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Abstract

A three-dimensional model with simplified geometry for the coronary artery is pre-
sented. In particular, both bifurcation and multi-planar curvature are included in the
geometry of the computational domain. The model takes into account the repetitive
variation of curvature and motion to which the vessel is subject during each cardiac
cycle. It also accounts for the phase difference between arterial motion and flowrate
that may be nonzero for patients with aortic regurgitation. An arbitrary Lagrangian
Eulerian (ALE) formulation of the unsteady, incompressible, three dimensional Navier-
Stokes equations is employed to solve for the flow field, while a velocity smoothing
method is used for updating the computational mesh. Numerical simulations are per-
formed using the spectral/hp element method. The results suggest that the combined
effect of pulsatile inflow and dynamic geometry has significant influence on the flow dy-
namics and wall shear rate in a model of a coronary artery at bifurcation. Specifically,
the main findings of this work relate to the time-variation of flowrate ratio between
the two branches, and the change in shear rate distribution on the myocardial wall,
especially for nonzero phase difference.
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1 Introduction

Histology studies have shown that atherosclerosis is likely to develop in preferred locations,
including the inner walls of curvatures of carotid and coronary arteries [1, 2]. Some studies
also have shown that intimal thickening that leads to atherosclerosis is often observed at
bifurcations on the outer wall of side vessel, opposite to flow divider [2, 3]. It is widely
believed that the complex flow field occurring in curvatures and bifurcations of large and
medium arteries is related to the development and progression of the disease. Specifically, it
has been shown that there is a positive correlation between atherosclerosis lesion locations
and low and oscillating wall shear stresses [2, 4].
Numerical studies based on rigid, idealized [5, 6] as well as realistic [7, 8] model geometries

were found to be useful in understanding the unique complex features associated with these
flows. The majority of these investigations were focused on the geometry, pulsatile flow and
non-Newtonian behavior of blood in non-moving vessels. The effect of distensible wall on the
local flow field was analyzed in [9, 10]. Some authors have suggested that the flexibility and
motion of coronary artery during each contraction and expansion of the heart is important
in the study of the flow dynamics. Several investigations used models where the vessel was
represented by a single flexible tube [11, 12, 13].
Comparatively less is known about the effects of vessel movement on the blood flow pat-

terns in coronary arteries at bifurcation. However, it is known that as coronary artery passes
across the surface of the heart, small branches come off and end in a rich network of arteries
and capillaries [14]. In [11] a realistic arterial motion was simulated based on biplane cinean-
giograms in human right coronary arteries but without considering any branches. Weydahl
& Moore were among the first to consider the model of coronary artery at bifurcation with
time-varying geometry in [15]. They showed that the effects of curvature variation are im-
portant in determining temporal wall shear stress variations. However, they only considered
steady inflow in their studies.
The objective of the present work is to analyse the combined effect of dynamic geometry

and pulsatile inflow on the flow dynamics and wall shear rate in a model of a coronary artery
at bifurcation. This will allow us to account for any phase lag between the two unsteady
phenomena that may arise in cardiac disease. In the simulation, the main problem is how best
to represent the curvature of the arterial segment for which computation is performed, and
also the temporal variation of curvature, for both branches of the bifurcation. Approximately,
one can consider the systolic phase of the cardiac cycle in-health as involving two main events.
The first one is characterized by the beginning of ventricular contraction, during which very
little of the contents of the ventricles is ejected. However, the cardiac muscle tends to
squeeze shut the intramural arteries, thereby markedly increasing outflow resistance for the
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blood flow in the epicardial coronary arteries which supply them. This, in turn, attenuates
the flowrates in the epicardials, and there is increase in curvature in the epicardials. The
second event is characterized by the ventricular contraction, in which most of the ventricular
ejection occurs. Since the volume enclosed by the ventricles is reduced, the curvature of the
epicardials tends also to be increased further. The ejection fraction (the percentage of the
blood volume in a ventricle at the beginning of systole which is ejected by the end of systole)
may vary for reasons well-known to physiologists. Therefore, the variation in curvature may
vary correspondingly, but the trend is there. For the diastolic phase in the cardiac cycle the
ventricles are re-filled, the intramural arteries fill out and, with the corresponding decrease
in outflow resistance, the flow in the epicardials increases. Correspondingly, the curvature
of the epicardials decreases as the blood volume in the ventricles rises.
In cardiac disease other effects can arise. For example, if there is an infarcted region of

