−ρl)
ρl ≤ ρ < ρh

0 ρh ≤ ρ
(6)

TheFs is a spherical filter that gives a smooth transition from
1 whereρ < ρl to 0 whereρ > ρh to ensure that the high-pass
filter does not pass through any frequencies withρ > ρh. We have
empirically chosenρl = 0.7π andρh = π.

These filters are created only once, and reused for each iterative
step. Iso-surfaces of the seven filters are plotted in Figure 1.

Figure 1: Iso-surface plots of the seven filters in the Fourier domain.
The iso-value of the plots is 0.2. The top filter is the low-pass filter
Flp, the bottom six filters are the directional high-pass filtersFk.

2.1.2 Tensor Re-mapping

The tensors are re-mapped to enhance the visual experience. We
want to exaggerate the tensor shape to create a more easily recog-
nisable field. If the tensor is closest to being linear (one dominating
eigenvalue), we exaggerate it to be even more linear, etc. This is ac-
complished by re-mapping the eigenvalues and then reconstructing
the tensor from the eigenvalues and their respective eigenvectors.

First, the eigenvalues are scaled so that the largest eigenvalue,
λ1, becomes 1. The signs of the eigenvalues are discarded, so the
scalar overview visualisation does not convey eigenvalue sign. The
scaling discards the original norm of the tensors as well. Both of
these are visualised using glyph rendering.

Then, the eigenvalues are mapped through the function

µ(x;α, β) =
(|x|(1− α))β

(|x|(1− α))β + (α(1− |x|))β
(7)

which is plotted in Figure 2.
The parametersα and β control the shape of the re-mapping

function.α is thex whereµ crosses 0.5 andβ controls the “sharp-
ness” of the function. Higherβ means a steeper curve, closer to a
step function, lowerβ gives a function closer to the identity func-
tion. We useα = 0.5 andβ = 2.

The adaptive filtering described by Knutsson et al. [7, 12] is
designed for orientation tensors, and will therefore smearacross
strong eigenvectors instead ofalong them. Therefore, we re-map
the eigenvalues once more so that large eigenvalues become small,
and small eigenvalues become large, using the mapping function

ν(x;α, β) =
2

1 + µ(x;α, β)
− 1 (8)

which is in turn plotted in Figure 3.

2.1.3 Iterative Filtering

The noise input field, which is a standard Gaussian noise field with
a variance of 1, is filtered by multiplication with the filters in the
Fourier domain, creating seven filter responses; one low-pass and

Melanie Tory
372



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

µ

Remapping function µ(x; α, β)

Figure 2: Re-mapping function,µ(x;α, β), attracting eigenvalues
to 0 or 1 to exaggerate the shape of the tensor.α = 0.5, β = 2
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Figure 3: Combined re-mapping function,ν(x;α, β), also mapping
low eigenvalues to high and vice versa.α = 0.5, β = 2

six directional high-pass responses. These responses are then re-
combined to a new image, used as the noise image for the next
iteration.

The recombination is done by a simple point-by-point weighting
of the filter responses

s′ = slp +
∑
k

cksk (9)

whereslp is low-pass filter response andsk is the filter response
from the high-pass filterFk.

The coefficients,ck, are computed for each point as the product
sum scalar tensor product

ck = C ·Mk (10)

where C is the tensor at that point andMk are the filter-
associated dual tensors, defined by

Mk = αn̂kn̂
T
k − βI (11)

whereI is the 3 by 3 identity matrix,α = 5
4

andβ = 1
4

in the
three-dimensional case, as described by Knutsson et al. [7, 12]. The
ck are calculated only once and reused for every iteration.

To clarify the algorithm, a two-dimensional example iteration
sequence is shown in Figure 4.

(a) (b)

(c) (d)

Figure 4: 2D example of the scalar field showing initial noise im-
age (a), after 3 iterations of adaptive filtering (b), after 6 itera-
tions (c), and after 12 iterations (d).

Since the seven filterings are independent, they were performed
in parallel with good speedup using seven processors. Also, most
of the filtering time is spent in the Fourier transforms. Since the
multidimensional Fourier transforms are separable, they can too be
parallelised, if enough processors are available.

With large volumes, the memory requirements for the filters and
their respective responses are large. Memory requirements were
cut in half by exploiting the fact that the filters are real and even in
the Fourier domain and the noise field is real in the signal domain.
The noise is therefore complex Hermitian in the Fourier domain.
Consequently the filter responses are also complex Hermitian in the
Fourier domain and thus real in the signal domain.

