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Abstract Controversy remains regarding the neurotoxicity of
clade C human immunodeficiency virus (HIV-C).When exam-
ined in preclinical studies, a cysteine to serine substitution in
the C31 dicysteine motif of the HIV-C Tat protein (C31S) re-
sults in less severe brain injury compared to other viral clades.
By contrast, patient cohort studies identify significant neuro-
psychological impairment among HIV-C individuals indepen-
dent of Tat variability. The present study clarified this discrep-
ancy by examining neuroimaging markers of brain integrity
among HIV-C individuals with and without the Tat substitu-
tion. Thirty-seven HIV-C individuals with the Tat C31S substi-
tution, 109 HIV-C individuals without the Tat substitution
(C31C), and 34 HIV− controls underwent 3T structural mag-
netic resonance imaging (MRI) and diffusion tensor imaging
(DTI). Volumes were determined for the caudate, putamen,

thalamus, corpus callosum, total gray matter, and total white
matter. DTI metrics included fractional anisotropy (FA), radial
diffusivity (RD), and axial diffusivity (AD). Tracts of interest
included the anterior thalamic radiation (ATR), cingulum bun-
dle (CING), uncinate fasciculus (UNC), and corpus callosum
(CC). HIV+ individuals exhibited smaller volumes in subcor-
tical gray matter, total gray matter and total white matter com-
pared to HIV− controls. HIV+ individuals also exhibited DTI
abnormalities across multiple tracts compared to HIV− con-
trols. By contrast, neither volumetric nor diffusion indices dif-
fered significantly between the Tat C31S and C31C groups. Tat
C31S status is not a sufficient biomarker of HIV-related brain
integrity in patient populations. Clinical attention directed at
brain health is warranted for all HIV+ individuals, independent
of Tat C31S or clade C status.
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Introduction

HIV viral clade has been identified as a possible moderator of
HIV-related neurological outcomes (Rao et al. 2008; Sacktor
et al. 2009; Mishra et al. 2008; Ranga et al. 2004).
Approximately half of all global HIV infections are comprised
of clade C (HIV-C; (Osmanov et al. 2002; McCutchan 2006)
which is the predominant genetic strain in South Africa, India,
and regions of both Brazil and China (Hemelaar et al. 2011).
Multiple laboratory studies reveal lower neurovirulence asso-
ciated with HIV-C compared to other clades such as clade B
(HIV-B) (Rao et al. 2008; Mishra et al. 2008; Constantino
et al. 2011), which is a neuropathogenic strain prevalent in
North and South America, Australia, and Western Europe
(Chan et al. 2014). The reduced neurovirulence of HIV-C
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has been attributed to a naturally occurring cysteine to serine
substitution at position 31 (C31S) in the HIV-C Tat protein
that is highly conserved in HIV-C (Rao et al. 2008; Mishra
et al. 2008; Ranga et al. 2004). The Tat C31S substitution
results in reduced monocyte chemotaxis, astrogliosis, pro-
inflammatory cytokines, and neuronal damage when com-
pared to assays using HIV-B with a C31C Tat motif (Rao
et al. 2008; Gandhi et al. 2009). Behaviorally, mice injected
with C31S perform better on memory tests compared to mice
injected with C31C virus (Rao et al. 2008), revealing a func-
tional benefit of the HIV-C Tat polymorphism.

However, results from clinical studies indicate that the cog-
nitive phenotype of HIV-C is indistinguishable from HIV-B.
For example, Montiero de Almeida et al. (de Almeida et al.
2013) revealed no significant differences in the frequency of
mild, moderate, or severe cognitive impairment between HIV-
C andHIV-B. This is consistent withmultiple studies conduct-
ed in South Africa and India that describe significant cognitive
impairment in HIV+ adults and children (Hoare et al. 2015a;
Joska et al. 2011; Yepthomi et al. 2006; Gupta et al. 2007;
Ghate et al. 2014). More recently, our group compared cogni-
tive performances between HIV-C individuals with and with-
out the Tat C31S polymorphism and reported no significant
differences in the cognitive phenotype or severity of cognitive
impairment by Tat status (Paul et al. 2014). These findings
stand in contrast to laboratory studies reporting diminished
neurovirulence in HIV-C and raise concern that individuals
infected with the most common viral clade worldwide are
equally vulnerable to HIV-related brain disruption as individ-
uals infected with HIV-B.

