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a b s t r a c t

Body motions (kinematics) of animals can be dimensionally complex, especially when flexible parts of

the body interact with a surrounding fluid. In these systems, tracking motion completely can be

difficult, and result in a large number of correlated measurements, with unclear contributions of each

parameter to performance. Workers typically get around this by deciding a priori which variables are

important (wing camber, stroke amplitude, etc.), and focusing only on those variables, but this

constrains the ability of a study to uncover variables of influence.

Here, we describe an application of proper orthogonal decomposition (POD) for assigning

importances to kinematic variables, using dimensional complexity as a metric. We apply this method

to bat flight kinematics, addressing three questions: (1) Does dimensional complexity of motion change

with speed? (2) What body markers are optimal for capturing dimensional complexity? (3) What

variables should a simplified reconstruction of bat flight include in order to maximally reconstruct

actual dimensional complexity?

We measured the motions of 17 kinematic markers (20 joint angles) on a bat (Cynopterus brachyotis)

flying in a wind tunnel at nine speeds. Dimensional complexity did not change with flight speed, despite

changes in the kinematics themselves, suggesting that the relative efficacy of a given number of

dimensions for reconstructing kinematics is conserved across speeds.

By looking at subsets of the full 17-marker set, we found that using more markers improved

resolution of kinematic dimensional complexity, but that the benefit of adding markers diminished as

the total number of markers increased. Dimensional complexity was highest when the hindlimb and

several points along digits III and IV were tracked.

Also, we uncovered three groups of joints that move together during flight by using POD to quantify

correlations of motion. These groups describe 14/20 joint angles, and provide a framework for models of

bat flight for experimental and modeling purposes.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Dimensional complexity of bat flight

In flight, a bat performs rapid three-dimensional folding,
bending, and rotational wing movements to generate aerody-
namic force, thereby imparting a highly structured wake pattern
to the air behind it (Hedenström et al., 2007; Muijres et al., 2008;
Tian et al., 2006). Models of this system, be they focused on
neuromuscular control, aerodynamic function, or energetics, can
ll rights reserved.
only be as accurate as the kinematic reconstructions upon which
they are based. One way to develop simplified but accurate
models may be through investigation of dimensional complexity.
For instance, if different parts of the wing move together as
functional units, identification of those units can motivate
improved simplified models. Similarly, by measuring dimensional
complexity we can say whether such models might be more
applicable at certain speeds, where dimensional complexity is
lower. Furthermore, we can quantify the efficacy of different sets
of kinematic markers for accurately tracking bat flight kinematics.
In this paper, we apply proper orthogonal decomposition (POD), a
computational tool, to the wing kinematics of a bat flying in a
wind tunnel, with the purpose of quantifying the dimensional
complexity of movement during steady flight over a range of
speeds.

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.06.011
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For the purposes of this paper, we define dimensional
complexity as linear multidimensionality of motion among
moving parts of a body. If all the parts of the body move together
in such a way that the position of any body part can be calculated
from a simple linear equation based on the position of any other,
dimensional complexity is low. If, however, the parts of a body
move independently, description of a body’s posture requires the
tracking of many more variables. In that case, dimensional
complexity of movement, by our definition, is high. Because we
use POD, our analyses are sensitive to changes in the linear
relationships among moving body parts. There are several other
ways in which complexity might change that are not sensitive to
our analyses (Tresch et al., 2006). For example, non-linear
relationships among the motions of body parts will be resolved
only to the degree that they can be projected into a linear basis,
and our methods might result in a higher apparent complexity
than actually exists. However, POD is used quite widely in
analyses of gait and other biological movements (Cappellini
et al., 2006; Chau, 2001; Forner-Cordero et al., 2007; Ivanenko
et al., 2008; Mason et al., 2001; Todorov and Ghahramani, 2004;
Tripp et al., 2006), so we expected POD to reveal useful
information about kinematic dimensional complexity in this
application as well.

Bat flight has the potential to be extremely dimensionally
complex. A bat wing membrane is maneuvered skeletally by a
jointed leg, a shoulder, an elbow, a wrist, and by five fingers, each
with several joints. Adding up joints alone, this provides 420
degrees of kinematic freedom per wing. Additionally, movement
is influenced by the flexibility of the bony elements within the
wing, the orientation-dependent compliance of the membranes,
their interactions with the surrounding fluid, and by movements
of the numerous tendons and muscles within the membranes
themselves (Norberg, 1972; Swartz et al., 1992, 1996).

It is clear from a broad range of studies that bats move their
limbs in complicated ways during locomotion (Aldridge, 1986,
1987a, b; Hedenström et al., 2007; Lindhe Norberg and Winter,
2006; Norberg, 1969, 1976a, b; Rayner and Aldridge, 1985; Riskin
et al., 2005, 2006; Riskin and Hermanson, 2005; Tian et al., 2006;
Watts et al., 2001). However, despite the potential for high
dimensional complexity, there are at least three reasons we
expect movements at several joint angles in a flying bat to
be closely correlated. First, it is common in animals for multiple
joints to be activated together by a common signal from the
nervous system, or for a single muscle to actuate more than one
joint (Goslow, 1985). Second, the aerodynamics of flapping flight
presumably require that parts of the wing move together in a
coordinated fashion so that an organized wake structure can be
shed behind the wing (Hedenström et al., 2007; Rosen et al., 2004;
Spedding, 1987; Spedding et al., 1984, 2003; Tian et al., 2006).
Third, different parts of the wing should move together because
they are physically connected in a way that presumably prevents
independence of motion. Therefore, although the number of
degrees of freedom of motion possible for a bat skeleton is high,
the actual dimensional complexity of motion might be low.

Several authors, most notably Aldridge and Lindhe Norberg,
have reported bat flight kinematics in great detail (Aldridge, 1986,
1987a, b; Lindhe Norberg et al., 2000; Lindhe Norberg and Winter,
2006; Norberg, 1969, 1970, 1976a, b). Their studies demonstrate
that wing kinematics change predictably with speed, but those
papers do not quantify the complexity of motion. If the
dimensional complexity of bat flight changes with speed, the
number of markers required to accurately record bat flight
kinematics may be velocity dependent. Also, researchers seeking
to model bat flight could focus their preliminary efforts on
velocity regimes where dimensional complexity is low. POD
permits us to address the influence of speed on dimensional
complexity of kinematics, and to test the efficacies of different
numbers of kinematic markers for reconstructing body kine-
matics.