2.1.4 Eigenvalue Distribution Colour Coding

The scalar field obtained from the adaptive filtering can be further
enhanced by adding colours. One way of adding colour is to encode
the eigenvalue distribution, thus showing the degree of anisotropy
of the tensor field. This is done with

R =
λ1 − λ2

λ1
(12)

G =
λ2 − λ3

λ1
(13)

B =
λ3

λ1
(14)

R, G andB are the components of red, green and blue, respec-
tively. λi are absolute values of the eigenvalues, sorted so thatλ1
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is the largest. This gives the following properties forR,G andB:

0 < R < 1 (15)

0 < G < 1 (16)

0 < B < 1 (17)

R+G+B = 1 (18)

TheR,G andB components then show the “probability” for the
tensor being linear, planar or isotropic, respectively. This does not
really add more information to the visualisation process, but it helps
classification of the tensor. Furthermore, it aids depth perception
when combined with interaction.

2.2 Glyph Tensor Visualisation
The most common way of visualising all degrees of freedom of a
tensor is to use glyph rendering. One tensor is represented with a
geometric object that can visualise all properties of the tensor.

Most glyph-based tensor field visualisation techniques show a
glyph for every tensor in the field. In contrast to this, we suggest
displaying only one or a few tensors, selected by interaction with
a 3D cursor. Since we also provide an overview visualisation, not
every tensor needs to be displayed with a glyph.

There are several different glyphs to consider, and some of them
have certain constraints on the tensors to visualise, regarding, for
instance, symmetry or sign of eigenvalues. The method suggested
in this paper is invariant of the tensor glyph chosen.

For symmetric, real, positive semidefinite tensors (all eigenval-
ues are positive), ellipsoids provide an easy glyph. Let the eigen-
vectors be the principal axes and the eigenvalues be the radii of the
ellipsoid. The different cases (linear, planar and isotropic) will be
represented with appropriate shapes, shown in Figure 5.

Ellipsoids can also be drawn with wire-frame rendering, that is,
only draw the edges of the polygons without filling the surface. This
has the advantage of not obscuring the scalar volume when doing
hybrid rendering. On the other hand, one has to sacrifice shading
when drawing in wire-frame mode.

An alternative to ellipsoids is to use a line-based glyph. The ten-
sor is simply represented with lines in the eigenvector directions
with the length being proportional to the magnitude of the eigen-
value. The sign of the eigenvalue controls the colour of the line; a
red line for positive eigenvalues and a blue line for negative eigen-
values. Sometimes, though, the line-based glyph can be hard to
spot among the structure of the scalar overview field. Examples of
line-based glyphs are also shown in Figure 5.

2.3 Combining Scalar Volume Rendering
with Glyphs

Combining scalar volume rendering and glyph rendering imposes a
problem; to display both glyphs and volume rendering at the same
time. We solved this by using an OpenGL texture based volume
renderer with a depth buffer and opaque glyphs. The opaque sur-
faces are first drawn in an arbitrary order, updating the depth buffer
at every pixel. Then, the semi-transparent volume slices are drawn
in a back-to-front order. This was implemented using both 2D or
3D textures in mono and stereo on a variety of platforms, ranging
from consumer to high end hardware.

2.4 Obtaining Strain-Rate Tensors
One application for tensor visualisation is investigating the strain-
rate (rate of deformation) in the heart musculature to study cardiac

(a) (b)

(c) (d)

(e) (f)

Figure 5: 3D glyph shapes shown for a linear tensor (λ1 � λ2 '
λ3) (a, b), a planar tensor (λ1 ' λ2 � λ3) (c, d) and an isotropic
tensor (λ1 ' λ2 ' λ3) (e, f). Figures (a, c, e) show ellipsoid
glyphs, while (b, d, f) show line-based glyphs, showing positive
eigenvalues in red and negative eigenvalues in blue.

dysfunction and also to help understand the mechanics and physi-
ology of the heart. We calculate the strain-rate tensors from phase-
contrast MRI by first computing the velocity JacobianJ according
to

J =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 (19)

where(x y z)T is the coordinate vector and(u v w)T is the
velocity vector, obtained using 3D phase-contrast MRI [14, 19].

The rigid body rotation should not contribute to the deformation
rate, so only the symmetric part needs to be considered. Thus, to
obtain a strain-rate tensorT, J is forced symmetric by

T =
1

2

(
J + JT

)
(20)

The velocity data used for strain-rate tensor calculation was ac-
quired with sampling distances of 4 by 4 by 1.2 mm. At this res-
olution, the strain-rate tensor is not particularly continuous. The
adaptive filter technique depends on highly continuous data with
low frequency to perform adequately. To get that kind of data, it
was low-pass filtered, reducing the accuracy of the tensors, and re-
sampled to a higher resolution (0.375 mm in all three directions)
using cubic interpolation. Only the tensor field used to create the
scalar field is low-pass filtered; for glyph rendering, the original
tensor field is used.

