
Computing Singularities of 3D Vector Fields with Geometric Algebra

Stephen Mann∗

University of Waterloo
Alyn Rockwood†

Colorado School of Mines

ABSTRACT

Critical points of a vector field are key to their characterization.
Not only their positions but also their indexes are crucial for un-
derstanding vector fields. Considerable work exists in 2D, but less
is available for 3D or higher dimensions. Geometric Algebra is a
derivative of Clifford Algebra that not only enables a succinct def-
inition of the index of a critical point in higher dimension; it also
provides insight and computational pathways for calculating the in-
dex. We describe the problems in terms of Geometric Algebra and
present an octree based solution using the algebra for finding criti-
cal points and their index in a 3D vector field.

CR Categories: G.4 [Mathematical Software]: Algorithm design
and analysis—Visualization

Keywords: Geometric Algebra, 3D Vector Fields, Singularities

1 INTRODUCTION

We define the vector field to be a continuous function V : M →
Rn, where M is a manifold in Rn. If x ∈ M, then the vector
at x is V (x). A point x is a critical point of the vector field if
|V (x)| = 0. For example, many useful vector fields are generated
as gradient fields of differentiable potential functions P : M → R,
in which case the critical points occur where |∇P (x)| = 0. The
Gauss map γ : M → Sn−1 (the sphere in n-dimensions) is defined
by

γ(x) = V (x)/|V (x)| (1)

for all non-critical points x. Consider an arbitrarily small ball B(c)
about a critical point c. The index of c, ind(c), is given by the
Gauss-Bonnet Theorem [7] that says

∫
Kdγ(B(c))/(volume of Sn−1) = ind(c), (2)

where K is the normal curvature of γ(B(c)). The normal curvature
of a curve is the infinitesimal change of length at x on a curve com-
pared to the change in γ(x). Similarly, for a surface we compare
the changes in surface areas. One would think that this would ex-
tend to higher dimensional volume changes, but this is not the case
for historical reasons. Nevertheless it is the definition with which
we will work (see Gottlieb [7]). Hence we compare the infinitesi-
mal change of volume (length, area, etc.) of B(c) to γ(B(c)). In
2D the Gauss map records how many times the vector field on the
circle B(c) cycles, or winds, as one follows the path once around
the circle. The winding may be in the opposite direction of the
path, or go multiple times around, but it will always be an integer

∗School of Computer Science, University of Waterloo, Waterloo, On-
tario N2L 3G1 CANADA, smann@uwaterloo.ca

†Colorado School of Mines, Dept. Of Math and Computer Science,
Golden, CO 80401, alynrock@mines.edu

Constant Flow

Source

Dipole

ind(c)=0

ind(c)=0

ind(c)=1

ind(c)=2

Non-singular Flow

Figure 1: Vector fields on circles about critical points, their Gauss
maps and the indexes.

when properly normalized by the volume of the n − 1 sphere. See
Figure 1 for examples.

For obvious reasons the index in 2D is often called the wind-
ing number, an unfortunate choice of terminology, since it becomes
confusing in higher dimensions. A better choice would have been
to call it a covering number. One can imagine the Gauss map of the
ball B being some multiple in surface area compared to the original
ball, i.e., it wraps it several times. Since the area is oriented, it can
also be some negative multiple. This is the index. The index of a
critical point is a crucial factor in determining the topology of the
vector field in various well-known display algorithms (see [8, 17])
It is our aim to provide an alternative way to view the index using
Geometric Algebra, which then leads to alternative ways to calcu-
late. Ultimately this path of investigation will lead to a number of
unique application issues; ones that are algorithmic, numerical and
visual.