One limitation of clinical studies conducted to date is the
reliance on neuropsychological definitions of brain damage.
Neuropsychological tests are potentially vulnerable to con-
founding variables (e.g., cultural relevance, participant effort
(Ostrosky-Solis et al. 2004; Rosselli & Ardila 2003)), and
even under optimal conditions, these tests may lack the requi-
site sensitivity to detect the impact of Tat variability on the
brain. Structural neuroimaging provides a sensitive and robust
method to resolve these concerns. Chronically, infected HIV+
individuals typically exhibit smaller volumes of basal ganglia
structures, total white matter, and total cortical gray matter on
magnetic resonance imaging (MRI) when compared to HIV−
controls (Ances et al. 2012; Hawkins et al. 1993; Heaps et al.
2012; Paul et al. 2002; Paul et al. 2008; Heaps et al. 2015).
Further, recent data indicate that brain volumes decline over
the course of HIV infection even in the context of viral sup-
pression (Kallianpur et al. 2016), supporting the sensitivity of
brain volume as a marker of disease pathogenesis.

Microstructural abnormalities in cerebral white matter are
also commonly reported in HIV+ individuals. HIV is associat-
ed with reduced fractional anisotropy (FA) and increased mean
diffusivity (MD) on diffusion tensor imaging (DTI) (Filippi
et al. 2001; Gongvatana et al. 2009; Leite et al. 2013; Hoare

et al. 2015b). Additional studies utilizing DTI reveal increased
radial diffusivity (RD) and axial diffusivity (AD), suggesting
damage to neuronal subcomponents including myelin and ax-
onal integrity (respectively) in HIV+ individuals (Leite et al.
2013; Chen et al. 2009). Previous work using the nonhuman
primate model of HIV revealed reduced FA within weeks of
inoculation and prior to the expression of cognitive impairment
(He et al. 2003), demonstrating the sensitivity of DTI to HIV-
related brain disruption. Further, since structural MRI and DTI
are not confounded by the same limitations inherent in neuro-
psychological testing (e.g., participant effort), the methods pro-
vide a robust approach to determine the relevance of the Tat
C31S polymorphism in patient samples.

The present study examined the neurovirulence of the two
HIV-C Tat variants (C31C and C31S) using structural MRI
and DTI. Structural brain volumes and DTI fiber bundle
tractography were examined in regions of interest (ROIs)
commonly reported in the HIV literature (Fig. 1). We predict-
ed that if present, the biological relevance of C31S would be
defined by a unique neuroimaging signature on volumetric
and diffusion indices.

Method

Participants

A total of 146 HIV+ individuals were recruited from primary
care clinics in Cape Town and the Western Cape region of
South Africa. HIV+ individuals included 37 individuals with
HIV-C with the Tat C31S substitution, 109 HIV-C individuals
without the Tat substitution (C31C), and 34 HIV− controls.
HIV− controls were recruited from local Voluntary
Counseling and Testing Clinics. Participation was voluntary
and individuals were informed they could withdraw from the
study at any time. Written informed consent was obtained
following a thorough explanation of the study procedures.
The methodological approach was approved by local
University IRB committees. Individuals received financial
compensation for their time.

Inclusion criteria included (1) Xhosa as the primary lan-
guage and (2) Age 18 to 50 years. This age range was selected
to avoid central nervous system (CNS) complications associ-
ated with neurodevelopment and advanced age (3) at least
5 years of formal education and (4) initiation of combination
antiretroviral therapy (cART) within 3 months of enrollment
for HIV+ individuals. Exclusion criteria included (1) major
psychiatric conditions (schizophrenia, bipolar disorder, post-
traumatic stress disorder, etc.), (2) neurological disease that
could affect brain integrity (e.g., multiple sclerosis), (3)
CDC stage A, (4) opportunistic infections of the CNS (e.g.,
cytomegalorvirus encephalitis, cryptococcal meningitis, toxo-
plasma encephalitis), (5) lifetime history of head injury
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resulting in loss of consciousness >30 min, and (6) current
substance use disorder as determined by the Mini-
International Neuropsychiatric Interview Plus (MINI Plus;
(Sheehan et al. 1998)).

HIV-1 viral load and CD4+ cell counts

EDTA blood samples were collected and plasma and cell ali-
quots were stored at −70 °C. RNAwas isolated from samples
using the Abbott RealTime HIV-1 amplification reagent kit.
Viral load was determined using the Abbott m2000sp and the
Abbott m2000rt analysers (Abbott laboratories, Abbott Park,
Illinois, USA). Analyses of CD4 cell count were completed on
a FACSCalibur flow cytometer using MultiSET V1.1.2 soft-
ware (BD Biosciences, San Jose, CA, USA).