1.2. Proper orthogonal decomposition

POD is a ca. 100-year-old computational tool (Hotelling, 1933;
Pearson, 1901) that has recently been applied to the analysis of
organismal kinematics (Chatterjee, 2000; Feeny and Kappagantu,
1998; Tangorra et al., 2007). POD is mathematically equivalent to
principal components analysis (PCA), with the difference in
terminology arising from adoption of the same technique by
different branches of the sciences, and POD more often referring
to application of the technique to a dynamical system (Daffert-
shofer et al., 2004). In POD, the user places the three-dimensional
positions of m markers over time into an N� (3m) matrix A such
that each column describes the time-dependent displacement
history of a marker in one dimension: ai ¼ (ai (t1), ai (t2), y, ai

(tN))T, for i ¼ 1, y, (3m). Each row of the resulting matrix
completely describes the concurrent three-dimensional marker
positions at some instant in time. The (3m)� (3m) correlation
matrix R ¼ (1/N)ATA is then formed, and its eigenvectors form an
orthogonal basis. These eigenvectors are called proper orthogonal
modes, and the percentage of the overall motion described by
each mode is defined by its associated eigenvalue, normalized so
that the sum of eigenvalues is one (Feeny and Kappagantu, 1998).

The modes of R have the characteristic that the first (mode 1 or
x1) describes the greatest possible proportion of the movement
of any possible vector in the subspace. The second mode (x2) is
orthogonal to x1, and describes the greatest possible proportion of
the movement that remains, and so on. As the number of modes
increases, the reconstructed movement described by the sum of k

modes (x1+x2+?+xk) converges more and more closely to the
original movement, and the sum of all modes (k ¼ 3m) reproduces
the movement completely (Liang et al., 2002).

1.3. Goals of the study

In the first part of this study, we examined whether the
dimensional complexity of bat movement changes with speed
by looking at the number of POD modes required to closely
reproduce the original movement. By our definition, a motion that
has high dimensional complexity requires more modes to be
reproduced accurately than a motion that has low dimensional
complexity.

In the second part, we used POD to quantify the relative
dimensional complexities captured by using different numbers
of anatomical markers in studies of bat kinematics. When too few
markers are used, the motion will appear less complex than it
actually is. In contrast, we expect an overabundance of markers to
be kinematically redundant, and unnecessarily increase the
amount of time required to digitize kinematics. We used POD to
ask how many, and which, marker locations are optimal to most
closely approximate the actual dimensional complexity of wing
kinematics. We predicted that the dimensional complexity of a
marker set would increase as the number of markers in that set
increased, but that this would be an asymptotic change, and that
after some number of markers there would be relatively little
increase in the dimensional complexity of motion captured by
adding more markers. We also expected that dimensional
complexity should differ for a given number of markers, depend-
ing where those markers were placed. If all markers were placed
on a single bone, for example, dimensional complexity, as defined
here, would be low. Markers distributed among body parts
that move independently would have comparatively higher
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dimensional complexity. Our methods, then, might elucidate
redundancies among marker sets. Our hope was that these results
might inform selection of the number and position of anatomical
markers in future studies of bat kinematics.

In the third part of the study, we used POD to assess the
similarity of motion of joint angles throughout the skeleton to find
functional groups of joints that are actuated in synchrony by the
flying bat. We predicted that joints moving in synchrony should
be located close together on the wing because units controlled
together for aerodynamic purposes would likely appear close
together, and because units controlled by a common part of the
neuromuscular control hierarchy should presumably be near one
another. Because this form of analysis is numerical, it makes no
assumptions about aerodynamic or morphological control, aero-
dynamic function, or mechanics, making it particularly useful
where a priori assumptions about the relative importance of
different joints are to be avoided.
2. Methods

2.1. Video recording of the bat

Because POD results are affected by differences in relative
marker positions (Daffertshofer et al., 2004), we eliminated
morphological variability by using the flights of a single adult
female Lesser Dog-faced Fruit Bat (Pteropodidae: Cynopterus

brachyotis) over a range of flight speeds. All components of this
study were approved by the Institutional Animal Care and Use
Committees at Brown University, Harvard University, and the
Lubee Bat Conservancy, and by the United States Air Force Office
of the Surgeon General’s Division of Biomedical Research and
Regulatory Compliance.

The bat was anesthetized with isofluorane gas, and a series of
markers was placed on the fur and skin. On fur, we used non-toxic
acrylic paint, and on the wing membrane we used small pieces of
reflective tape. We only tracked markers on the left half of the
body. The marked bat was flown in a wind tunnel (Harvard
University Concord Field Station Wind Tunnel, test section: 1.4 m
length, 1.2 m width, 1.2 m height) in nine consecutive trials. The
characteristics of this wind tunnel were described in detail by
Hedrick et al. (2002). We recorded the flying bat at 1000 Hz using
three phase-locked Photron 1024 PCI digital high-speed cameras
(Photron USA, Inc., San Diego, CA, USA).

The volume of the wind tunnel in which the bat was flown was
calibrated using the direct linear transformation method, based
on a 40-point calibration cube (Hedrick et al., 2004). From each
a

b

o

Fig. 1. Image, obtained from one of the high-speed cameras, of Cynopterus brachyotis in

respectively), shoulder (c), elbow (d), wrist (e), the metacarpophalangeal and interphalan

and foot (q). Joint angles are defined in Table 1.
video frame, the positions of 17 anatomical markers were
digitized (Fig. 1), and their positions in three-dimensional space
calculated with a custom-built program in MATLAB (MathWorks,
Inc., Natick, MA, USA). Accuracy of our position measurements
was estimated by examining the distribution of distances between
the two sternum markers (mean 2.23 cm) over all trials. We
expected this distance to be constant, and found that our
estimation of that distance based on our three-dimensional
reconstructions had a standard deviation of 0.05 cm (standard
error less than 3%).

In each trial, we captured the largest possible integer number
of consecutive wingbeats while the bat flew in a fixed position
within the calibrated volume. We used the vertical position of the
wrist marker to delineate the endpoints of each wingbeat cycle.
This resulted in nine separate trials, one consisting of two
wingbeats, six of three wingbeats, and two of four wingbeats.
The velocity of the bat’s anterior sternum marker (a in Fig. 1) was
added to air speed to arrive at net velocity for each trial. To be sure
that the flight of the single individual used in this experiment was
representative of the species, wing movements from six other
adult female C. brachyotis were recorded in the same way over 42
trials. Their wingbeat frequencies, amplitudes, and flight speeds
were similar to those of the bat used in this study, but are not
presented here.

2.2. Post-processing of kinematic data

We used videos to reconstruct the positions of 17 markers at
4222 different points in time, or 71,774 marker moments. At those
moments where a marker was not visible to at least two cameras,
its position could not be calculated. This occurred in 11,180 (15.6%)
of marker moments. We filled these gaps in the kinematic data
with a custom curve-fitting algorithm based on over-constrained
least-squares polynomial fitting. For contiguous gaps in the data,
with sufficiently rich data at the end points, a third-order, over-
constrained polynomial fit was used. For gaps that included
sporadic intermediate points, a sixth-order polynomial was used.
After gap-filling, we used a 50 Hz lowpass Butterworth filter to
remove high-frequency noise. This cutoff frequency was ca. 4.5
times higher than the highest wingbeat frequency we recorded
(10.4 Hz).