2 GEOMETRIC ALGEBRA AND THE INDEX

In brief, Geometric Algebra (GA) is a graded, non-commutative
(Clifford) algebra, which is geometrically intuitive (introductions
to GA can be found in [3, 4, 12]). Elements of the algebra are di-

a b a b ca b a b

cα a

Figure 2: Spanning subspaces with the outer product.

mensionally homogeneous (grade = intrinsic dimension) such as the
familiar scalars (0D), vectors (1D), as well as area oriented bivec-
tors (2D), volume oriented trivectors (3D) and so forth. Multivec-
tors are combinations of the k-vectors. The fundamental geometric
product defines inner, i.e., grade lowering, products; and outer, i.e.,
grade raising, products. The outer product ”∧” defines a k-vector
V = a0∧a1∧. . .∧ak where the ai are vectors. ”Wedging” a vector
with a k-vector raises its grade one step. In GA, the k-vectors are
the basic elements of computation, and can be added and combined
with all the products. Examples of k-blades of dimensions 0,1,2,3
are shown in Figure 2. Although this figure indicates a particu-
lar shape for the outer product, a k-blade does not have a specific
shape, only a signed magnitude and orientation.

GA also includes the pseudo-scalar I , which is the maximal
grade, unit element. Multiplying an element by the pseudo-scalar
yields an element that is dual in grade; thus an n− i grade element
becomes an i grade element and vice-versa. These few facts are
needed to understand the GA version of the index theorem. Pauli
Algebra is one model of GA although for purposes of insight and
algebraic thinking it is a clumsy one, especially as the dimension in-
creases. It is much more effective to use the axioms and the svelte
body of theorems of GA [9]. Pauli Algebra does, however, offer one
method by which GA can be mapped to current computer systems,
one which we take advantage of in what follows computationally
(see GABLE etc. [5, 6, 14]).

Hestenes ([10] p.275) gives a general formula for computing the
index of a critical point of a vector field V on a manifold using GA.
For 3D this formula reduces to

ind(c) =
C

I

∫
B(c)

V ∧ dV/|V |3. (3)

The constant C = 1/(6×4π/3) of (3) contains the sphere normal-
ization factor, with an additional factor of 6 to adjust the volume of
the trivectors, whose magnitude is that of a parallelepiped having
six times the volume of the desired tetrahedron. The radius part of
the sphere factor is absorbed into the denominator inside the inte-
gral, |V |3. The extended differential dV is a bivector perpendicular
to V [10]; thus V ∧dV represents an infinitesimal volume element.
This differs from (2) which uses surface elements for comparison
as approximated by dV , but the difference between the two are one
of proportionality. Moreover, the discretized volume elements are
perceived to be a closer approximation than the surface case for the
same discretization. Dividing by the pseudoscalar I converts the
volume element generated by the integral to a scalar.

3 FINDING CRITICAL POINTS

Formula (3) is a straightforward roadmap for computing the index
of a critical point in GA. It is intuitive and conceptually easy to pro-
gram in a GA system (not to minimize some of the implementation
details given later). Another advantage is that the sense, or sign, of
the elements is automatically tracked within GA. We do not have to
keep track of surface orientations, i.e., is it back facing or not?

Our goal is not only to compute such indexes, but also to find
the critical points in the first case. To do this we will employ a

Figure 3: Octree search of V ((x, y, z)) = x e1 + y e2 + z e3.

cuberille subdivision of space. To understand how this will work
we need to make several observations. The first is that a cube is
a sphere - topologically speaking. Anything homeomorphic to the
ball B will work in (3). We compute (3) over each cube, which now
tiles the space and provides a complete, non-redundant covering not
proffered by balls. If the index of a computed cube is 0, then it may
be assumed that there is no critical point to within the resolution
of the cube. It can happen that there are multiple critical points
that sum to 0. Whenever critical points are close their aggregate
behavior acts like a single critical point with index equal to the sum
of indexes of the constituent critical points. For index 0, it will not
be apparent that there is a critical point unless higher resolutions
are investigated.

If the index of a cube is nonzero, then a critical point has been
found, or perhaps a collection of critical points close to each other.
Such collections of critical points are indistinguishable from a sin-
gle critical point of the same index up to the resolution computed.
This emphasizes the crucial role that setting the resolution has. It
also indicates an important trade-off between computational cost
and accuracy. In some applications one knows that a given distance
isolates critical points. In such cases an octree algorithm can be
used to precisely locate those points within cubes that are identified
as containing critical points. The octree subdivides whenever the
cube has nonzero index. It is analogous to the root finding problem.
Knowledge that roots are separated greatly improves speed and pre-
cision. Figure 3 shows an octree example of locating the critical
point for the field given by V ((x, y, z)) = x e1 + y e2 + z e3 (See
section 6 for more details on this and other examples). In this, as
in most of our figures, we will omit drawing the vector field and
instead focus on the singularities in the vector field.