PCR amplification and sequencing of Tat exon 1

We amplified the Tat exon 1 region (HXB2 position 5831–
6045) by polymerase chain reaction (PCR) using the Promega
GoTaq Flexi Kit (Promega, Madison, WI). The primer pair,
TAT-1_OF (5′-AAAGCCACCTYTGCCTAG) / TAT-1_OR
(5′-CTCATTGCCACTGTCTTCTGC), and TAT-1_IF (5′-
GTAGARGATMGATGGAACRA) / TAT-1_IR (5 ′-
CYCTAATTCTTTYAAYTAACC) were used for pre-nested
and nested PCR, respectively. Both pre-nested and nested am-
plification reactions were held at 94 °C for 2 min, followed by
40 cycles of denaturing (94 °C; 30 s), annealing (55 °C; 30 s),
and extension (72 °C; 1 min) followed by a final extension
step for 7 min at 72 °C. The PCR product was kept at 4 °C
until visualized using agarose gel electrophoresis.

To purify the PCR products, single-stranded DNA and di-
phosphates were degraded using Exonuclease 1 (Exo1) and
Shrimp alkaline phosphatase (Amersham Pharmacia Biotech.,
NJ), respectively. All PCR products were sequenced on both
strands using the BigDye Terminator Cycle Sequencing

Ready Reaction Kit and analyzed on an ABI Prism 3130xl
automated DNA sequencer (Applied Biosystems, Foster City,
CA). Sequences were analyzed and the overlapping DNA
fragments were assembled using Sequencher version 4.8
(Gene Codes Corporation, Ann Arbor, MI). Nucleotide se-
quences were translated into amino acid sequences and the
C30C31 motif or C31S mutation was recorded. The Tat exon
1 subtype was determined using online subtyping tools
COMET (http://comet.retrovirology.lu/) and jpHMM
(http://jphmm.gobics.de/).

Neuroimaging acquisition

Imaging was acquired on a 3T Siemens Allegra scanner
(Siemens AG, Erlangen Germany), with a 4-channel phased-
array head coil. A customized single-shot multi-slice echo-
planar tensor-encoded imaging sequence was used to acquire
30 unique diffusion gradient directions that were repeated to
give a total of 60 diffusion-weighted volumes. All 30 gradi-
ents were acquired at b = 1000 s/mm2. Six baseline images
were acquired and interleaved in the diffusion-weighted scans
for motion-correction. Seventy contiguous slices were obtain-
ed per contrast with a 128 × 128 matrix and field of view
(FOV) of 218 × 218 mm3 (isotropic 1.7 × 1.7 × 1.7 mm3

voxels); TR 10 s, TE 103 ms using a full-Fourier transform.
We also acqui red a T1-weighted 3-dimens ional
magnetization-prepared rapid acquisition gradient echo (MP-
RAGE) sequence [time of repetition (TR) = 2400 ms, echo
time (TE = 2.38 ms), inversion time (TI) = 1000 ms, flip
angle = 8 degrees, 162 slices, and voxel size = 1 × 1 × 1 mm3

for volumetric analyses (Fig. 2).

Volumetric analysis

Freesurfer software suite (v5.1) (Martinos Center, Harvard
University, Boston, MA, USA; http://surfer.nmr.mgh.

CC ATR UNC CING

Fig. 1 Tractography models of
white matter tracts derived from
diffusion MRI. The top row
shows tract reconstructions from
the study-specific template, and
the bottom row shows analogous
reconstructions from a single
subject. The tracts included the
corpus callosum (CC), anterior
thalamic radiation (ATR),
uncinate fasciculus (UNC), and
cingulum bundle (CING)
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harvard.edu) was utilized for volumetric quantification.
Briefly, MP-RAGE scans were transformed into a template
space with the skull stripped and the brain segmented into
white matter, gray matter, and ventricles. Brain regions were
parcellated into subcortical and cortical ROIs using a surface
deformation program (Fischl et al. 2002; Fischl & Dale 2000;
Desikan et al. 2006). Images from all subjects were aligned to
a common atlas (MNI305) (Fischl et al. 2002). ROIs in the
present study included the caudate, putamen, thalamus, corpus
callosum, total gray matter, and total white matter. Previous
studies identify these ROIs are impacted by HIV
neuropathogenesis (Heaps et al. 2012; Heaps et al. 2015;
Kallianpur et al. 2013; Ortega et al. 2013). Volumes were
measured bilaterally and then aggregated across hemispheres
to form a composite measure for each ROI. Total intracranial
volume (TICV) was utilized as a covariate in the general linear
regression models.

