
Directly Rendering Spectral Elements Using Texture Shaders

Bernard Peng and Andrew Forsberg

Brown University*

Figure 1: A zoomed-in comparison between the method described
here (left image) and a quad drawn only using the corner data
points (right image). The important idea is that more detailed
information can be shown in the same quad. This left image is
drawn with the following data:

427 282 640 632
347 226 542 543
307 200 492 494
325 214 512 510

Abstract
We present a method to directly render data represented by high
order polynomials on geometries using the Texture Shader in new
graphics hardware. This work is motivated by the larger problem
of understanding 3D fluid flow data sets and spectral elements [1],
a data structure for representing simulated flow data. Our
contributions include a way to interactively render surface data by
evaluating and color mapping a high order Lagrange polynomial
for every surface point in real-time. We have implemented this
using OpenGL and NVIDIA’s GeForce3 graphics cards.

Related Work Without texture maps, colors representing data
values can only be specified at vertices of OpenGL geometries.
Geometry tessellation is one approach to adding color (i.e., data)
detail within an element. With texture maps, colors can be
specified within elements, but require LOD techniques or
choosing a texture map resolution and unfolding the textures
across the geometry [2]. Much work has been done in these areas,
but our approach differs in that neither texture maps representing

Figure 2: This is the whole artery rendered with this technique.
The element drawn in Figure 1 is taken from the highlighted
element at the upper part of the artery.

Figure 3: Data locations on a 2nd order spectral element (left) and
a finite element (right)

specific color values or tessellation are used. Further, resources
are proportional to the dimension and order of the polynomial, not
the number of elements in a given problem.

Our Work Our method has two stages. In order to derive data
values between quadrature points (see definitions), we use the
Lagrange polynomial. Its formula for one variable is as follows:

This can be extended to two and three variables. We begin by
pre-calculating the coefficients for the polynomial (the ℓ
-values). During runtime, we perform a dot product on these
coefficients and the data values (the ƒ-values).

Department of Computer Science, Brown University,
Providence, RI, 02912, {bpeng, asf}@cs.brown.edu

Calculating Lagrange Polynomial Coefficients After an element
is mapped from world space into canonical space, its quadrature
points are the same as every other elements. Since the Lagrange
polynomial’s coefficients depend on the location of the quadrature
points, the coefficients are also the same for each element. These
coefficients are pre-calculated, and then stored into a set of texture
maps. Each pixel must have enough information to calculate the
complete Lagrange polynomial for its corresponding point, so n2/3
textures are needed to store the n2

 coefficients, each texture
storing 3 values (in the red, green and blue channels). Because
these RGB values are clamped to [0…1], there is one set of
textures to store the negative values and one set of textures to
store the positive values. The coefficients are also scaled down to
fit them within the [-1...1] range.

Displaying the Data Using the Texture Shader we are able to
perform a real-time dot product between the RGB values in one
texture and texture coordinates we pass. We store the polynomial
coefficients in a set of textures and pass data values as texture
coordinates, so the resulting dot product is the solution to the
Lagrange polynomial. Each pass only computes a dot product of
3 terms, so we additively blend each pass of textures that store
positive coefficients, and then subtractively blend textures that
store negative coefficients. The result is the sum of all the terms
in the Lagrange polynomial, which gives us the derived data
values between data points. The following is the pseudo code for
the algorithm:

OpenGL Implementation Overview

Pre-Process
load data values
load pixel shader and texture shader
pre-compute Lagrange polynomial coefficient textures

Render
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE, GL_ONE);

For every point:
glTexCoord0(canonical coordinates);
glTexCoord1(all pressure values);
glVertex(world coordinates);

Texture Shader
texture_2d();
dot_product_2d_1of2(tex0);
dot_product_2d_2of2(tex0);

Summary and Conclusion We have presented an approach to
render high order data within a polygon without tessellation or
generating specific textures for every element. We do so by using
the Texture Shader to perform a real-time dot product, calculating
the Lagrange polynomial to produce an image.

The advantage of our approach is that all of the data computed is
accurately rendered. The real-time calculations of the Lagrange
polynomial also allow us to visualize the data interactively. For
example, the data can be scaled differently prior to computing the
dot product to let a scientist look at a certain region in more detail.
This is shown in Figures 1 and 2. Figure 2 is scaled so the
scientist can see the data for the whole artery, while Figure 1 is
scaled so the scientist can focus on the data within a specific
element (the highlighted element on the upper part of the artery).
If there are data for multiple time steps, they can easily all be

loaded and animated to let the scientist see the change in data over
time.

Another advantage is that the amount of texture memory required
is fixed. It is only dependant on the order and dimension of the
data given, not the geometric complexity. Thus rendering our
artery dataset with 704 elements or our coil dataset with 3332
elements takes the same amount of texture memory.

This approach can also be extended to use 3D textures to draw the
internal data within a spectral element. The scientist could use
this tool to look at cross sections of data. We have rendered cross
sections within a single element, but rendering a cut plane that
spans multiple elements is future work.

Resources
Order Textures(Passes) Texture Memory (MB)
1 6 9
2 12 16
3 18 25
n 2*(n+2)2/3 2*(n+2)2*2562*8 bytes
Performance
Order FPS (artery) FPS (coil)
1 24.39 6.45
2 14.92 3.79
3 10.75 N/A
Not using this
method 25.64 7.57

Definitions
Spectral Elements - data structures that contain information
about data at points within each geometric entity. Finite elements
only hold information at the vertices. (see Figure 3)
Canonical and World Space - each element in world space maps
to a position in canonical space, where calculations are done. An
object in canonical coordinates lies within the unit cube. In this
case, the Lagrange polynomial is calculated with points in
canonical space.

Quadrature Points - for an nth order solution, the n+2 positions
along each axis at which the data values are known without
evaluation.

Texture Shader - a programmable part of the hardware that takes
texture coordinates and maps them to colors on a texture map.

References
[1] Karniadakis, G.E. and Sherwin, S. J., "Spectral/hp Element

Methods for CFD", Oxford University Press, 1999.

[2] H. Battke, D. Stalling, and H. Hege, Fast Line Integral
Convolution for Arbitrary Surfaces in 3D, Visualization and
Mathematics (H. Hege and K. Polthier, eds.), Springer, 1997,
pp. 181--195.