4 RELATED WORK

There is a considerable amount of work on display of vector field
topology, which employs linear expansions of the field in the neigh-
borhood of critical points [8, 15], i.e., use of the eigenvalues of
the Jacobian tensor of the field. These methods, however, fail to
find the behavior of fields that contain critical points with index
other than 1 or −1. As mentioned, Scheuermann et al. discuss
methods for determining high order indexes, but they are limited
to 2D [17, 18, 19]. Trotts et al. introduce the point of infinity as a
critical point for infinite fields [20] .

The use of octrees for rendering implicit surfaces is closely re-
lated to our work [2], with the primary differences being the type
of field being searched (scalar vs vector) and that with implicit sur-
faces, the value of the scalar function is computed at the corners of

Figure 4: Sampling V over a cube and summing the trivectors.

the cube, while with our method we evaluate a vector field at a grid
of samples on the faces of the cube.

5 IMPLEMENTATION

Moving from the theory to the basic implementation is straight-
forward (Figure 4). The integral (3) over the surface of the cube is
approximated by sampling each face f of the cube on a regular grid
pi,j , evaluating the vector field at each sample point giving vectors
pi,j = V (pi,j), normalizing these vectors, forming the trivectors

Ri,j = p̂i,j ∧ p̂i,j+1 ∧ p̂i+1,j

Si,j = p̂i+1,j+1 ∧ p̂i+1,j ∧ p̂i,j+1,

and summing the trivectors Rf =
∑

Ri,j and Sf =
∑

Si,j . Sum-
ming the Rf ,Sf over all six faces of the cube and normalizing by
a factor of 1/(6 × 4π/3) should give a result close in value to an
integer that is the index of a critical point inside the cube (if any).

However, several problems arise. First, as mentioned earlier if
the cube size is too large, then critical points may be missed or
misclassified. Second, if the sampling grid on the cube faces is too
sparse, then the resulting sum might not be close to an integer (i.e.,
the approximation to the integral is too coarse). Third, the integral
over the face of the cube will only detect point singularities; we
must use other methods to detect curve and surface singularities.

We will not address the first issue in this paper; the remainder of
this section will address the other two issues.

5.1 Curve singularities
When a curve singularity passes through the cube over which we
are summing, the sum of trivectors over the faces of the cube will
be 0. Thus, it will fail to detect the curve singularity. However,
consider the 2D version for the computation of indexes using GA:

ind(c) =
C2

I2

∫
B(c)

V ∧ dV/|V |2. (4)

Here, the differential dV is a vector perpendicular to V ; C2 is
1/(2π) (with a normalization factor of π for the area of the unit
circle, and a normalization factor of 2 to account for bivectors hav-
ing a signed magnitude equal to the area of a parallelogram that is
twice the area of the desired triangle); and I2 is the unit bivector in
the plane. Returning briefly to our 3D problem, consider a planar
slice Π of space, and define a new vector field V ′ where for x ∈ Π,
the field V ′(x) is the projection of V (x) onto Π. Applying (4) to a
closed curve B in Π over the vector field V ′, then a non-zero result
indicates that there is a point singularity on Π inside B over V ′. In
turn, we know one of the following about V :

(a) a point singularity of V lies on Π inside B;
(b) a 3D curve singularity of V passes through B;
(c) for some point x on Π inside B, V (x) is non-zero while V ′(x)

is zero.

Figure 5: Projection of vector field onto one face of the cube.

Our interest is in case (b), that of curve singularities passing
through the face of the cube. To distinguish case (b) from case
(a) requires looking more globally at the vector field. Case (c) is
a “false singularity,” i.e., a singularity in the projected field that is
not a singularity in the unprojected field. Such a singularity results
when the projected vector is perpendicular to the face of the cube.
To distinguish case (b) from case (c), we must localize the singular-
ity (i.e., find a small B), and test the vector field over this smaller
region to determine if the vector field is non-zero over this region.