Diffusion metrics

Diffusion-weighted images (DWIs) were preprocessed using
FSL 5.0 (Jenkinson et al. 2012) as follows. DWIs were
corrected for motion and eddy-current induced artifacts
through affine registration to the first baseline volume using
FSL FLIRT (Jenkinson & Smith 2001) with the mutual infor-
mation criteria. The orientations of the gradient encoding di-
rections were corrected by the rotation induced by these reg-
istrations (Leemans & Jones 2009), and the brain tissue was
extracted using FSL brain extraction tool (BET) (Smith 2002)
with a fraction threshold of 0.45. Diffusion tensor images
were estimated for each subject using FSL DTIFIT.

Following this, a study-specific white matter atlas was cre-
ated using DTI-TK (Zhang et al. 2007). The template diffu-
sion tensor image was computed by iteratively deforming and
averaging the population imaging data using the tensor-based
deformable registration algorithm in DTI-TK (Zhang et al.
2006) with finite strain tensor reorientation and the deviatoric

tensor similarity metric. This template was used to define in-
clusion and exclusion ROI masks for the anterior thalamic
radiation (ATR), cingulum bundle (CING), uncinate fascicu-
lus (UNC), and corpus callosum (CC) (Mori & van Zijl 2002).
Whole brain tractography was performed in the template im-
age, and subsets of curves were interactively selected to rep-
resent each tract-of-interest (TOI). For each bundle, two inclu-
sion ROI masks and one exclusion ROI mask were drawn in
template space using ITK-SNAP (Yushkevich et al. 2006).
These masks were placed at opposite ends of each
tractography bundle template and drawn in reference to stan-
dard white matter atlases (Catani & de Schotten 2012; Oishi
et al. 2010).

Subject-specific fiber bundle metrics were computed as
follows. First, the TOI inclusion and exclusion masks were
deformed to subject native space using the DTI-TK registra-
tion. Whole brain tractography was then performed in subject
native space and a subset of curves in the TOI was selected
using the two inclusion and exclusion masks. Tractography
was performed using deterministic streamline integration
(Zhang & Laidlaw 2003) with a step size of 1 mm, tricubic
interpolation, and four jittered seeds per voxel. Termination
criteria included an angle threshold of 45 degrees and mini-
mum FA of 0.15. Fiber curves with a length less than 10 mm
were excluded from the analysis. The following bundle-
average metrics were computed from the resulting curves
and retained for statistical analyses: FA, MD, RD, and AD
(Correia et al. 2008), averaged across hemispheres.

Neuroimaging quality control

The MR images were each visually inspected for artifact,
proper positioning within the field of view, and motion/noise
abnormalities across subjects. The quality of the MP-RAGE
analysis was assessed by reviewing Freesurfer pipeline logs
and segmentation results. Eighteen subjects were excluded
from the MP-RAGE pipeline because the Freesurfer pipeline
failed before completion. Seven subjects were excluded from
the diffusion MR image analysis because either no diffusion
scan was acquired or a major artifact was present. The quality
of the diffusion MRI registration was assessed by reviewing
FA maps superimposed on the population average FA map.
The quality of the fiber bundle reconstructions was assessed
by 3D visualization of the curve data to check for erroneous
fibers.

Statistical analyses

Demographic variables were first compared between groups
of HIV patients using independent two-sample t tests (age,
education) and chi-square tests (sex). For the C31S and the
C31C groups, t tests were conducted to compare average CD4
counts, log10 viral load, duration of infection (in months), and

Fig. 2 Anatomical parcellation of subcortical brain regions derived from
T1-weightedMRI. The subcortical structures included the caudate (blue),
putamen (pink), and thalamus (green)
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self-reported depression using the CES-D (Radloff 1977).
Chi-square tests were used to compare the percentage of indi-
viduals with detectable viral load and percentage of individ-
uals on cART between the C31S and C31C groups.
Demographic variables that differed significantly between
groups were considered as covariates in the primary analyses.
The first set of primary analyses tested neuroimaging differ-
ences between HIV+ and HIV− individuals using multivariate
analysis of variance/covariance (MANOVA/MANCOVA)
models. Separate MANOVAs/MANCOVAs were fit for DTI
and volumetric variables due to the differential sensitivity of
the two outcomes on brain integrity. These analyses were re-
peated to compare C31S and C31C individuals. Assumptions
of MANOVA/MANCOVA were investigated in all analyses,
including normality, linearity, homogenous covariance matri-
ces, multicollinearity, outlier checking, and no interaction
(MANCOVA only). Assumptions were met unless otherwise
noted in subsequent results. Following significance of a group
effect in the multivariate model, univariate analyses were
employed to determine which dependent variables differed
significantly between groups. The false discovery rate
(FDR) was controlled at ≤0.05 to correct for the multiple
comparisons.