Three-dimensional coordinates of each marker were trans-
formed to a body-referenced linear coordinate system, with the
anterior sternum (a in Fig. 1) at [0, 0, 0]. The x-axis was a line
through the two sternum markers (positive ¼ toward anterior),
the y-axis was orthogonal to the x-axis and gravity (positive ¼ left
of flight direction, toward wingtip), and the z-axis was orthogonal
c

d

e
f

g

h

i j

k

l

m

n
p

q

flight at 3.2 m s�1. We used 17 markers: anterior and posterior sternum (a and b,

geal joints and tips of digits III (f, g, h), IV (i, j, k), and V (l, m, n), the hip (o), knee (p),
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to x and y (positive ¼ dorsal). From the motions of the markers,
we also calculated 20 separate joint angles (Table 1).
2.3. Proper orthogonal decomposition

For POD of the marker positions (Sections 2.4 and 2.5, below),
the three-dimensional coordinates of each of the 17 markers
through the trial were placed in a matrix. The x, y, and z

coordinates of the anterior sternum marker and the y and z values
of the posterior sternum marker remained at zero at all times by
definition, and were therefore omitted. As a result, the size of the
matrix, using 17 markers, was t�46, where t is the length of the
trial in milliseconds. We subtracted the mean values for each
column from all values in that column, and performed POD using
singular value decomposition of the transposed matrix in MATLAB
(Chatterjee, 2000). For POD of joint angles (Sections 2.4 and 2.6,
below), we repeated this procedure for the t�20 matrix of joint
angles.

In studies that employ POD, researchers frequently normalize
by dividing each value by the standard deviation of its column
before POD, so that variables are not weighted by absolute
Table 1
Joint angles used in this study. Italicized letters denote joint positions, as shown in

Fig. 1

Joint

angle

number

Definition Calculation

Angle 1 Humeral elevation/

depression (dorsoventral

angle)

9>>>>>>>>=
>>>>>>>>;

Spherical coordinates of c–d, relative to

the body-referenced x-axis (assumes no

body roll)
Angle 2 Humeral protraction/

retraction (craniocaudal

angle)

Angle 3 Humeral rotation Angle of a–b to the plane defined by c–d–e

Angle 4 Elbow flexion/extension Angle c–d–e

Angle 5 abduction/adduction of

digits III & IV

Angle i–e–f

Angle 6 Abduction/adduction of

digits IV & V

Angle l–e–i

Angle 7 Abduction/adduction

between digit V & forearm

Angle d–e–l

Angle 8 Carpometacarpal flexion/

extension of digit III

Angle of e–f relative to the plane defined

by c–d–e

Angle 9 Carpometacarpal flexion/

extension of digit IV

Angle of e–i relative to the plane defined

by c–d–e

Angle 10 Carpometacarpal flexion/

extension of digit V

Angle of e–l relative to the plane defined

by c–d–e

Angle 11 Metacarpophalangeal

flexion/extension of digit

III

Angle e–f–g

Angle 12 Metacarpophalangeal

flexion/extension of digit

IV

Angle e–i–j

Angle 13 Metacarpophalangeal

flexion/extension of digit

V

Angle e–l–m

Angle 14 Interphalangeal flexion/

extension of digit III

Angle f–g–h

Angle 15 Interphalangeal flexion/

extension of digit IV

Angle i–j–k

Angle 16 Interphalangeal flexion/

extension of digit V

Angle l–m–n

Angle 17 Femoral elevation/

depression (dorsoventral

angle)

9>>>>>>>>=
>>>>>>>>;

Spherical coordinates of o–p, relative to

the body-referenced x-axis (assumes no

body roll)
Angle 18 Femoral abduction/

adduction (craniocaudal

angle)

Angle 19 Femoral rotation Angle of a–b relative to the plane defined

by o–p–q

Angle 20 Knee flexion/extension Angle o–p–q
magnitude. The wingtips in our study, for example, would not be
weighted more heavily than anatomical locations that move
shorter distances (Daffertshofer et al., 2004). This is numerically
equivalent to using the correlation matrix in PCA. However, points
moving through larger distances might well be more ‘important,’
depending on the objective of the research, so normalizing the
variance of all markers might remove relevant information.
Alternatively, the relative amplitudes of motion could be weighted
to keep signal-to-noise ratios constant, or in any other arbitrarily
chosen manner. In this study, we chose to standardize variance
before performing POD. We thought it appropriate to standardize
variance for POD of joint angles, since the complexity of control
should not change linearly with amplitude of motion, and decided
to use the same methods for joint angles and marker positions, for
ease of comparison.

2.4. Measuring changes in dimensional complexity with flight speed

When the percentage of original motion captured by cumulative
POD modes is plotted against the number of modes used, the curve
asymptotically approaches 100%, until the motion is completely
described when all modes are included. As a summary statistic of
that curve for each POD analysis, we used the number of modes
required to describe 95% of the movement, x95%. To calculate this,
we made a spline fit through the aforementioned curve, and
defined x95% as the x-axis value where that function crossed 95%;
by our definition, higher x95% values indicate greater dimensional
complexity. To determine whether the kinematic dimensional
complexity of wing motions changed with speed, we carried out
linear regressions of x95% versus speed. This was done twice, once
for the motion of points and once for the motions of joint angles.

Because no two wingbeats were kinematically identical, it is
possible that the number of wingbeats could influence the
dimensional complexity of a trial. If so, trials with fewer wingbeats
would have lower x95% values than trials with more wingbeats. We
looked for this trend in our data to verify that treating all trials
equally, regardless of number of wingbeats, was justified.

2.5. Testing the efficacies of kinematic marker positions

We used POD to quantify the relative complexities of motion
revealed by varying numbers and positions of wing markers.
To assess dimensional complexity, we performed POD on every
possible combination of markers, from the two sternum markers
alone to the complete set of 17 markers. This required 215

¼

32,768 separate POD analyses per trial. For each number of
markers, we sought the set that captured the highest degree of
dimensional complexity. We were unable to use x95%, however,
since for small numbers of markers, the x95% value is difficult to
calculate due to the small number of points through which a
spline is to be interpolated. Instead, we used a value we call Px1:
the percentage of original motion captured by the first POD mode.
Sets of markers that move independently of one another should
be characterized by a relatively low Px1-value. We used the mean
Px1-value for each marker set across the nine trials as an index of
dimensional complexity for that marker set.

Our two metrics, x95% and Px1 should be inversely related, with
the former increasing and the latter decreasing with increased
dimensional complexity, as defined in Section 1.1.