Applying these ideas to our implementation, for each cube face,
we project the pi,j on the edge of the face into the plane of the face
and renormalize, giving vectors p̂′

i,j (Figure 5). Along each edge,
we form the bivector sum∑

p̂′
0,j ∧ p̂′

0,j+1,
∑

p̂′
i,n ∧ p̂′

i+1,n,∑
p̂′

n,n−j ∧ p̂′
n,n−(j+1),

∑
p̂′

n−i,0 ∧ p̂′
n−(i+1),0,

where n + 1 is the number of samples along each edge. Adding
the four sums and normalizing by C2/I2 yields the desired index.
If the index is non-zero, then one of the three forms of singularities
described above lie on the face.

To determine if the singularity is of type (b), we could allow the
octree subdivision to run to completion, and then test one unpro-
jected vector on the (small) face at the deepest level of the subdi-
vision. If its magnitude is large, then we have a singularity of type
(c), which we can disregard. To decide if the singularity is of type
(a), we should test the other faces of the cube for a second such
singularity; if there isn’t one, then the singularity is of type (a), and
should be treated as a point singularity. If there is a second face
with such a singularity, then we have found a curve singularity.

Such an approach is inefficient, however, as singularities of
type (c) (i.e., singularities in V ′ that are not singularities in V) will
be common, but are of no use to us. Thus, allowing the octree
subdivision process to localize these singularities is wasted compu-
tation. A heuristic to attempt to eliminate such false singularities
earlier in the subdivision process is to check the length of all the
unnormalized vectors in V sampled on the face of the cube: If we
detect a potential curve singularity on a face, and none of the sam-
pled unprojected vectors is close to 0, and the ratio of the largest
unprojected vector to the smallest is small, then the potential singu-
larity is likely of type (c) and should be disregarded (i.e., the octree
cell should not be subdivided based on this test).

In some sense, this heuristic is performing a simple numerical
search to localize the singularity. From this point of view, we could
either (a) use the search to speed the octree subdivision, or (b) use
the search instead of (4) to find the curve singularity. While both
are reasonable variations of our method, note that (4) is still useful
for determining the index of the curve singularity.

Further note that our method for detecting curves of singularities
is similar to the method of Jiang et al. for detecting a vortex core
region [11]. Like us, Jiang et al. project the 3D vector field into a
plane. However, they then use Sperner’s lemma as a basis for find-
ing where the vortex core passes through the plane rather than us-
ing geometric algebra to find a zero of the vector field. (Sperner’s
lemma basically says that if you start with a properly labeled n-
simplex (i.e., one whose vertices have unique labels), then a labeled

Figure 6: Refinement examples.

subdivision of this simplex will have an odd number of properly
labeled simplices, where the labeling of the vertices of the subsim-
plices have to obey some minor constraints; see the Jiang et at. pa-
per for details.)

5.2 Surface singularities
To compute a surface singularity, we essentially use the same idea
as for computing curve singularities: for each sample point on the
edge of the cube, project the corresponding vector onto that edge.
The test for whether a surface singularity passes through the edge
is simpler than in the case of curve singularities. No outer products
are needed — if the projected vectors along an edge change orien-
tation/sign, then there is a singularity in the projected vector field.
But just as in the curve singularity case, further tests are needed
to see if the singularity in the projected field corresponds to a sur-
face singularity in the unprojected field. Note also that this test will
only determine the existence of a surface singularity, without deter-
mining its index; see the Conclusions for further discussion of this
issue.

5.3 Adaptive method
The method for computing point singularities omits some criti-
cal details for implementation, such as how many samples to take
across the face of the cube. The trade-off is clear: more samples
will give a more accurate estimate of the integral, but fewer samples
are less expensive to compute. Ideally, we would take just enough
samples so that the estimates are close to integer values. This leads
to the idea of initially taking few samples, and if the result is not
close to an integer value, then increase the sample rate.

We chose a variation of this idea. After sampling, when comput-
ing the outer products, we test the magnitude of each outer product.
If the magnitude is large, then we have made a poor approxima-
tion to the sphere in between the three samples. In this case, we
adaptively refine the region between the samples.