Results

Demographic characteristics

Descriptive statistics for demographic variables are reported in
Table 1. HIV+ individuals (n = 146) differed significantly
from HIV− individuals (n = 34) on average years of age
(t = 6.32, p < 0.01), years of education (t = −2.59, p < 0.01),
and sex (χ2(1) = 10.85, p < 0.01). Since the difference in
average education level between groups was minimal
(<1 year), education was not included as a covariate in subse-
quent analysis. Age and sex were included as covariates in the
subsequent MANCOVA models for the HIV+ vs. HIV−
comparison.

There were no significant differences between C31S
(n = 37) or C31C (n = 109) groups with respect to age
(t = −1.23, p = 0.22), years of education (t = −1.35,
p = 0.10), and sex (χ2(1) = 0.49, p = 0.48). Thus, age, years
of education, and sex were not included as covariates in sub-
sequent models for the C31S vs. C31C comparison. For DTI
metrics, MANOVA models were employed since no covari-
ates were included, whereas TICVwas included as a covariate
in a MANCOVA model for volumetric indices. Additionally,
the HIV-C Tat C31S and C31C groups did not differ signifi-
cantly in log10 viral load (t = 0.18, p = 0.85), average CD4
count (t = −0.1, p = 0.92), duration of infection (t = −0.35,
p = 0.73), CES-D scores (t = 0.83, p = 0.41), percentage on
cART (χ2(1) = 1.14, p = 0.29), and percentage with detectable

viral load (χ2(1) = 1.04, p = 0.31). Note the sample sizes for
the primarily analyses described in the following sections dif-
fer slightly than those reported in Table 1 because not all
individuals had both structural MRI and DTI images. The
overall results of the demographic analyses were not altered
when the analyses were restricted to individuals with both
scans.

Volumetrics between HIV+ and HIV− individuals

Volumetric data were available for 128 HIV+ and 29 HIV−
individuals. Multicollinearity was not an issue for the volu-
metric data, as none of the pairwise correlations between the
ROIs exceeded r = 0.70 (Table 2). Results of the MANCOVA
revealed a significant difference in brain volumes between
HIV+ and HIV− ind iv idua ls (Wi lk ’s Λ = 0.78 ,
F(6,147) = 6.71, p < 0.01). Results of the adjusted analyses
revealed significantly smaller volumes among HIV+ individ-
uals in the caudate, putamen, thalamus, total gray matter, and
total white matter compared to the HIV− individuals.
Significant differences were not observed in the CC after ap-
plying the FDR correction (Table 3).

DTI differences between HIV+ and HIV− individuals

DTI data were available for 137 HIV+ and 24 HIV− individ-
uals. Pairwise Pearson’s correlations between RD, AD, MD,
and FA indicated that MD was highly correlated (r > 0.90)
with AD and RD in all TOIs, and therefore, MD was dropped
from the analysis due to its redundancy and multicollinearity.
Similarly, AD was highly correlated (r > 0.90) with RD in the
ATR and UNC tracts only and was dropped from those anal-
yses. Results of the MANCOVAs revealed a significant dif-
ference between the HIV+ and HIV− groups on DTI metrics
for the CC (Wilk’sΛ = 0.948, F(3,155) = 2.81, p < 0.05), ATR
(Wilk’sΛ = 0.94, F(2,156) = 4.40, p < 0.05), and UNC (Wilk’s
Λ = 0.85, F(2,156) = 12.95, p < 0.01). Univariate analysis
revealed significant differences in AD and RD for the CC,
RD for the ATR, and both FA and RD for the UNC after
controlling for multiple comparisons (Table 2). A trend was
noted between the HIV+ and HIV− groups on the DTI metrics
for the CING (Wilk’s Λ = 0.953, F(3,155) = 2.56, p = 0.05),
with the univariate analysis revealing higher RD and AD in
the HIV+ individuals compared to HIV− controls.

Volumetric differences between C31S and C31C
individuals

Volumetric data were available for 34 C31S and 94 C31C
individuals. Multicollinearity was not an issue for the volu-
metric data, as none of the pairwise correlations between the
ROIs exceeded r = 0.70. Results of the MANCOVA revealed
no significant differences between the C31S and C31C groups
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on the volumetric variables (Wilk’s Λ = 0.97, F(6,120) = 0.52,
p = 0.78). Univariate results are given in Table 5.