Melanie Tory
374



When performing low-pass filtering, or smoothing, one must be
careful not to blend tensors from inside the myocardium (heart mus-
cle) with tensors from blood inside the heart or the lungs outside.
This is solved using normalised averaging [7], with a myocardial
probability as the certainty function. We use a method suggested
by Ebbers [6], which finds a probability function for tissue from
time-resolved 3D phase contrast MRI data, by discarding voxels
that have a high probability of being air or blood. After the nor-
malised averaging, the data inside the myocardium is smooth and
not contaminated with data from outside. The border, however, con-
tains tensors that change rapidly.

3 RESULTS

A combined volume and glyph renderer using OpenGL was imple-
mented on a variety of platforms, using both 2D and 3D textures, in
stereo where available. Where texture mapping was hardware ac-
celerated, interactive frame rates (greater than 15 fps, depending on
screen size) were obtained. It was found that stereo rendering and
the interactivity improved the depth perception significantly. The
images presented below were created using 3D textures on a SGI
Onyx2 InfiniteReality running IRIX 6.5.

3.1 Synthetic Tensor Data
The renderer was tested on three synthetic tensor volumes. The
visualisation of the volumes are shown in Figure 6.

Figures 6a and 6b show a field where all tensors are linear (one
dominating eigenvalue). The eigenvalues were set asλ1 = 1, λ2 =
λ3 = 0.1. In Figure 6a, the direction of the eigenvector corre-
sponding to the largest eigenvalue is radial, whereas it is cylindrical
in Figure 6b.

Figure 6c shows a field where all tensors are planar (two dom-
inating eigenvalues). The eigenvalues were set asλ1 = λ2 =
1, λ3 = 0.1. The direction of the eigenvector corresponding to the
smallesteigenvalue is radial. Note that this direction corresponds
to the normal of the scalar field surface structure.

The synthetic volumes are643 in size and the adaptive filtering
was iterated 20 times.

The images from synthetic tensor data do not use eigenvalue
colour coding, so they are in gray scale, and have been inverted
for printing purposes. Note especially that the glyph resembles the
local structure of the scalar field.

(a) (b) (c)

Figure 6: Synthetic tensor data visualisation showing a field with
radial linear tensors (a), cylindrical linear tensors (b) and cylindrical
planar tensors (c).

3.2 Human Strain-Rate Tensor Data
The method was also tested on strain-rate data from the heart of a
healthy human volunteer. The volume was cut to only include the
left ventricle and re-sampled to2563 in size. The scalar field was

generated by 40 iterations of adaptive filtering and retrospectively
masked so that only the tissue, as found using a threshold of a tis-
sue probability function suggested by Ebbers [6], remained. The
filtering time on a Sun Fire-6800 with 8 UltraSPARC-III CPUs of
900 MHz each was 10 minutes and 20 seconds.

Figure 7 shows the scene, without the glyph rendering and with
high opacity to aid general orientation in the images. The apex
(tip), base, left ventricle (LV) and right ventricle (RV) of the heart
are marked. The cut plane is arranged in a short-axis manner.

Figure 8 shows a short-axis slab of the scalar data. The glyph
is located in the left heart wall and the volume is viewed from two
locations, to better convey the depth of the field. In Figure 8a, the
heart wall of the left ventricle can clearly be seen (like a ring) and
the tensor glyph is clearly planar, also shown with the green colour
in the scalar field. In Figure 8b, the heart wall ring is seen from
the side, showing the orientation of the planar glyph. Note that the
shape of the scalar field in the neighbourhood of the glyph is shown
as a planar green structure.

Figure 9 shows a long-axis slab, orthogonal to a short-axis slab.
The left ventricle is shown from the side. Near and above the apex
(tip), the chest can be seen. The glyph is located in the apex of the
heart, and shown from two angles. Also here, the tensor is planar,
conveyed by the glyph, the colour and the local structure of the
scalar field.

Figure 7: Strain-rate data, scene overview from posterior (back).
The apex (tip), base, left ventricle (LV) and right ventricle (RV)
of the heart are marked. The cut plane is arranged in a short-axis
manner.
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(a) (b)

Figure 8: Myocardial strain-rate data, short-axis slab. The glyph, showing a planar tensor (two dominating eigenvalues) is located in the left
heart wall, and the heart is viewed from its base (a), and from the side (b). Note that the shape of the scalar field in the neighbourhood of the
glyph is shown as a planar structure.