An example of refinement can be seen in Figure 6. On the top
row is an example of a sampling that results in a positive region
(red) that is a reasonable approximation to the sphere, while the
negative region (blue) is a poor approximation to the sphere. The
left image shows a display of all samples; the middle image shows
just the negative region, but with all the sampled vectors drawn; the
resulting sum yields an index of 0.3. The image on the right is after
refinement, and has a computed index close to 0.0.

On the bottom row, left, we see a non-uniform sampling of the
sphere, with the corresponding vectors shown in the middle image.

The index computed here is 0.7. After refinement, we obtain the
vectors on the right, with a computed index close to 1.0.

6 EXAMPLES, DISCUSSION

We tested our technique on a variety of functional vector fields.
Table 1 lists the functions for the examples shown in this paper. In
these functions, e1, e2, e3 form an orthonormal basis for 3-space.
Some of the examples are given as a vector function, while others
are given as a scalar function whose vector field is the gradient of
the scalar function.

In all examples, cubes containing point singularities are drawn in
red, curve singularities in green, and surface singularities in blue.
In all examples, we started with 92 samples per face. Only cubes
containing a singularilty are shown. Cubes that did not contain sin-
gularities were also searched, but are not drawn in these figures;
roughly speaking, this results in each drawn cube (except those
at the maximum depth searched) being subdivided one additional
level.

If a singularity lies on a cube corner, edge, or face, the integral
over the cube (and its neighbors that share the singularity) will be
1, but the approximations to the integrals may require several levels
of refinement to get close to an integer value. To simplify things,
we offset the corners of the initial octree cube from an integer grid
by 0.05 to avoid having the singularities land on a cube corner, edge
or face.

Figure 7 illustrates our method searching a vector field that has
a circle of singularities. On the left is the result when both line and
surface false singularities are filtered. Note that this vector field
has a point singularity at the origin in addition to a circle of sin-
gularities. In the middle, we see the result if we do not filter line
singularities, while on the right is the result if we filter neither line
nor surface singularities.

In Figure 8, we see an example of a double circle (eight) of singu-
larities, a helix of singularities, and a sphere of singularities. Note
that in the double circle of singularities and in the helix of singu-
larities, there are cubes that are incorrectly identified as containing
surface singularities. This is a result of the heuristics failing to re-
move the false surface singularities in these regions.

Finally, in Figure 9 we show an example of taking the union
and intersection of two vector fields, one of which has a sphere of
singularities and the other of which has a cylinder of singularities.

We also tested our method on vector fields having double point
and double line singularities. The function having a double line
singularity we tested was Vdl(x, y, z) = (A/B)A, where A =

x e1 + y e2 and B =
√

x2 + y2 e1. In this expression for Vdl, we
are using the vector multiplication of geometric algebra; note that
all vectors in the field Vdl will have a 0 component in the e3 direc-
tion due to the properties of the geometric multiplication. Figure 10
shows a rendering of this vector field, together with the double line
singularity that our algorithm found.

One of the double point singularity functions we tested was
Vdp(x, y, z) = (A/B)A + z e3, where A and B are defined as
in the previous paragraph. The double point singularity octree fig-
ure looks identical to Figure 3. In the vector fields Vdl and Vdp,
we detected the singularities as having index 2. However, as we
approached these singularities of higher order, refinement of the
sampling of the cube faces became more important for computing
accurate estimates of the integral.

Table 6 gives the times required to compute the examples in this
paper. These timings were made on a Celeron 400MHz PC under
Linux.

Type Scalar Function Vector Function
Point Ep(x, y, z) = x ∗ e1 + y ∗ e2 + z ∗ e3

Circle fc(x, y, z) = (x2 + y2 − 1)2 + z2 Ec(x, y, z) = −y ∗ e1 + x ∗ e2

Eight Ee(x, y, z) = Ec(x − 1, y, z) ∗ Ec(x + 1, y, z)
Helix fh(x, y, z) = 1/[(x − cos(z))2 + (y − sin(z))2]
Sphere fs(x, y, z) = (x2 + y2 + z2)2

Cylinder fC(x, y, z) = (x2 + y2 − 1)2

Sphere Union Cylinder fs(x, y, z) ∗ fC(x − .5, y, z)
Sphere Intersect Cylinder fs(x, y, z) + fC(x − .5, y, z)

Table 1: Test functions.