2.6. Finding groups of joint angles that move together

We used POD to quantify the similarity of motion for all
190 pairs of joints (20 choose 2 ¼ 190). For each pair, POD was
performed on the t�2 matrix of joint angles, and Px1 was
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calculated. A cluster tree was then constructed using the average
linkage function in Matlab. The average linkage function uses
the unweighted average distance between all pairs of objects in
cluster r and cluster s according to the formula

dðr; sÞ ¼
1

nrns

Xnr

i¼1

Xns

j¼1

distðxri; xsjÞ,

where nr is the number of joint angles in cluster r, ns is the number
of joint angles in cluster s, xri is the ith object in cluster r, xsj is the
jth object in cluster s, and dist is defined as (1�Px1). The result was
a dendrogram of joint angles that clustered joint angles based on
similarity of motion.
3. Results

3.1. Wingbeat kinematics

Flight speeds of C. brachyotis in the wind tunnel ranged from
3.2 to 7.4 m s�1. Wingbeat frequencies (9.470.6 Hz, mean7S.D.)
were similar to those reported previously for other bat species
flying in still air (Norberg, 1976a), and increased slightly with
increased flight speed (frequency ¼ 0.33� speed+7.8; F ¼ 15.9;
n ¼ 9; r2

¼ 0.69; P ¼ 0.0053). In slow flight, the downstroke
brought the wing anteriorly and ventrally (forward and down),
and the upstroke moved it posteriorly and dorsally (backwards
and up). Low-speed flight kinematics also included a wingtip
reversal on the upstroke, whereby the wingtip (h in Fig. 1) moved
backwards relative to the air around it. At higher speeds, the fore-
aft component of that motion was diminished, so that the wings
moved mostly dorsoventrally (up and down), and without wingtip
reversal. These kinematic descriptions resemble those reported
for other bats in previous studies (Aldridge, 1986).

3.2. Proper orthogonal decomposition

Each mode resulting from POD of marker positions describes
a range of motion of the markers in three-dimensional space.
A convenient way to visualize the range of motion captured by any
given mode is to project the original motion of the markers onto
the subspace defined by that mode (e.g. Bozkurttas et al., 2006).
When a linear coordinate system is used, the positions of each
marker in a POD mode lie on a straight line (Fig. 2). In this study,
projection of the wing kinematics onto the first mode of POD
resulted in a simple flapping motion of the wings. For slow flights,
the wings moved up and down with a fore-aft component relative
to the body axis, and in faster flights the motion contained less
fore-aft motion, and was restricted to up-down movement. These
trends mirror the decrease in the fore-aft component of wing
flapping with increasing speed that we observed from the
kinematics.
Fig. 2. Ventral view of paths taken by the elbow (light blue), wrist (green), foot (pur

consecutive wingbeats while flying at 4.8 m s�1: (A) the original kinematic data, capture

missing points were filled with a gap-filling algorithm and high-frequency noise was rem

which contains 34.1% of the kinematic motion present in B; (D) mode 2, orthogonal

combination of the first two modes, which combined demonstrate 57.3% of the kinema

POD mode describes a range of positions for all kinematic markers.
From POD of marker positions, the first mode described
31.472.8% (n ¼ 9) of kinematic movement, and the amount
of variation explained by subsequent modes decreased rapidly
(Fig. 3A). For any trial, seven modes were required to explain
480% of the motion, 11 modes were needed to explain 490% of
the motion, and 16 of the total 46 orthogonal modes were needed
to explain 495% of the motion. The mean x95% value for the nine
trials was 13.571.2. Using joint angles instead of marker
positions, 22.471.8% of motion was explained by the first mode,
and the mean x95% value was 13.170.8 (Fig. 3B).

We found no influence of the number of wingbeats included on
Px1 (linear regression P ¼ 0.89). However, x95% values did increase
slightly with the number of wingbeats in a trial (x95% ¼

1.57�number of wingbeats+8.60; r2
¼ 0.58; P ¼ 0.02). Depending

on whether one uses Px1 or x95% to measure dimensional
complexity, the number of wingbeats in each trial may or may
not need to be equal in all trials for them to be compared. To
equilibrate the number of wingbeats for all trials, while losing the
least possible information, one could discard a wingbeat from
both of the four-wingbeat trials, and the two-wingbeat trial
altogether. When we employed this procedure, the regressions
of Px1 and x95% with speed showed the same statistical trends
obtained with the complete data set (reported below). We
therefore elected to treat all trials equally in our analyses, and
did not weight them based on the number of wingbeats.

3.3. Changes in dimensional complexity with speed

Dimensional complexity varied little among trials, and did not
change significantly with speed. For the marker position data,
flight speed had no significant impact on x95% values (x95% ¼

�0.16� speed+14.28; r2
¼ 0.04; P ¼ 0.61). Using joint angle data,

x95% values increased slightly with increasing speed (x95% ¼

0.30� speed+11.62; r2
¼ 0.32), but not significantly so (P ¼ 0.11).

3.4. Testing the efficacies of kinematic marker positions

For each of the 32,767 possible combinations of 1–15 wing
markers (3–17 body markers), we calculated Px1 for all nine trials,
and used the mean for each marker combination in analyses
(Fig. 4).

As expected, using more markers generally resulted in higher
dimensional complexity overall (lower median Px1-values), but for
a given number of wing markers, the positions of those markers
influenced the capture of actual dimensional complexity. Indeed,
there are many ways to increase the number of markers without
improving the capture of dimensional complexity at all, as
evidenced by the overlapping Px1-values in Fig. 4. Since it is
beneficial for researchers to know the performance of each
marker combination tested, we provide that information, aver-
aged for all nine trials as supplemental information to this paper
ple), and the tips of digits III (dark blue) and IV (red) for a bat performing three

d by manually digitizing video images of the bat in flight; (B) the same data, after

oved with a 50 Hz Butterworth lowpass filter; (C) mode 1 found by POD of the trial,

to mode 1, that contains 23.2% of the kinematic data present in B; and (E) the

tic motion. Note that only the motions of only five points are shown, but that each
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Fig. 3. Percentage of motion described by the mth mode (red dots), and the cumulative total of percent motion described by modes 1 to m (black dots) from POD analysis of

the marker motions (A) and joint angles (B). Dots represent mean values for the nine trials, and error bars extend one standard deviation above and below the mean.

Complete kinematic reconstruction is denoted by the dashed black line at 100%. The mean 95% kinematic reconstruction (dashed red line) occurs at x95% ¼ 13.5 for marker

positions, and 13.1 for joint angles.
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Fig. 4. Percent recovery by the first POD mode (Px1) for the 32,767 different marker combinations possible using both sternum markers and 1–15 wing markers. Each black

circle represents the mean value for a set of markers (n ¼ 9 trials), and each blue bar represents the median Px1-value for all marker position permutations with that

number of wing markers. Values are distributed on the x-axis according to the number of wing markers in each set. When six wing markers are used, the placement of those

markers can result in any of 5005 Px1-values, from relatively poor capture of kinematic dimensional complexity (where a single mode recovers 45.1% of the original motion,

to better capture of dimensional complexity (mode 1 recovers just 27.8%). The six marker sets corresponding to those Px1-values are shown. Wing marker configurations

from other studies are shown as red circles: (A) Lindhe Norberg and Winter (2006), (B) Bullen and McKenzie (2002), (C) Aldridge (1986, 1987a), and (D) Norberg (1976a).
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(Supplementary Appendix A), and present the marker sets with
lowest Px1-values in Fig. 5. The marker positions used in other
selected studies of bat kinematics are shown as red circles in Fig. 4
for comparison.