myocardium, the cardiac muscle in that region will not contract like healthy muscle, so the
epicardial blood flow variation may be changed, as well as the deformations of the ventricular
wall masses. If the infarct is due to current thrombotic obstruction, outflow resistance in
the corresponding intramural segments is not relieved in diastole. Matsuo et al. [16] have
connected change in phasing information to aortic regurgitation. They used a bidirectional
Doppler flowmeter catheter to examine coronary flow velocity in patients who had aortic
valve disease. The results showed a decreased diastolic and increased systolic coronary flow.
In some cases the diastolic flow velocity was less than systolic. These flow velocity patterns
became very dominant in severe aortic regurgitation. Such phenomena have a direct effect
on the phase difference between the arterial motion we study and the pulsatile inflow we
impose in our models.
While approximate values for epicardidal artery curvature and its variation through a

heartbeat are known, precise values are problematic to obtain. Cardiac muscle has a com-
plicated, multi-layered structure with muscle fiber orientation varying in the depth of the
ventricular walls. Stevens & Hunter describe a model for pig hearts [17]. Estimation of the
phasic variation of coronary artery blood flow, as described recently in [18] involved con-
straining the form of the velocity profile across the vessel radius, a rather strong assumption
that we do not adopt in the present work. Similarly, current modeling of ischemic situations
as exemplified in [19] shows that, while progress has been made in representing constituent
aspects, there is still much to be done to achieve a functional model.
The alternative route of seeking geometric information from experiment, as in [11], also

has its limitations. Biplane or multiplane angiograms taken in vivo are useful for estimating
axes of vessel segments through the cardiac cycle but do not register lumenal diameters or
details sufficiently accurately, and do not show artery wall tissue characteristics. Intravascu-
lar ultrasound can supply lumenal geometry and wall tissue information but does not of itself

3



find vessel curvature, takes some time to generate in vivo, and is limited to larger-diameter
coronary vessels. MRI, while potentially providing geometric information and wall structure
details for coronary arteries, is still not at a state-of-art where spatial resolution is as good as
desired for the current study. Thus, to explore fluid dynamic features of curvature variation
as well as curvature and flow pulsatility we have chosen to examine flow in a branched vessel
model with prescribed but representative values for the parameters.

2 Basic Assumptions
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Figure 1: Geometry of the bifurcation and coordinate system. The dimensions are in mm.

A three-dimensional geometry model is built as an analytical intersection of two cylin-
drical tubes which lie on a sphere that represents an idealized heart surface (Figure 1). The
heart motion is simulated by changing the sphere radius, R. In [20] the dynamics of coro-
nary artery curvature was obtained from biplane cineangiograms. The results of this study
suggest that there is significant harmonic content up to 6 Hz in curvature variation and this
was taken into account in the numerical studies in [15, 21]. Here we have adopted the same
range of parameters as in [15, 21] and take the frequency of sphere radius variation to be
5Hz, thus the period is T = 0.2s. More specifically, R is specified as a sinusoidal function

R(t) = R0(1 + δsin(2πt/T )),

where the mean sphere radius R0 is set to 56.25 mm. Three different values of parameter
δ were used in simulations, 0.0, 0.1 and 0.3. In addition, two cases were considered with
δ = 0.0 and R equal to 50.625 and 61.875 mm, i.e., minimum and maximum radii for the
dynamic case with δ = 0.1.
The tubes have a circular cross section with constant diameters of D1 = 3 mm and