Figure 7: Circular curve of singularities. Left: all false singularities filtered; middle, no line filtering; right: no line or surface filtering.

Figure 8: Double circle (eight) curve singularity, helix singularity, and sphere of surface singularity.

Function Depth Seconds Cubes Sec/Cube
point 4 1.6 105 .015
circle 5 20 1177 .016
eight 6 45 2945 .015
helix 7 145 9289 .016
sphere 5 158 10433 .015
sphere Union cyl 6 270 17673 .015
sphere Intersect cyl 6 38 1833 .020

Table 2: Timings for examples

7 VARIATIONS

Our implementation was a simple proof-of-concept prototype. Ob-
vious improvements exist. For example, when drawing curve singu-
larities, we drew the box containing the curve singularity. Instead,
one could search the faces of the cube for close-to-zero values, and
connect them with lines. A similar thing could be done for the sur-
face singularities, although this is harder, as something similar to
the surface extraction of Marching Cubes is required [13].

Further, while our method did an excellent job of finding point
singularities, it had more troubles with curve singularities, and still
more difficulties with surface singularities. In both cases, the prob-
lem is that the projected field may have singularities in it that are
not in the original field. Filtering out these false singularities is
problematic. One improvement would come from using a less local
search method. Our method considers each octree cell indepen-
dently. While a reasonable approach for point singularities, this
method is wasting information it could effectively use to determine
whether potential curve/surface singularities are true singularities.

In this paper, we applied our method to functional vector fields.
Our method could also be applied to sampled vector fields. With a
sampled field, one of the important issues is how to interpolate be-
tween the sampled vectors to fill space with a (continuous) vector
field. Regardless of the interpolation method, our method would
find the singularities within the interpolated sampled field. Fur-
thermore, in interpolated fields, it is not uncommon to have point
singularities that are quite close to one another [17]. Such near sin-
gularities cause problems for many methods, which may detect only
a single point singularity. With our method, if the octree subdivi-
sion around the cluster singularity is not fine enough, it will detect
a point singularity of index that is the sum of the cluster. With near
singularities, that summed index represents the character of the vec-
tor field properly to within the resolution given.

8 CONCLUSIONS

In summary, we have presented a method for finding singularities
in 3D vector fields. Our approach uses Geometric Algebra for com-
puting a volume integral over the surface of a cube to detect point
singularities, and uses octree subdivision to refine the location of a
point singularity. In addition, our method can find curves of singu-
larities, and surfaces of singularities, and it determines the index of
the singularity. While finding any singularities by visually inspect-
ing a 3D vector field can be a difficult task, computer assistance is
especially needed for determining the index of singularities.

We note here several things of particular interest with our
method. First, we found the use of Geometric Algebra to be a
straightforward blueprint in coding the algorithm. While other
methods could be used to estimate the integral, the trivector com-
putation of Geometric Algebra automatically handles some of the
geometric details, such as polarity and backfacing issues, simplify-
ing the programming job.

Second, our method attempts to find curves of singularities and
surfaces of singularities. Our approach here should be considered
a first attempt. Much work remains to be done both (1) on the

Figure 9: Surface singularities of sphere union cylinder and curve
singularities of sphere intersect cylinder.

Figure 10: Vector field having a double line singularity.

theory of what a curve and surface singularity is, and (2) in meth-
ods for searching for such singularities. In particular, in searching
for surface singularities, we project the 3D vector field on to lines,
and search these 1D fields for singularities (which amounts to little
more than searching for a change in orientation of the vectors along
the line). This leads to the interesting question: simple sources and
sinks in 1D vector fields are well known [1], but is there such a
thing as a singularity of higher index in a 1D field? Our simple
tests will detect only that there is a singularity on the line, but are
unable to determine its index.

Further, our approach in finding curve and surface singularities
is to project the vector field on to a lower dimensional space. This
projection introduces new singularities into the field, for which we
propose certain heuristics to remove. These heuristics are simple,
and more work remains to improve them.