Markers at the shoulder and hip (c and o in Fig. 1, respectively)
contributed substantially to the dimensional complexity of
kinematics (Fig. 5A). One possible explanation for this pattern is
that more muscle is interposed between the skin and underlying
skeleton at the shoulder and hip compared to other anatomical
markers, potentially leading to increased skin motion artifact.
Therefore, we also present optimal marker sets from those POD
analyses that excluded the shoulder and hip (Fig. 5B).

Our analysis demonstrates that the knee moves independently
relative to forelimb markers, and that the fifth digit contributes
relatively little motion that is independent of other parts of the
wing. These trends are revealed by the consistent appearance of
the former and absence of the latter from anatomical marker sets
of lowest Px1-value for a given number of markers. We observe
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Fig. 5. (A) For each number of wing markers, 1–15, the set of markers that captures the greatest dimensional complexity is shown. Since the shoulder and hip may have

moved independently of other markers due to skin motion artifacts, we also show (B) the optimal sets that exclude those points, using 1 to 13 wing markers.
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Fig. 6. Dendrogram of joint angles, calculated using the methods described in Section 2.6. Three groups of joint angles, each of which contains joint angles that move in a

correlated manner, are shown in red (group 1), blue (group 2), and green (group 3). Joint angles are defined in Table 1.

D.K. Riskin et al. / Journal of Theoretical Biology 254 (2008) 604–615610
these trends whether the shoulder and hip are included or
excluded during analysis.
3.5. Assignment of joint angle groups

Correlations of motion (mean Px1-values) among the 190 joint
angle pairs varied, with a left-skewed distribution (min 51.1%, max
83.2%, median 59.3%). Using a similarity threshold of 0.7, we
found three groups of joint angles based on the cluster analysis
(Fig. 6). The first group (joint angles 3, 6, 7, 11, and 12) includes
the angles between digit V and its neighboring long bones (the
forearm and digit IV), along with the metacarpophalangeal angles
of digits III and IV, and rotation of the humerus. The second group
(joint angles 4, 8, 9, and 10) includes the carpometacarpal angle of
digits III, IV, and V, along with the elbow angle. The third group
(joint angles 1, 2, 17, 19, and 20) includes the elevation/depression
(dorsoventral) and protraction/retraction (craniocaudal) of the
humerus, the elevation/depression of the femur, femoral rotation,
and the knee angle. By plotting the changes in each joint angle
over the course of a representative trial (scaled to equalize
standard deviation of joint angle amplitude), the similarity of joint
angles within each of the three groups is immediately visible
(Fig. 7).
4. Discussion

By delineating the wing kinematics of a flying bat in terms
of quantitative dimensional complexity, we processed complex
motion to uncover three functional groups of joint angles that
should be useful in a broad variety of contexts, including
morphology, aerodynamics, and neurobiology. Each group con-
sists of joint angles that move in highly correlated ways during
steady flight, and provides a starting point to discern functional
units of aeromechanic or neuromuscular relevance for bat flight.
For example, these may reflect muscle synergies, analogous to
those described in other systems (Tresch et al., 2006). Where
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Fig. 7. Twenty standardized joint angles of a flying bat over time for a single trial, at 4.4 m s�1. Downstrokes are shown in gray. Note that joint angles within each group are

tightly correlated. To standardize each joint angle, we have subtracted the mean joint angle over the course of the trial from each value in the time series, then divided each

value in the time series by the standard deviation of that joint angle in the trial. Some joint angles (2, 3, and 5) were then multiplied by �1 to facilitate the comparison of

their motion with that of other joint angles. Joint angles are defined in Table 1.
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accurate kinematic reconstruction is the goal, our results
demonstrate that in addition to the commonly used kinematic
markers on the wing, the hindlimb should be tracked, and that
several parts of digits III and IV must be tracked independently.
Also, we found that the bat changed the dimensional complexity
of motion only slightly with changes in speed, even though the
motions of the wings changed in a way that resulted in different
flight speeds.
4.1. Quantification of dimensional complexity

To completely describe the motions of 17 independent markers
on a flying bat in a body-referenced linear coordinate system
requires 46 variables. Using POD, 95% of that motion was
described by no more than 16 modes, roughly one-third the total
number of variables. Using joint angles, capture of 95% of motion
required 15 modes, almost three quarters of the 20 joint angle
variables. So how ‘complex’ is bat flight? Can the dimensional
complexity of bat flight be empirically quantified?

We emphasize that the overall trends exhibited by changes in
x95% and Px1 are more meaningful than the numerical values
themselves, because there is no empirical scale against which to
compare these numerical values to the dimensional complexity
of other systems. Within this system, Px1 varies substantially
according to the anatomical locations of markers (Fig. 4).
Numerical results from future studies on bats could be compared
with our results only if markers in those studies are placed in the
same locations, and this anatomical specificity prohibits numer-
ical comparison of bat flight kinematic complexity with the
complexity of locomotion in organisms with different limb
structure. Our methods are most useful where changes in
dimensional complexity are to be analyzed within a single system.

The arbitrary nature of the numerical values obtained by our
methods is further evidenced by additional analyses of our data,
not presented here, which demonstrated that x95% and Px1 are
influenced by input choices such as whether a body-referenced or
global-referenced coordinate system is used, whether a linear or
spherical coordinate system is used, and whether or not variances
of different marker motions are standardized before singular
value decomposition is performed. Adjusting these user inputs on
our data resulted in similar trends from POD, such as indepen-
dence of dimensional complexity and speed. However, numerical
values varied substantially depending on how the data were
treated. For example, we reported a x95% value of 13.571.2 for
marker positions in the nine trials in this study, but had we not
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standardized variance before performing POD on the same data,
the outcome would have been 8.771.3.

Also, the specific population of marker positions that made up
the marker sets of lowest Px1-values differed depending on how
the data were treated before POD was performed, but similar
trends emerged. For example, the lowest Px1-values of two-
marker sets consistently included one marker on the distal wing
(wrist or wingtip) and one on the shoulder or hindlimb. We are
therefore confident of our observation that marker motions at the
shoulder and hindlimb are independent of those on the wing, and
that this conclusion is not simply the arbitrary result of the
coordinate system used.

x95% and Px1 are different characterizations of the cumulative
distribution of eigenvalues across the matrices that result from
POD of a dataset. Although x95% is somewhat meaningless for two-
or three-dimensional matrices, we prefer to use x95% where
possible, because it reflects a greater portion of the distribution
than does Px1. For relatively few dimensions, however, we used
Px1. When one employs two different descriptors some distribu-
tions might appear dimensionally complex by one metric and not
the other, but overall we expect these two metrics to demonstrate
a substantial inverse correlation. We calculated these two values
for all 32,767 permutations of 1–15 markers, for all nine trials
(total ¼ 294,903), and found the two to be inversely correlated
(linear r2

¼ 0.45). These metrics, then, are not interchangeable,
since apparent dimensional complexity by one metric cannot
be inferred precisely from the other. In this study we have used
x95% where possible, and not used the metrics together for any
analysis.
4.2. Selection of marker sets for studies of kinematics

4.2.1. Number of anatomical markers to be used

Our results demonstrate, perhaps not surprisingly, that
following more markers tends to increase the dimensional
complexity of motion captured, so tracking the motions of as
many parts of the wing as possible is surely the best possible
strategy for kinematic studies. However, the time required to track
large numbers of markers is substantial, especially where markers
appear and disappear from view throughout the wingbeat cycle,
as they do for the folding wings of bats, making computer auto-
tracking difficult. And, while this cost of adding more markers
increases somewhat linearly, the benefit of more and more
markers plateaus. For large numbers of markers (4ca. 9), the
improvements in median dimensional complexity values asso-
ciated with increased numbers of markers is smaller than it is for
small numbers of markers (o4, for example; Fig. 4). Importantly,
the addition of some markers will improve dimensional complex-
ity more than others will. It is our hope that the information
presented here will help researchers choose what parts of the
wing should be tracked for their purposes (Supplementary
Appendix A).