DTI differences between C31S and C31C individuals

DTI data were available for 35 C31S and 102 C31C individ-
uals. Similar to the previous analyses, MD was significantly
correlated with the other diffusivity metrics and therefore, MD
was dropped from the analysis. Similarly, AD was highly
correlated (r > 0.9) with RD in the ATR and UNC tracts only
and was dropped from those analyses. Results of the

MANOVAs revealed no significant differences between the
C31S and C31C groups on the DTI metrics for the CC (Wilk’s
Λ = 0.967, F(3,133) = 1.51, p = 0.22), CING (Wilk’s
Λ = 0.991, F(3,133) = 0.38, p = 0.7), ATR (Wilk’s
Λ = 0.974, F(2,134) = 1.80, p = 0.1), and UNC (Wilk’s
Λ = 0.999, F(2,134) = 0.10, p = 0.9). Univariate results are
given in Table 4.

Relationships between clinical variables and imaging
metrics

Pearson’s correlations were calculated to examine relation-
ships between the imaging metrics and duration of infection,
CESD, CD4 count and log10 viral load within all HIV+ indi-
viduals, as well as separately for the C31S and C31C groups.
Almost all correlations were less than 0.3, with no significant
linear associations between the clinical and imaging variables.
The only significant correlations were in the C31S group be-
tween CD4 count and total white matter (r = −0.43, p val-
ue = 0.01), and between log10 viral load and FA (r = −0.40,
p value = 0.01) in the ATR (Table 5).

Discussion

The present study clarifies the controversy regarding the im-
pact of the HIV-C Tat C31S substitution on brain integrity. We
did not observe a unique signature of brain disruption associ-
ated with Tat C31S. When collapsed across Tat status, the
HIV+ group exhibited significantly smaller brain volumes
and greater white matter microstructural abnormalities com-
pared to the HIV− group. Evidence of a main effect of HIVon

Table 1 Demographic
characteristics HIV+ vs. HIV− HIV+ (n = 146) HIV− (n = 34) p value

Age (years) 31.59 (5.28) 25.41 (4.45) <0.001

Education (years) 10.22 (1.57) 11.00 (1.63) 0.010

Sex, % female 82.19% 55.88% 0.001

HIV+: C31S vs. C31C HIV+

C31S (n = 37)

HIV+

C31C (n = 109)

p value

Age (years) 30.67 (4.95) 31.91 (5.38) 0.221

Education (years) 9.92 (1.48) 10.32 (1.59) 0.179

Sex, % female 78.38% 83.49% 0.483

Log10VL 4.21 (1.00) 4.17 (1.03) 0.856

CD4 cell count 233.1(121.4) 236.4 (181.5) 0.920

cART treatment, % yes 18.35% 10.8% 0.285

VL_detectable, % yes 100% 97.25% 0.308

Duration (months) 13.41(23.49) (n = 32) 11.76(23.13) (n = 92) 0.731

CES-D 5.47(3.65) (n = 32) 6.19(4.42) (n = 97) 0.409

Age, education, Log10VL, CD4 cell count, duration of infection, and CESD are reported as mean (SD). Note that
sample sizes include any individual with at least one of the two types of imaging data types (DTI metrics or brain
volumes) available

Table 2 DTI metrics for HIV+ and HIV− individuals

HIV+ (n = 137)
mean (SD)

HIV− (n = 24)
mean (SD)

Raw
p value

η2

FA(×1000)

CC 0.379(0.024) 0.387(0.018) 0.598 0.002

CING 0.305(0.027) 0.318 (0.022) 0.126 0.015

ATR 0.280(0.017) 0.287(0.015) 0.2818 0.007

UNC 0.252(0.020) 0.276(0.021) 0.0001* 0.088

RD (×1000)

CC 0.557(0.032) 0.534(0.029) 0.023* 0.033

CING 0.516(0.031) 0.492 (0.031) 0.008* 0.044

ATR 0.552(0.036) 0.522(0.029) 0.0041* 0.051

UNC 0.566(0.050) 0.500(0.051) <.0001* 0.140

AD (×1000)

CC 1.015(0.039) 0.986(0.050) 0.007* 0.046

CING 0.823(0.037) 0.800 (0.047) 0.033* 0.029

Sample sizes differ from Table 1 as both types of imaging outcomes were
not available for all participants

*Significant after controlling FDR ≤ 0.05
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brain imaging provides confidence that the absence of a
unique contribution of the Tat C31S variant to brain structure
was not due to confounds related to the sample or the imaging
metrics. Similarly, power was sufficient to detect meaningful
group differences, and therefore, the absence of a Tat-specific
imaging signature was not driven by sample sizes.
Collectively, our findings provide compelling evidence that
HIV-C is sufficiently neurovirulent to damage both gray and
white matter brain regions.