D2 = 1.5 mm. At time t = 0 the length of the segments AB, BC and BD are equal to
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10.125, 24.0 and 12.375 mm, respectively. The lengths of arterial segments are fixed in
time so that the total volume of the model remains constant. The junction angle θ is equal
to 45◦, which is different than the bifurcation modeled in [15]. The origin of the cartesian
coordinate system is at the center of the sphere. The axis of the large tube is located in the
xy-coordinate plane while the small tube is in the z > 0 half-space. The point of intersection
of the tube axes B lies on the x-coordinate axis during the entire cardiac cycle. Thus, the
total motion of the model can be separated into a solid body movement and a deformation
due to curvature variation. The blood is assumed to be incompressible, Newtonian and
homogeneous fluid. The flow is three-dimensional and unsteady, and the Reynolds number
defined by Re = D1U0/ν is equal to 300, which is a typical value for blood flow in large
coronary arteries. Here U0 is the mean inflow velocity.

3 Methods and Verification
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Figure 2: Wall shear rate versus polynomial order (p-refinement). The wall shear rate is
extracted along the myocardial wall (δ = 0.0, ε = 0.0). The distance is measured from the
intersection point of the tube axeses (point B in figure 1) and normalized by the large tube
diameter D1.
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The three-dimensional, unsteady, incompressible Navier-Stokes equations are cast in an
arbitrary Lagrangian Eulerian (ALE) frame and solved using the parallel solver NEKTAR
that employs the new generation of spectral/hp element methods [22]. The underlying mesh
involves standard finite elements consisted of hexahedra or tetrahedra while convergence is
obtained by a dual path: either by h-refinement (increasing the number of elements) or by
p-refinement (increasing the polynomial expansion order). This dual resolution distribution
allows good load balancing for parallel computation and robustness in the quality of the
solution to relatively large mesh deformations.
In the ALE formulation the mesh moves with an arbitrary velocity, therefore the formu-

lation is appropriate for problems with computational domains that are changing in time.
There are typically two steps in the development of the mesh for such an ALE simula-
tion: First, the construction of the mesh, and second, its updating during the computation.
Both steps are important and can affect the accuracy of the solution [23]. The mesh was
constructed using the commercially available mesh generator Gridgen [24], which is appro-
priate for polymorphic elements. The initial domain corresponds to the model geometry
with sphere radius R equal to R0. The mesh consists of 6,649 tetrahedral elements. The
three-dimensional surface discretization of the domain is shown in Figure 2(left). In the
second step, a velocity isotropic smoothing method is used for updating the mesh. In par-
ticular, given the velocity W on moving surfaces of the domain this method is applied to
find the spatial distribution of W such that element distortion is minimized. More advanced
techniques can also be used [23, 25], however this smoothing method produced good results
in this study. At each time step, the mesh velocity W is obtained by solving ∇2W = 0
with Dirichlet conditions on the boundary of the computational domain. The advantage of
the ALE formulation combined with high-order is that the simulation can be run without
remeshing during computations. Although, as mentioned earlier, the mesh updating method
used in this study is not the most efficient, no degradation in the mesh quality was observed.
As was detailed in the introduction, the normal pattern of coronary flow velocities is

characterized by a small forward flow during systole and a large forward flow during diastole.
A rather complicated coronary flow velocity waveform was measured using doppler flowmeter
catheter in [16]. However, due to lack of detailed information here we use a simple time-
dependent sinusoidal function to represent this effect. More specifically, at the inflow the
pulsatile flat velocity profile is specified

U(t) = U0(1 + ε sin(2πt/T +
απ

180
)), U0 = 400 mm/s.