When we compare optimum marker sets as determined by
POD to anatomical landmarks used for kinematics research in
previous studies, we find that workers have tended to choose
marker sets that exhibit intermediate dimensional complexity.
Where only two wing markers are used, our Px1-values range from
32.8% to 47.2%. Lindhe Norberg and Winter (2006) tracked the
thumb and wingtip, capturing roughly the midpoint (Px1 ¼ 40.3%)
of the Px1-values possible using that number of markers. Bullen
and McKenzie (2002) also used two markers, the shoulder and
wingtip (Px1 ¼ 33.0%). Although the Px1-value for the Bullen and
McKenzie marker set is close to the optimal two-marker set we
found (shoulder and wrist Px1 ¼ 32.8%), it should be noted that
their analysis was limited to one camera view, and therefore did
not capture the kinematic dimensional complexity of three-
dimensional motion at those anatomical locations.

Aldridge (1986, 1987a) used five markers: the wrist and the
tips of digits II, III, IV and V. We did not track the tip of digit II in
this study, but it lies very close to the second marker we placed on
digit III. The Px1-value for Aldridge’s marker set (replacing our
second marker on III for his marker on II) is 41.6%, suggesting
relatively low-dimensional complexity compared to the complete
range of five-marker Px1-values in this study (27.4–45.4%).

Norberg (1976a) tracked six of our markers: elbow, wrist, tip of
digits III, IV, and V, and the foot. She also tracked the tip of the tail
in that study, but the bats in our study have no tail, so we omit
that marker from comparison. The Px1-value for her marker set
(36.4%) is near the middle of the range of possible Px1-values
obtainable from six-marker data sets (27.8–45.1%).

The tendency of researchers to choose points of intermediate
dimensional complexity suggests that correlations among anato-
mical marker positions are not intuitively discernable, or that
independence of motion is not an important criterion for marker
selection in other studies. The marker sets with highest dimen-
sional complexity in our study tracked motion of digits III and IV
independently, and at more than one position along each of their
lengths. Typical kinematics studies follow only the tips of one, or
occasionally both, of these digits (e.g. Aldridge, 1986; Lindhe
Norberg and Winter, 2006). It is unclear how this reduction of
dimensional complexity has affected our understanding of bat
flight aerodynamics or energetics, but based on our results, we
advise that future studies on bat wing maneuvers include several
markers along each of those digits, where possible. Whether or
not tracking multiple parts of the wing is necessary in studies
of birds or insects could also be investigated using our methods.

4.2.2. Hindlimbs

Effective marker sets also revealed that the hindlimb moves
independently of the rest of the wing. The hindlimb is rarely
included in kinematic studies, though it may have significant
aerodynamic effect because it anchors the caudal wing. Indeed,
airplane wings have many of their control mechanisms at the
trailing edge of the wing. Bats are unique from birds in the
participation of the hindlimb with the flight apparatus, and may
therefore employ active control of tension and posture at the
trailing edge that is not possible for birds. Also, the hindlimbs are
actively used by bats during terrestrial locomotion (Riskin et al.,
2005, 2006; Riskin and Hermanson, 2005), so their musculoske-
letal architecture is available for recruitment during flight.
Tracking the position of the hindlimb during flight is a first step
toward elucidating a possible active role for the hindlimb, and
electromyography (EMG) of the hip and hindlimb musculature
would further clarify the mechanistic basis for independent
motion of the hindlimb from the rest of the wing.

4.2.3. Hip and shoulder

A consistent trend in our data was that when the shoulder or
hip was included in POD of a marker subset, the kinematic
dimensional complexity was high. In other words, movements of
the hip and shoulder joints are more weakly correlated to the
motions of other wing markers than wing marker motions are to
one another. We speculated that one possible source of their
independence of motion from the other parts of the wing could
be skin motion artifacts, since those markers were separated
from the underlying joints by relatively thick layers of muscle
compared with other wing markers. However, that independence
might also have resulted from the three-dimensional skeletal
morphology of those joints; each ball-and-socket joint has three
degrees of freedom of motion, while the majority of the more
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distal wing joints each bend more or less along one axis,
controlled by a smaller, simpler set of muscles, in some cases
reduced to a single flexor and extensor pair (Humphry, 1869;
Macalister, 1872; Vaughan, 1959). Indeed, the shoulder is
controlled by a complex suite of muscles, and experimental
studies have demonstrated unique patterns of activation in each
of 17 different shoulder muscles (Hermanson and Altenbach, 1983,
1985). A similarly large number of muscles cross the hip
(Humphry, 1869; Macalister, 1872), but their patterns of activation
are not known. The relative influences of skin motion artifacts and
actual kinematic independence on the observed kinematic
dimensional complexity of motion will soon be quantifiable,
thanks to emerging three-dimensional cineradiography techni-
ques (Brainerd et al., 2007).
4.2.4. How much dimensional complexity is needed?

Without sufficiently reproducing the dimensional complexity
of flight, models will be unable to accurately explain the
aeromechanics of actual organisms. What level of fidelity is
necessary, however, is not known. Many current models of bat
flight treat airflow over the wings as laminar and steady (Norberg,
1987; Norberg and Rayner, 1987; Rayner, 1999), but recent particle
image velocimetry results from flying bats point to a wake pattern
that varies in complicated ways both spatially and temporally
(Hedenström et al., 2007; Tian et al., 2006). Also, leading-edge
vortices (LEVs), once thought to be irrelevant to bat flight have
recently been detected for flying bats (Muijres et al., 2008),
suggesting that the aerodynamics of bat flight are far more
complex than once believed. To accurately determine the precise
mechanisms of lift and thrust production, models of the wing
motions of bats should be reproduced faithfully, conserving as
much dimensional complexity as possible. Bozkurttas et al. (2006)
have demonstrated that for the reconstruction of fish pectoral fin
movements, three POD modes (67% of the original motion)
produce 92% of the thrust that results from the original motion.
Their analysis, however, included 300 kinematic markers on a
single fin. For bat flight, a small number of POD modes might also
be sufficient, but the efficacy of a reduced-dimension model may
well be compromised by omission of certain parts of the wing.