Results from the present study are consistent with previous
neuroimaging studies of adult and pediatric HIV patients con-
ducted in South Africa where HIV-C is prevalent. Heaps et al.
(Heaps et al. 2012) reported reduced volumes of the thalamus,
total gray matter, and total white matter in HIV+ adults resid-
ing in South Africa compared to local HIV− controls. A
follow-up comparison of HIV-C and HIV-B patients demon-
strated no significant differences in the neuroimaging signa-
tures related to clade diversity (Ortega et al. 2013). Other work
from Hoare et al. (Hoare et al. 2011) revealed lower FA and

higherMD inmultiple white matter tracts of HIV+ adults from
South Africa compared to seronegative controls. Further,
South African children infected with perinatal HIV exhibit
structural white matter damage (Hoare et al. 2015b;
Ackermann et al. 2014; Hoare et al. 2012) and neuronal me-
tabolite disruption in the basal ganglia (Mbugua et al. 2016).
These neuroimaging abnormalities are present in children
with vertically acquired disease despite initiation of cART
during the first few months of life.

The present study is the first neuroimaging investigation
conducted in South Africa where both HIV-C and Tat vari-
ance were confirmed with genetic sequencing. This method-
ological step is important as Rao et al. (Rao et al. 2013)
reported variability in the conservation of the Tat polymor-
phism between India and South Africa. Specifically, while
the frequency of C31S was less than 5% in samples from
India, the frequency increased to more than 25% in samples
from South Africa. Further, C31C variants isolated from
South Africa triggered more monocyte chemotaxis, stimulat-
ed CCL2 induction, and damaged neuronal dendritic integ-
rity compared to C31S isolates. Finally, mice injected with
C31C isolates demonstrated more severe memory impair-
ment compared to mice injected with C31S isolates and
uninfected controls. These data align with outcomes from
previous laboratory studies demonstrating less severe brain
injury related to the Tat C31S polymorphism (Mishra et al.
2008; Ranga et al. 2004).

The lack of conservation of the C31S variant in South
African isolates raises the possibility that previous reports of
neuropsychological impairment in HIV-C among South
African individuals were driven by the presence of the
neurovirulent C31C Tat motif. However, our group recently
reported no differences in the cognitive phenotype between
individuals with C31C and individuals with C31S, suggesting
that the Tat motif is not a primary driver of HIV-related brain
dysfunction. Results from the current study demonstrate neu-
roimaging abnormalities regardless of the Tat C31S motif,
indicating that the absence of cognitive variance related to
the Tat polymorphism cannot be attributed to the reliance on
neuropsychological tests to define brain integrity.

Table 3 Brain volumes among
HIV+ and HIV− individuals HIV+ (n = 128)

mean (SD)

HIV− (n = 29)

mean (SD)

Raw

p value

η2

Caudate 7165.83 (863.98) 7774.31 (853.05) 0.019* 0.036

Putamen 10,736.92 (995.45) 11,446.76 (1340.49) 0.035* 0.029

Thalamus 12,580.52 (1192.70) 14,130.59 (1555.16) <0.0001* 0.123

Corpus callosum 2974.48 (432.35) 3252.31 (514.15) 0.080 0.020

Total white matter 430,769.99 (43,831.29) 466,123.10 (50,324.42) 0.001* 0.067

Total gray matter 564,557.73 (45,700.89) 641,319.52 (41,495.26) <0.0001* 0.183

Sample sizes differ from Table 1 as both types of imaging outcomes were not available for all participants

*Significant after controlling FDR ≤ 0.05

Table 4 DTI metrics for C31S and C31C individuals

C31S (n = 35)
mean (SD)

C31C (n = 102)
mean (SD)

Raw
p value+

η2

FA

CC 0.384 (0.026) 0.377(0.023) 0.1447 0.016

CING 0.307 (0.026) 0.305(0.027) 0.6795 0.001

ATR 0.278 (0.017) 0.281(0.017) 0.4500 0.004

UNC 0.254 (0.019) 0.252(0.020) 0.6664 0.001

RD (×1000)

CC 0.548(0.031) 0.561(0.032) 0.0402 0.031

CING 0.512(0.032) 0.518(0.030) 0.3701 0.006

ATR 0.47(0.036) 0.554(0.036) 0.3049 0.008

UNC 0.563(0.045) 0.567(0.052) 0.7249 0.001

AD (×1000)