9 ACKNOWLEDGMENTS

Many thanks to Daniel Fontijne, who ported our initial Mat-
lab/GABLE [5] prototype to a far faster C++ version using
Gaigen [6].

REFERENCES

[1] Ralph Abraham and Christopher Shaw. Dynamics : the ge-
ometry of behavior. Addison-Wesley, second edition, 1992.

[2] Jules Bloomenthal. Polygonization of implicit surfaces. Com-
puter Aided Geometric Design, 5(4):341–355, November
1988.

[3] Leo Dorst and Stephen Mann. Geometric algebra: a computa-
tion framework for geometrical applications: part i (algebra).
Computer Graphics and Applications, 22(3), 2002. to appear.

[4] Leo Dorst and Stephen Mann. Geometric algebra: a compu-
tation framework for geometrical applications: part ii (appli-
cations). Computer Graphics and Applications, 22(3), 2002.
to appear.

[5] Leo Dorst, Stephen Mann, and Tim Bouma.
GABLE: a geometric algebra learning enviornment.
www.science.uva.nl/˜leo/GABLE/.

[6] Daniel Fontijne. Gaigen: Geometric algebra implementation
generator.
carol.wins.uva.nl/˜fontijne/gaigen/.

[7] Daniel Henry Gottlieb. Functions and the unity of mathemat-
ics. Unpublished.
www.math.purdue.edu/˜gottlieb/Papers/
papers.html.

[8] James Helman and Lambertus Hesselink. Visualizing vector
field topology in fluid flows. Computer Graphics and Appli-
cations, 11(3):36–46, May 1991.

[9] David Hestenes. New foundations for classical mechanics.
Reidel, Dordrecht, 2nd edition, 2000.

[10] David Hestenes and Garret Sobczyk. Clifford Algebra to Ge-
ometric Calculus. Kluwer, 1984.

[11] Ming Jiang, Raghu Machiraju, and David Thompson. A novel
approach to vortex core region detection. In I Navazo D Ebert,
P Brunet, editor, Proceedings of Symposium on Visualization
’02. EIROGRAPHICS-IEEE TCVG, May 2002.

[12] Joan Lasenby, Anthony N. Lasenby, and Chris J.L. Doran. A
unified mathematical language for physics and engineering in
the 21st century. Phil. Trans. R. Soc. Lond., 358:21–39, 2000.

[13] W Lorenson and H Cline. Marching cubes: A high-resolution
3D surface construction algorithm. Computer Graphics
(Proc. of Siggraph), 21(4):163–169, July 1987.

[14] Pertti Lounesto. Clifford Algebras and Spinors. Cambridge
University Press, Cambridge, UK, 1997.

[15] Greg Nielson, Il-Hong Jung, and Junwon Sung. Haar wavelets
over triangular domains with applications to multiresolution
models for flow over a sphere. In Proceedings of Visualization
’97. ACM Press, 1997.

[16] A. Perry and M.S. Chong. A description of eddying motions
and flow patterns using critical point concepts. Annual Review
of Fluid Mechanics, 19:125–155, 1987.

[17] Gerik Scheuermann. Topological Vector Field Visualization
with Clifford Algebra. PhD thesis, University of Kaiser-
slautern, 2000.

[18] Gerik Scheuermann, Hans Hagen, Heinz Krger, Martin Men-
zel, and Alyn Rockwood. Visualization of higher order singu-
larities in vector fields. pages 67–74. IEEE Computer Society,
1997.

[19] Gerik Scheuermann, Hans Hagen, Heinz Krger, and Alyn
Rockwood. Visualizing critical points of arbitrary poincare-
index. In F. Post H. Hagen, G. Nielson, editor, Scientific Vi-
sualization - Dagstuhl ’97, pages 277–283. EEE Computer
Society, 2000.

[20] Issac Trotts, David Kenwright, and Robert Haimes. Criti-
cal points at infinity: a missing link in vector field topology.
In NSF/DoE Lake Tahoe Workshop on Hierarhical Approxi-
mation and Geometrical Methods for Scientific Visualization,
October 2000.