In the future, we can look forward to understanding what parts
of the wing are most relevant to a particular line of investigation,
so that only a small number of kinematic markers is necessary, but
until the mechanisms of aerodynamic force generation in bats are
better understood, or until the contribution of each muscle
involved in flight control is uncovered, one should follow as
much of the wing as one can. Our results on the interdependence
of marker motions are useful guides to selecting limited marker
sets, where the goal is to maximize kinematic information per
marker, especially in the absence of robustly supported hypoth-
eses about which parts of the body are of greatest functional
importance.

Our study is limited to a single individual of a single species, so
the optimal marker sets we discuss might well not be optimal for
other bats. In general, the flight kinematics in C. brachyotis are
similar to those reported for other bat species, so our suggested
marker sets are likely helpful regardless of species, but as fine-
scale kinematics studies reveal kinematic differences among
species, species-specific optimal marker sets can be prescribed
using our method.

Finally, the 17-marker configuration we employed in this
analysis did not include markers on the free membrane, where
kinematics are sure to have important aerodynamic effects,
especially at the leading edge and trailing edge of the wing. The
motion of the membranes cannot simply be interpolated based on
the bone positions. The skin exhibits non-linear elasticity and
anisotropy (Swartz et al., 1996), so even a uniform aerodynamic
force could produce a variable billowing of the wing membrane
that depends on local mechanical properties, the degree to which
it is already strained, and on the influence of the plagiopatagiales
muscles within the membrane itself (Holbrook and Odland, 1978).
Future work based on an even larger marker set may shed more
light on the actual dimensional complexity of bat motion beyond
what is captured by our 17-marker set.
4.3. Functional groups of joints in the flight apparatus of bats

Several papers concerning the aerodynamics of flight in bats
treat wings as non-flapping extensions of the body, with a fixed
shape that can be described in two dimensions (Norberg, 1987;
Norberg and Rayner, 1987). However, the actual shapes of wings
change in three dimensions throughout a wingbeat cycle, and we
have shown that wing kinematics require around 15 independent
dimensions to be described with 95% accuracy. This leaves
researchers wishing to use bat wing kinematics for modeling
purposes to choose between almost certainly over-simplified
models on the one hand, or characterizations of bat flight that
may be too complex for functional relationships to be resolved.
We present three groups of joints that are of particular value for
characterizing bat wing motions using a relatively small number
of dimensions. In studies where researchers wish to know the
influence of some independent variable on flight kinematics, we
suggest using one representative joint angle from each group as a
starting point, since those three joints would then give informa-
tion about 14 of the 20 joints angles that we measured.

There are several possible reasons that joint angles change
together in groups. First, actuation of multiple joints may be
controlled together; a muscle-tendon ‘group’ may cross more than
one joint, or groups of muscles may be innervated by a single
motor pool from the nervous system (Burke, 1978; Goslow, 1985).
Either mechanism could lead to patterns of correlated joint
motion. Second, the motions of some joints influence motion at
other joints because the wing membrane is a single continuous
structure; full extension of a single digit, for example, might not
be possible if the neighboring digits are folded. Third, different
parts of the wing surely need to move together for changes at any
one of them to effectively generate aerodynamic force, or for fluid
structures along the wing, such as LEVs, to be maintained. In this
scenario, effective flight performance may require portions of the
wing with neuromuscular and structural independence to move in
strict relation to one another. These three explanations are in no
way exclusive, and any or all of these explanations may underlie
the existence of highly correlated clusters of joint angles.

Alternatively, it is possible that these functional groups
emerged by chance—that there is a random distribution of
correlations among the joints, and we simply picked the most
tightly correlated—but this is unlikely. Had this been the case, we
would expect the members of a group to be distributed somewhat
randomly across the wing. Instead, we find that our groups occur
close to one another anatomically. We therefore consider these
groups good candidate functional units for models intended to
simplify the complex kinematics of bat flight.

A simplified way to report our results from analysis of
temporal correlation among joints to specify three coherent joint
assemblages: (1) wing spreading and finger-bending (2) angle
of the wrist relative to body pitch and elbow bending, and (3)
actuation of the medial portion of the wing by the shoulder, hip,
and knee. A simplified model that moved the joints within a group
as a unit might have just one degree of freedom per group, but
describe a great deal of motion present in an actual bat wing
during flight.
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The composition of joint angles in the first group demonstrates
that the fingers are not spread in unison during flight; the angle
between digits III and IV changes with different timing from the
spread among digits IV, V, and the forearm. Similarly, bending at
the mid-digital (metacarpophalangeal) joint does not occur in
synchrony among all digits. While metacarpophalangeal bending
of joints III and IV is tightly coupled, this pair moves indepen-
dently of metacarpophalangeal joint V. This might facilitate bulk
movement of air along the surface of the wing during a wingbeat
cycle.

That the three carpometacarpal angles in group two move
together simply means that metacarpophalangeal flexion/exten-
sion occurs in synchrony for digits III, IV, and V. Indeed, their
amplitudes of motions are similar, and the membrane between
them moves like a flat surface hinged at the wrist throughout the
wingbeat cycle. In this sense, modeling the portion of the wing
closest to the wrist as a simple flapping plate may be appropriate
for many kinds of studies. Interestingly, this ‘plate’ moves in
synchrony with elbow angle.

The third group consists of motion of the wing at the regions
where it attaches to the body. This includes motion at the
humerus (craniocaudal and dorsoventral motion), and the hip
(craniocaudal, dorsoventral, and rotational movements). This
group of joints is more likely to move together for aerodynamic
reasons than for musculoskeletal ones, since the branches of the
CNS innervating the fore and hindlimbs are distinct. Airflow over
the proximal wing likely requires correlated motions at the
leading and trailing edges of the wing.
4.4. Predictions and future validation

If the three synchronously moving groups we have described
result from neuroanatomical compartmentalization of the flight
apparatus, this might be further elucidated by detailed EMG of the
flight muscles, building on the work on shoulder muscle activity
in bats during flight done by Hermanson and Altenbach (1983,
1985). Detailed anatomical description of C. brachyotis would be
necessary as a first step though, since the attachment of intrinsic
wing and hindlimb muscles can vary substantially among species,
and have not been described for our focal species. Predictions
from our data of how muscle activation timing should occur are
further complicated by the fact that we do not know the spatial or
temporal distribution of aerodynamic forces along the wing. Like
ground reaction forces in terrestrial locomotion (Roberts and
Belliveau, 2005; Schmidt, 2006), these would have considerable
influence on the timing of muscle activation.

For modeling purposes, we recommend these groups of joints
as candidates for models of neuromuscular and aerodynamic
control, and for modeling of bat flight where the actual kinematics
possesses too many variables for the model in question. Our three
joint groups provide an intermediate between the stiff, non-
flapping wing that has been used for modeling previously, and the
highly complicated wing kinematics of bats that make modeling
so difficult. Validation of the utility of our three functional units
for studies of aerodynamics could be achieved through a
computational fluid dynamic models such as FastAero, of the
kind described by Willis et al. (2007), comparing fully recon-
structed wake patterns from full kinematic reconstruction to the
aerodynamics inferred based on simplified models that use our
three groups.

