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Figure 1: A zoomed-in comparison between the method described 
here (left image) and a quad drawn only using the corner data 
points (right image).  The important idea is that more detailed 
information can be shown in the same quad.  This left image is 
drawn with the following data: 

427  282  640  632 
347  226  542  543 
307  200  492  494 
325  214  512  510 
 

Abstract 
We present a method to directly render data represented by high 
order polynomials on geometries using the Texture Shader in new 
graphics hardware.  This work is motivated by the larger problem 
of understanding 3D fluid flow data sets and spectral elements [1], 
a data structure for representing simulated flow data.  Our 
contributions include a way to interactively render surface data by 
evaluating and color mapping a high order Lagrange polynomial 
for every surface point in real-time.  We have implemented this 
using OpenGL and NVIDIA’s GeForce3 graphics cards.   

Related Work   Without texture maps, colors representing data 
values can only be specified at vertices of OpenGL geometries. 
Geometry tessellation is one approach to adding color (i.e., data) 
detail within an element. With texture maps, colors can be 
specified within elements, but require LOD techniques or 
choosing a texture map resolution and unfolding the textures 
across the geometry [2].  Much work has been done in these areas, 
but our approach differs in that neither texture maps representing  

 

 

 

 

 

 

 
 

 

 

Figure 2: This is the whole artery rendered with this technique.  
The element drawn in Figure 1 is taken from the highlighted 
element at the upper part of the artery. 

 
 

Figure 3:  Data locations on a 2nd order spectral element (left) and 
a finite element (right) 

 

specific color values or tessellation are used.  Further, resources 
are proportional to the dimension and order of the polynomial, not 
the number of elements in a given problem.   

Our Work   Our method has two stages.  In order to derive data 
values between quadrature points (see definitions), we use the 
Lagrange polynomial.  Its formula for one variable is as follows: 

This can be extended to two and three variables.  We begin by 
pre-calculating the coefficients for the polynomial (the ℓ 
-values).  During runtime, we perform a dot product on these 
coefficients and the data values (the ƒ-values).   
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Calculating Lagrange Polynomial Coefficients   After an element 
is mapped from world space into canonical space, its quadrature 
points are the same as every other elements.  Since the Lagrange 
polynomial’s coefficients depend on the location of the quadrature 
points, the coefficients are also the same for each element.  These 
coefficients are pre-calculated, and then stored into a set of texture 
maps.  Each pixel must have enough information to calculate the 
complete Lagrange polynomial for its corresponding point, so n2/3 
textures are needed to store the n2

 coefficients, each texture 
storing 3 values (in the red, green and blue channels).  Because 
these RGB values are clamped to [0…1], there is one set of 
textures to store the negative values and one set of textures to 
store the positive values.  The coefficients are also scaled down to 
fit them within the [-1...1] range.   

Displaying the Data   Using the Texture Shader we are able to 
perform a real-time dot product between the RGB values in one 
texture and texture coordinates we pass.  We store the polynomial 
coefficients in a set of textures and pass data values as texture 
coordinates, so the resulting dot product is the solution to the 
Lagrange polynomial.  Each pass only computes a dot product of 
3 terms, so we additively blend each pass of textures that store 
positive coefficients, and then subtractively blend textures that 
store negative coefficients.    The result is the sum of all the terms 
in the Lagrange polynomial, which gives us the derived data 
values between data points.  The following is the pseudo code for 
the algorithm: 

OpenGL Implementation Overview 

Pre-Process 
load data values 
load pixel shader and texture shader 
pre-compute Lagrange polynomial coefficient textures 

Render 
glEnable(GL_BLEND); 
glBlendEquation(GL_FUNC_ADD); 
glBlendFunc(GL_ONE, GL_ONE); 

For every point: 
glTexCoord0(canonical coordinates); 
glTexCoord1(all pressure values); 
glVertex(world coordinates); 

Texture Shader 
texture_2d(); 
dot_product_2d_1of2(tex0); 
dot_product_2d_2of2(tex0); 

Summary and Conclusion    We have presented an approach to 
render high order data within a polygon without tessellation or 
generating specific textures for every element.  We do so by using 
the Texture Shader to perform a real-time dot product, calculating 
the Lagrange polynomial to produce an image.   

The advantage of our approach is that all of the data computed is 
accurately rendered.  The real-time calculations of the Lagrange 
polynomial also allow us to visualize the data interactively.  For 
example, the data can be scaled differently prior to computing the 
dot product to let a scientist look at a certain region in more detail.  
This is shown in Figures 1 and 2.  Figure 2 is scaled so the 
scientist can see the data for the whole artery, while Figure 1 is 
scaled so the scientist can focus on the data within a specific 
element (the highlighted element on the upper part of the artery).  
If there are data for multiple time steps, they can easily all be 

loaded and animated to let the scientist see the change in data over 
time.   

Another advantage is that the amount of texture memory required 
is fixed.  It is only dependant on the order and dimension of the 
data given, not the geometric complexity.  Thus rendering our 
artery dataset with 704 elements or our coil dataset with 3332 
elements takes the same amount of texture memory.   

This approach can also be extended to use 3D textures to draw the 
internal data within a spectral element.  The scientist could use 
this tool to look at cross sections of data.  We have rendered cross 
sections within a single element, but rendering a cut plane that 
spans multiple elements is future work.   

Resources   
Order Textures(Passes) Texture Memory (MB) 
1 6 9 
2 12 16 
3 18 25 
n  2*(n+2)2/3 2*(n+2)2*2562*8 bytes 
Performance   
Order FPS  (artery) FPS (coil) 
1 24.39 6.45 
2 14.92 3.79 
3 10.75 N/A 
Not using this 
method 25.64 7.57 

Definitions 
Spectral Elements - data structures that contain information 
about data at points within each geometric entity.  Finite elements 
only hold information at the vertices.  (see Figure 3) 
Canonical and World Space - each element in world space maps 
to a position in canonical space, where calculations are done.  An 
object in canonical coordinates lies within the unit cube.  In this 
case, the Lagrange polynomial is calculated with points in 
canonical space. 

Quadrature Points - for an nth order solution, the n+2 positions 
along each axis at which the data values are known without 
evaluation. 

Texture Shader - a programmable part of the hardware that takes 
texture coordinates and maps them to colors on a texture map.   
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