(a) (b)

Figure 9: Myocardial strain-rate data, long-axis slab. The glyph, showing a planar tensor (two dominating eigenvalues) is located in the apex.
Note that the shape of the scalar field in the neighbourhood of the glyph is shown as a planar structure.
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4 DISCUSSION

We have presented a method for visualising second order tensor
fields in three dimensions. The method combines adaptive filtered
noise field for overview visualisation with standard glyph render-
ing for detail visualisation. The scalar field was visualised using
a hybrid volume renderer, rendering both a semi-transparent scalar
overview volume using 2D or 3D textures and the glyphs for detail
visualisation using standard polygon and line geometry.

Many tensor visualisation techniques that are generalised from
two-dimensional to three-dimensional have a problem with occlu-
sion and the problem of continuity becomes even harder. Visual-
isation techniques generalised from vector to tensor fields usually
have problems representing the degree of anisotropy of the tensor
field.

The main advantage of this method is that it gives an accurate
detail visualisation while still providing continuity, something that
is lacking in most other techniques.

In the case of tensor imaging of the heart wall, it was possible
to make the voxels not belonging to the heart wall totally transpar-
ent, using the tissue probability function suggested by Ebbers [6].
However, this is not generally possible for tensor imaging in other
domains. Therefore, it should be investigated how to make parts
of the volume (semi-)transparent. This could be done by reducing
opacity in areas depending on anisotropy, for example, in isotropic
areas, if that is of less interest. Another possibility is to control the
opacity according to the variation of the tensor field, thus reducing
the opacity in areas with low or high variation in the tensor field.

This method emphasises a lot on visualising the anisotropy of the
tensor field, as opposed to visualising the magnitude. This might
not always be desirable. The colour coding step of the method could
be changed to show the magnitude of the tensor, instead of redun-
dantly showing the degree of anisotropy. Perhaps a hue/intensity
combination could show both. The tensor norm can also be used to
modulate the opacity of the field.

4.1 Strain-Rate Adaption

The method described in this paper is aimed to visualise general
symmetric second order tensors. For simplicity, the scalar field is
generated without regard to the sign of the eigenvalues. It is ap-
plication dependent whether this is a big disadvantage or not. For
strain-rate tensors, the scalar overview is adequate, because it is just
used as an overview, and the glyph rendering displays the sign of
the eigenvalues.

The result could be improved further if strain-rate tensors are as-
sumed. Strain-rate tensors are in a way a general symmetric second
order tensor, and would mathematically encompass also positive
semidefinite tensors, such as diffusion tensors. Taking the under-
lying physics into account, strain-rate tensors and diffusion tensors
are quite different and, hence, ought to be visualised differently.
Preferably, the visualisation of the tensors would mimic the under-
lying physics.

The sign of the eigenvalues can be added to the scalar field, if the
eigenvalue re-mapping function is altered. This re-mapping could
be done with a simple sigmoid, approaching 1 for large negative
eigenvalues and 0 for large positive eigenvalues. This would cause
areas with large positive eigenvalues to only have low pass content
(large noise spheres, planes or lines) and areas with largenegative
eigenvalues to be high-pass filtered (small noise spheres, planes or
lines). Eigenvalues close to zero would be re-mapped to 0.5, being
somewhere in between. The resulting scalar field would then be as
if the original noise function was medium size spheres, compressed
or expanded in the directions of negative or positive eigenvalues,
respectively.

Ellipsoid type glyphs can also be made to show the sign of the
eigenvalues. Kirby et al. deformed unit circles according to the
local strain-rate tensor in 2D [11]. The circle was expanded in
directions of positive eigenvalues and compressed in directions of
negative eigenvalues. Eigenvalues of zero neither compressed nor
expanded the circle. When generalising this to 3D and only a single
glyph, one needs to add a reference sphere, to show both the orig-
inal unit sphere and the deformed ellipsoid to be able to see what
is compression and what is expansion. With multiple glyphs in 2D
this is not needed nor possible, because the deformed ellipses can
be compared to each other and adding a reference circle to every
ellipse would clutter the view. The amount of compression or ex-
pansion should be controlled by the magnitude of the eigenvalue,
but how this should be done is not obvious. Kirby uses an exponen-
tial function to map eigenvalue to radius.

Preliminary tests of combining the strain-rate adapted scalar field
with the reference/deformed sphere type glyph show promising re-
sults.

5 CONCLUSION

This paper presented a method for visualising second order tensor
fields in three dimensions, using an adaptive filtered noise field for
overview visualisation combined with standard glyph rendering for
detail visualisation. The glyph and scalar field was shown to be
congruent, meaning that the overview scalar field can be used to
show some properties of the tensor. The scalar field was also shown
to visualise both direction and degree of anisotropy.
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