Our analysis of dimensional complexity has uncovered in-
formation useful for the capture and analysis of kinematic data
involving bats, and has resolved three functional groups upon
which neurobiological and aeromechanic studies can be based.
We have demonstrated that bat flight, though very complex, can
be simplified in a meaningful way. Our methods should also be
applicable to other kinematic studies, where simplified models
are desired.
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faced bat Rousettus aegyptiacus (É. Geoffroy) (Mammalia, Chiroptera). Zoo-
morphology 73 (1), 1–44.

Norberg, U.M., 1976a. Aerodynamics, kinematics and energetics of horizontal
flapping flight in the long-eared bat Plecotus auritus. J. Exp. Biol. 65 (1),
179–212.

Norberg, U.M., 1976b. Some advanced flight manoeuvres of bats. J. Exp. Biol. 64 (2),
489–495.

Norberg, U.M., Rayner, J.M.V., 1987. Ecological morphology and flight in bats
(Mammalia, Chiroptera)—wing adaptations, flight performance, foraging
strategy and echolocation. Philos. Trans. R. Soc. London B—Biol. Sci. 316
(1179), 337–419.

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space.
Philos. Mag. 2, 559–572.

Rayner, J.M.V., 1999. Estimating power curves of flying vertebrates. J. Exp. Biol. 202
(23), 3449–3461.

Rayner, J.M.V., Aldridge, H.D.J.N., 1985. Three-dimensional reconstruction of
animal flight paths and the turning flight of microchiropteran bats. J. Exp.
Biol. 118 (1), 247–265.
Riskin, D.K., Hermanson, J.W., 2005. Independent evolution of running in vampire
bats. Nature 434 (7031), 292.

Riskin, D.K., Bertram, J.E.A., Hermanson, J.W., 2005. Testing the hindlimb-strength
hypothesis: Non-aerial locomotion by Chiroptera is not constrained by the
dimensions of the femur or tibia. J. Exp. Biol. 208 (7), 1309–1319.

Riskin, D.K., Parsons, S., Schutt Jr., W.A., Carter, G.G., Hermanson, J.W., 2006.
Terrestrial locomotion of the New Zealand short-tailed bat Mystacina
tuberculata and the common vampire bat Desmodus rotundus. J. Exp. Biol.
209 (9), 1725–1736.

Roberts, T.J., Belliveau, R.A., 2005. Sources of mechanical power for uphill running
in humans. J. Exp. Biol. 208 (10), 1963–1970.

Rosen, M., Spedding, G.R., Hedenström, A., 2004. The relationship between
wingbeat kinematics and vortex wake of a thrush nightingale. J. Exp. Biol.
207 (24), 4255–4268.

Schmidt, M., 2006. Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri
sciureus): a cineradiographic study of limb kinematics and related substrate
reaction forces. Am. J. Phys. Anthropol. 128 (2), 359–370.

Spedding, G.R., 1987. The wake of a kestrel (Falco tinnunculus) in flapping flight.
J. Exp. Biol. 127 (1), 59–78.

Spedding, G.R., Rayner, J.M.V., Pennycuick, C.J., 1984. Momentum and energy
in the wake of a pigeon (Columba livia) in slow flight. J. Exp. Biol. 111 (1),
81–102.

Spedding, G.R., Rosén, M., Hedenström, A., 2003. A family of vortex wakes
generated by a thrush nightingale in free flight in a wind tunnel over its entire
natural range of flight speeds. J. Exp. Biol. 206 (14), 2313–2344.

Swartz, S.M., Bennett, M.B., Carrier, D.R., 1992. Wing bone stresses in free flying
bats and the evolution of skeletal design for flight. Nature 359 (6397),
726–729.

Swartz, S.M., Groves, M.S., Kim, H.D., Walsh, W.R., 1996. Mechanical properties of
bat wing membrane skin. J. Zool. 239, 357–378.

Tangorra, J.L., Davidson, S.N., Hunter, I.W., Madden, P.G.A., Lauder, G.V., Dong, H.,
Bozkurttas, M., Mittal, R., 2007. The development of a biologically inspired
propulsor for unmanned underwater vehicles. IEEE J. Oceanic Eng. 32 (3),
533–550.

Tian, X., Iriarte-Diaz, J., Middleton, K.M., Galvao, R., Israeli, E., Roemer, A.,
Sullivan, A., Song, A., Swartz, S.M., Breuer, K.S., 2006. Direct measurements of
the kinematics and dynamics of bat flight. Bioinspiration Biomimetics 1,
S10–S18.

Todorov, E., Ghahramani, Z., 2004. In: Engineering in Medicine and Biology
Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE,
2004.

Tresch, M.C., Cheung, V.C.K., d’Avella, A., 2006. Matrix factorization algorithms for
the identification of muscle synergies: evaluation on simulated and experi-
mental data sets. J. Neurophysiol. 95 (4), 2199–2212.

Tripp, B.L., Uhl, T.L., Mattacola, C.G., Srinivasan, C., Shapiro, R., 2006. A comparison
of individual joint contributions to multijoint position reproduction acuity in
overhead-throwing athletes. Clin. Biomech. 21 (5), 466–473.

Vaughan, T.A., 1959. Functional morphology of three bats: Eumops, Myotis,
Macrotus. Univ. Kansas Publ. Mus. Nat. Hist. 12 (1), 1–153.

Watts, P., Mitchell, E.J., Swartz, S.M., 2001. A computational model for estimating
the mechanics of horizontal flapping flight in bats: model description and
validation. J. Exp. Biol. 204 (16), 2873–2898.

Willis, D.J., Kostandov, M., Riskin, D.K., Peraire, J., Laidlaw, D.H., Swartz, S.M.,
Breuer, K.S., 2007. Modeling the flight of a bat (Science Magazine Feature).
Science 317 (5846), 1860.


	Quantifying the complexity of bat wing kinematics
	Introduction
	Dimensional complexity of bat flight
	Proper orthogonal decomposition
	Goals of the study

	Methods
	Video recording of the bat
	Post-processing of kinematic data
	Proper orthogonal decomposition
	Measuring changes in dimensional complexity with flight speed
	Testing the efficacies of kinematic marker positions
	Finding groups of joint angles that move together

	Results
	Wingbeat kinematics
	Proper orthogonal decomposition
	Changes in dimensional complexity with speed
	Testing the efficacies of kinematic marker positions
	Assignment of joint angle groups

	Discussion
	Quantification of dimensional complexity
	Selection of marker sets for studies of kinematics
	Number of anatomical markers to be used
	Hindlimbs
	Hip and shoulder
	How much dimensional complexity is needed?

	Functional groups of joints in the flight apparatus of bats
	Predictions and future validation

	Acknowledgments
	Supplementary information
	References