Note that here we allow for a phase difference α between the flowrate and the arterial
motion; we will investigate systematically this difference for four different values of α in the
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δ 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1min∗ 0.1max∗ 0.3 0.0 0.3 0.3
ε 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.3 0.3 0.3

α(deg) 0 0 0 0 90 180 270 0 0 0 0 0 180

Table 1: Summary of cases simulated.

next section. The parameter ε is set to 0 for simulations with constant inflow velocity. In
pulsatile cases, ε is set to 0.1 or 0.3. At the two outflow sections (main and side branch)
a constant pressure and zero normal derivatives of velocity are imposed; no-slip conditions
are used at the vessel walls. To obtain a time-periodic solution the simulations were run for
three time periods, 3T .
To ensure mesh-independence of the computational results, several resolution studies

were performed. The mesh was fixed at a position with the sphere radius R equal to R0.
The resolution was then increased by increasing the polynomial expansion order in each
element, i.e. by p-refinement. Due to the sharp edge at the junction of arterial segments
there is a numerical singularity in solution. It is localized in small region close to junction
and does not seem to affect the results in other parts of domain. A typical plot of the
convergence rate by p-refinement is shown in Figure 2(right). Here, the values of wall shear
rate, extracted along the curve on the myocardial wall, are plotted against the distance from
the intersection point of tube axeses of the model, normalized by the large tube diameter
(D1). In all simulations described below fifth-order (p = 5) polynomial expansion was used
uniformly for all elements. The time step independence of the results was verified for the
case with dynamic curvature variation (δ = 0.1) and pulsatile inflow (ε = 0.1). The time
step was divided by two and computational results were compared against the results with
the original timestep; no differences were found.

4 Results

A summary of the cases we have simulated is shown in table 1. In two cases marked with
∗ the geometry was fixed at the minimum and maximum radii for the dynamic case with
δ = 0.1, which correspond to R equal to 50.625mm and 61.875mm, respectively.

In the following we present results for representative cases only.
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Velocity field and secondary flow structure

In most simulations the main features of the flow are quite similar to the results with steady
inflow and static geometry (δ = 0.0 and ε = 0.0). The core of the flow in the main branch is
shifted towards the epicardial wall. The secondary flow structure in selected cross-sections
of the main branch is shown in Figure 3. There is a Dean type vortex structure in the main
branch, which is typicaly seen in flows in curved tubes. The fluid moves from the myocardial
wall to the epicardial wall along the diameter, and then returns to the myocardial wall along
the sides of the tube, forming two counter-rotating vortices. The vortical structures are
symmetric before one large tube diameter D1 from the point of intersection of tube axeses.
The presence of a side branch results in the skewing of vortices and loss of symmetry, which
can be seen up to three large tube diameters beyond the bifurcation. The shift of the flow
core towards the epicardial wall in the main branch results in an overall rotating fluid motion
in the side branch beyond the bifurcation, which shortly disappears due to viscous forces
(not shown here). The secondary flow is weak in the side branch (about four small tube
diameters from the bifurcation), and counter-rotating vortices are hardly seen.
The dynamic geometry and pulsatile inflow can significantly change the secondary flow

structure. In Figure 4 we show the effect of the motion and variation of curvature during
each cardiac cycle on the secondary flow structure for the simulation case with parameters
δ = 0.3 and ε = 0.0. The secondary flow structure in the main branch is shown at a fixed
cross-section beyond the bifurcation at different time moments during the simulation cycle.
We see that there is a significant qualitative change in the flow patterns for the four phases
shown in the figure, which are different from the stationary case.

Flowrate through the branches

The dynamic geometry and pulsatile inflow affect the flow distribution between the two
branches of the model. Figure 5 shows the variation of the flowrate ratio between the main
and the side branch during the periodic cycle for different simulations. In all simulations
there is a phase difference between variation of curvature or inflow velocity and flowrate ratio
variation. In the simulation with fixed averaged geometry and steady inflow the flowrate
ratio between the side and the main branch is 0.123. Both dynamic geometry and pulsatility
can result in more than 20% change in the value of the flowrate ratio. In the simulation
with dynamic geometry and steady inflow (δ = 0.1, ε = 0.0), the variation is clearly due to
the motion of the artery as it lies on the surface of the simulated heart. The difference in
flowrate through the side branch is found to be insignificant in quasi-static simulations, when
the geometry is fixed with mean, minimum and maximum curvature radii. The combined
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Figure 3: Secondary flow structure for the reference case (δ = 0.0, ε = 0.0). The flow is out
of the page and the bifurcation point is at D/D1 = 0.0.

effect of dynamic geometry and pulsatile inflow depends strongly on the phase difference
angle α. In the simulation with α = 90◦ the variation is the least of all simulated cases (less
than 5%). The maximum variation is observed for α = 270◦ and is equal to 51%.