CC 1.006(0.039) 1.017(0.039) 0.1575 0.015

CING 0.818(0.038) 0.825(0.036) 0.3289 0.007

+No statistically significant results after controlling FDR ≤ 0.05
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The extant literature is replete with evidence of cognitive
impairment among children and adults with HIV from regions
around the world with high frequency of clade C virus (de
Almeida et al. 2013; Hoare et al. 2015a; Joska et al. 2011;
Yepthomi et al. 2006; Gupta et al. 2007; Ghate et al. 2014;
Paul et al. 2014; Hoare et al. 2015b). While most of these
investigations did not sequence the dicysteine motif of Tat to
confirm the presence of cysteine or serine at position 31, the
results are consistent with our previous cognitive study in
which C31S status was defined (Paul et al. 2014). As such,
while clade diversity moderates HIV-related brain dysfunction
in controlled laboratory studies, these effects do not readily
translate readily into patient outcomes. This is not surprising
as a multiplex of host and viral factors influence neuroimaging
and neuropsychological outcomes (Stern et al. 1996; Cohen
et al. 2010; Jernigan et al. 2011; Gamaldo et al. 2013). A
possible exception to the influence of clade on brain integrity
is clade D (HIV-D) in Africa, which is associated with rapid
immune depletion (Kiwanuka et al. 2010), early utilization of
CXCR4 co-receptor tropism (Huang et al. 2007; Kaleebu et al.
2007), and faster disease progression (Kaleebu et al. 2002;
Kiwanuka et al. 2008; Vasan et al. 2006). It remains unclear
whether HIV-D individuals exhibit disproportional brain dys-
function compared to other clades and to what extent overall
disease severity mediates brain outcomes in this population
(Sacktor et al. 2009; Sacktor et al. 2014; Boivin et al. 2010).

It is important that future work continue to examine
neuroimaging outcomes in patient cohorts to determine
the viral and host factors that influence clinically rele-
vant brain outcomes. Recent patient studies in Thailand,
where clade AE recombinant is prevalent, reveal HIV
RNA in the cerebrospinal fluid following acute expo-
sure when clinical diagnostic assays for HIV are nega-
tive for p24 antigen and HIV antibody (Ananworanich
et al. 2016; Valcour et al. 2012). Further, neuroimaging
analyses demonstrate the evolution of subcortical brain
atrophy even after 24 months of suppressive cART is
initiated during the first weeks of HIV exposure
(Kallianpur et al. 2016). Future studies are needed
across clade subtypes to the key triggers of downstream

immunological responses, seeding of viral reservoirs
harbored in brain tissue or circulating monocytes, and
plasma markers of immune activation.

A few limitations of the study merit attention. We utilized a
cross-sectional design and as such, we cannot discuss the
long-term trajectory of brain imaging outcomes associated
with the Tat variants. Additionally, we did not examine other
HIV viral proteins (e.g., Env, Nef, or gp120) and therefore, we
cannot comment on the potential contribution of other viral
proteins and disease mechanisms related to the neuroimaging
outcomes. The sample size of the C31S genotype group
(n = 37) was modest, though sufficient to detect at least a
medium effect between groups. It is possible that a larger
sample size would result in statistically significant differences
between Tat genotype groups, though the clinical significance
of a small effect would be unclear. Finally, HIV+ individuals
in the current study had recently initiated cART, raising the
possibility of opportunistic infections at the time of enroll-
ment. However, we excluded individuals with medical comor-
bidities that could have confounded the results, and therefore,
it is unlikely that the neuroimaging outcomes were negatively
influenced by opportunistic infections.

In summary, results of the present study provide objective
evidence of HIV-C neurovirulence independent of Tat diver-
sity. The preponderance of data obtained from previous pa-
tient studies and the current study argue that Tat sequencing
cannot be utilized as a prognostic marker of HIV-associated
neurocognitive disorders or any measure of brain integrity
related to HIV. As such, the estimated 20 million individuals
infected with HIV-C worldwide are at risk for brain dysfunc-
tion and associated complications in overall health outcomes.
Our results accentuate the need to consider brain health in the
clinical management of HIV, independent of viral clade or Tat
variance.
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Table 5 Brain volumes among
C31S and C31C individuals C31S (n = 34)

mean (SD)

C31C (n = 94)

mean (SD)

Raw

p value+
η2

Caudate 7297.91 (851.77) 7118.05 (867.89) 0.305 0.008

Putamen 10,951.41 (997.48) 10,659.34 (988.56) 0.143 0.017

Thalamus 12,632.32 (1184.54) 12,561.79 (1201.40) 0.788 0.001

Corpus callosum 2972.62 (308.01) 2975.16 (470.75) 0.958 <0.001

Total white matter 435,139.56 (40,428.18) 429,189.51 (45,100.81) 0.505 0.004

Total gray matter 569,544.29 (53,415.77) 562,754.09 (42,747.11) 0.464 0.004

+No statistically significant results after controlling FDR ≤ 0.05
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