Wall Shear Rate

Next we examine the distribution of the wall shear rate (WSR) at selected cross-sections
of the main and side branch. The cross-sections are taken perpendicular to the tube axes
at certain distances from the intersection point of axeses of main and side branches. The
distance is normalized by the large or small tube diameter for the main or side branch cross-
sections, respectively. The extracted values of the WSR are normalized by the magnitude of
the wall shear rate in a straight pipe with the same diameter, flowrate and Reynolds number.
The same normalization of WSR is used for all results presented in this section. For the
simulation with steady inflow and fixed (in the mean) position geometry (δ = 0.0, ε = 0.0)
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Figure 4: Secondary flow structure for the case (δ = 0.3, ε = 0.0) The flow is out of the
page (D/D1 = 1.0).

the highest values of the WSR are observed on the side branch wall of the main branch
beyond the bifurcation. In general, WSR is lower on the myocardial wall of the main branch
than on epicardial wall, which can be related to the curved geometry of the model. Low
values of WSR are also observed on the outer wall of the side branch close to bifurcation.
The effect of curvature on the WSR distribution is not pronounced in the side branch. In
general, the time-averaged WSR of all the simulations we studied give results similar to
the steady inflow and fixed geometry case (see Figure 6). This is consistent with previous
findings in [11, 15] but somewhat surpising due to the large temporal variation especially for
certain values of the phase difference, as we shall see next.
The effect of dynamic geometry (δ = 0.1, ε = 0.0) on the wall shear rate is shown in Figure

7. The variations of WSR along the myocardial wall of the main branch are significant in
comparison to its low mean. The region of the largest variation of WSR during the cycle is
located on the surface of the side branch. This can be attributed to the significant variation
of the flowrate through the branch.
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Figure 5: Flowrate ratio time-variation for different simulation cases.

The effect of pulsatile inflow on WSR (δ = 0.0, ε = 0.1) is shown in Figure 8. The
variation of WSR during the cycle is large, in comparison to the simulation with dynamic
geometry and steady inflow. This is in agreement with the results reported in [11] for a single
coronary artery without a side branch. In our case, this can be related to the variation of
the total mass flow through the model.
Results related to the combined effect of pulsatility, unsteady geometry, and phase dif-

ference on mean (i.e., time-averaged) values and variation of WSR during the periodic cycle
are shown in Figures 9 to 12. Results are shown for the simulation cases with parameters
δ = 0.1, ε = 0.1 and phase difference α equal to 0, 90, 180 and 270 degrees. The depen-
dence of the variation of WSR in the main branch on the phase difference is found to be
less pronounced before the bifurcation than after. For the simulation cases with α = 90◦

and α = 180◦ the variation of WSR before the bifurcation in the main branch is larger on
the myocardial wall than on epicardial. The opposite is observed in simulations with α = 0◦
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Figure 6: Normalized time-averaged wall shear rate extracted along the myocardial wall for
different simulation cases.

and α = 270◦. One large tube diameter beyond the bifurcation in the main branch, both
minimal and maximal variations of WSR are observed in simulation with phase difference
equal to 270 degrees. More specificaly, the minimum is located on the myocardial wall, while
the maximum on the side branch wall. At the same time, maximal variation of the WSR on
the myocardial wall and minimal variation on the side branch wall are observed in simulation
with α = 90◦. The magnitude of the time-dependent WSR on the myocardial wall becomes
very low during the periodic cycle in this simulation. Further beyond the bifurcation the
dependence of the WSR variation on the phase difference becomes less pronounced. In the
side branch the overall variation of the WSR depends strongly on α. Minimal variation is
observed when α = 90◦ while maximal variation is observed when α = 270◦. In the latter
case, the minimum of the magnitude of the WSR on the outer wall of the side branch during
the periodic cycle is very low.
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Figure 7: Wall shear rate, mean (time-averaged), and variation during the periodic cycle.
The cross-sections are taken perpendicular to the tube axes at certain distances from the
intersection point of axeses of main and side branches. The distance is normalized by the
large or small tube diameter for the main or side branch cross-sections, respectively. The
extracted values of the WSR are normalized by the magnitude of the wall shear rate in a
straight pipe with the same diameter, flowrate, and Reynolds number. The results shown
are for the case with dynamic geometry and steady inlow (δ = 0.1, ε = 0.0).
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Figure 8: The effect of pulsatile inflow on WSR (δ = 0.0, ε = 0.1). Same legend as in Figure
7.
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Figure 9: The combined effect of dynamic geometry, pulsatile inflow and phase difference
angle on the mean values and variation of WSR during the periodic cycle. Simulation
parameters: δ = 0.1, ε = 0.1, α = 0.
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Figure 10: Same legend as in Figure 9. Simulation parameters: δ = 0.1, ε = 0.1, α = 90.
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Figure 11: Same legend as in Figure 9. Simulation parameters: δ = 0.1, ε = 0.1, α = 180.
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Figure 12: Same legend as in Figure 9. Simulation parameters: δ = 0.1, ε = 0.1, α = 270.
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Effect of the variation amplitude on NWSRA

To characterize the variation of WSR during the cycle we use the normalized wall shear
rate amplitude (NWSRA). This quantity was introduced in [12] and also used in [15] as this
quantity may be more relevant to atherogenesis reserach compared to the dimensional WSR
amplitudes, which are of more interest from a fluid dynamics perspective. It is defined as the
difference between the maximum and minimum values of the WSR during the cycle, divided
by the mean (δ = 0.0, ε = 0.0) WSR.
In general, in all simulations the increase of parameters δ and ε results in increase of

the variation of flowrate ratio between branches and wall sheat rate. Figure 13(a) shows the
NWSRA for the simuation with dynamic geometry and steady inflow (δ = 0.1, ε = 0.0). The
values are extracted along selected lines on the myocardial and epicardial walls of the main
branch, and the inner and outer walls of the side branch. The distance is measured from
the intersection point of the tube axeses and normalized by the large tube diameter D1. In
Figure 13(b) we can see similar results for the simulation with the amplitude of curvature
variation three times larger (δ = 0.3, ε = 0.0). The values of NWSRA are proportionally
larger compared to the case with δ = 0.1.

Combined effect of δ, ε and α on NWSRA

Figure 14 demonstrates the combined effect of curvature, inflow velocity and phase difference
variations on NWSRA. The values of the NWSRA are extracted along the myocardial wall
of the main branch. The distance is measured from the intersection point of tube axeses and
normalized by large tube diameter.
We can subdivide the figure into three vertical regions. The first region coresponds to

the part of myocardial wall, located before the intersection point of axeses, which is marked
with 0 (zero on the horizontal axis) in the figure. The second region extends from this point
up to three large tube diameters. The third region includes the rest of the figure. In the first
and third regions the main contribution to the NWSRA is from the pulsatility of the flow.
The extracted values for non-pulsatile simulation are significantly lower. The dependence
of the NWSRA on the phase difference α is found to be strong and can change the results
even qualitatively as shown in the figure for region two. In general, in the second region, the
dependence of the NWSRA on the simulation parameters is less intuitive. In two simulation
cases, (δ = 0.0, ε = 0.1, α = 0◦) and (δ = 0.1, ε = 0.1, α = 270◦), the distribution of
NWSRA differs significantly from other cases. More specifically, there is a local minimum
approximately 0.9 large tube diameters below the point of tube axes intersection, while in
other simulations a local maximum is observed.
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5 Summary and Discussion

In the current paper, we have presented new results for the effect of unsteady geometry on
the hemodynamics of the right coronary artery with a bifurcation; these results complement
the recently published results in [11]. In that study a realistic arterial motion was considered
but no side branches were included in the model. Our results also complement the results
reported in [15], where a bifurcation was included in the model but the inflow was steady.
In the current study we used a simplified arterial motion and investigated the effects of
the combined unsteady motion and flow pulsatility, with focus on the region around the
bifurcation. We found that the flowrate ratio between the side branch and the main branch
is influenced significantly by the combined unsteady phenomena, and more importantly
from the phase difference between them. In one case we computed more than 50% temporal
variation in the flowrate ratio!
The time-averaged levels of wall shear rate (WSR) are not affected by the unsteady

motion, in accord with the findings in [11, 15]. However, the normalized wall shear rate
amplitude (NWSRA), which measures temporal variations, is affected dramatically by the
presence of the bifurcation. In particular, the effect of unsteady geometry is to produce a
maximum of NWSRA on the myocardial wall close to bifurcation in contrast with a minimum
that is produced due to pulsatile inflow. This qualitative change in the distribution of
WSR depends strongly on the phase difference between the two unsteady phenomena, if
the combined effect of dynamic geometry and pulsatile flow is considered. We found, for
example, that for the phase difference α = 0◦; 270◦ the WSR temporal variation in the main
branch (close to the side branch) is large while the variation of WSR on the myocardial wall
is small. On the other hand, the opposite is true for the cases with α = 90◦; 180◦. These
results demonstrate the importance of phase difference, an issue that has not been modeled
before in computational studies. In experimental work, however, Matsuo et al. [16] have
addressed this issue for patients with aortic regurgitation. In particular, they found that in
patients with dominant aortic regurgitation, the low-diastolic perfusion pressure leaves the
epicardial vessels partially collapsed. Thus, with the large increase in pulse pressure during
systole, the epicardial vessels can accommodate more blood before the effects of mural and
extramural pressure become restrictive. In our model, this will change the minimum and
maximum of flowrate with respect to minimum and maximum of the dynamic curvature.
This was parameterized with the phase difference α in the current model. Matsuo et al.
found that α can vary from 0◦ to 180◦ in the 14 patients with aortic regurgitation they
examined.
So in general, in computational studies there arises an issue of representing the flow wave

form accurately. This involves three factors: First, the flow rate rising in early systole -
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typically the pressure rise early in systole is fairly rapid, so the phase of that rise is fairly
constant, barring some cardiac pathologies. Second, the time-dependence and magnitude
of coronary flow rate, the latter being highly dependent on pharmacological intervention.
Third, the point in the cardiac cycle at which the zero-flow pressure intercept is reached (or
closely approached), and the flow becomes zero (or very small).
In our model, rather than keeping the start of opening of the coronary artery flow linked

to a fixed point in the cycle, and varying the relative time-span of flow above zero, we
have kept the waveform of the coronary flow uniform among our cases described here and
varied the phase at which it started, relative to curvature of the flexing vessel. One of the
reasons to investigate this is that there can be some cardiac pathologies, which might lead
to corresponding circumstances, and shifts in mural transport which might accompany them
might then be reflected in different geometric development of lesions.
Clearly, the limitations of the current study are the idealized geometry and idealized

arterial motion. Better models can be introduced for the arterial motion by replacing the
sphere with an ellipse and allowing torsional motion as well. Also, realistic or more accurate
models for the flowrate waveform can be readily adopted. However, this introduces many
more parameters in the system that may not be required, from the fundamental understand-
ing standpoint, at this initial stage of modeling these complex phenomena. Comparing with
previous findings in the works reported in [11, 12, 13], which considered both realistic and
idealized motions but for a single artery, we see that such differences have only produced
quantitative differences. The presence of the bifurcation as well as accounting for nonzero
values of phase difference, however, seems to indicate that there are qualitative differences,
as our present findings have shown.
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Figure 13: Normalized wall shear rate amplitude. (a) (δ = 0.1, ε = 0.0); (b) (δ = 0.3,
ε = 0.0).
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Figure 14: Normalized wall shear rate amplitude extracted along the myocardial wall for
different simulation cases.
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