
CodeCrawler - A Lightweight Software Visualization Tool

Michele Lanza (lanza@iam.unibe.ch)
Software Composition Group - University of Bern, Switzerland

Abstract

CodeCrawler is a language independent software visu-
alization tool. It is mainly targeted at visualizing object-
oriented software, and in its newest implementation it has
become a general information visualization tool. It has
been validated in several industrial case studies over the
past few years. It strongly adheres to lightweight princi-
ples: CodeCrawler implements and visualizespolymetric
views, lightweight visualizations of software enriched with
semantic information such as software metrics and source
code information.

1 Introduction

CodeCrawler is a lightweight software visualization tool,
whose first implementation dates back to 1998 and it has
been implemented as part of Lanza’s Ph.D. thesis [3]. In
the meantime it has been evolved into an information visu-
alization framework, and has been customized to work in
contexts like website reengineering and concept analysis.
It keeps however a strong focus on software visualization.
CodeCrawler is a language independent SV tool, because
it uses the Moose reengineering environment [2] which im-
plements the FAMIX metamodel [1], which among other
languages models software written in C++, Java, Smalltalk,
Ada, Python, COBOL, etc.

In Figure 1 we see CodeCrawler visualizing itself with
a polymetric view calledSystem Complexity. The metrics
used in this view are the number of attributes for the width,
the number of methods for the height, and the number of
lines of code for the color of the displayed class nodes.

2 The Principle of a Polymetric View

In Figure 2 we see that, given two-dimensional nodes
representing entities and edges representing relationships,
we enrich these simple visualizations with up to 5 metrics
on these node characteristics:
Node Size.The width and height of a node can render two
measurements. We follow the convention that the wider and

Figure 1. A screenshot of CodeCrawler visu-
alizing itself with a System Complexityview.

Figure 2. The principle of a polymetric view.

the higher the node, the bigger the measurements its size is
reflecting.
Node Color. The color interval between white and black
can display a measurement. Here the convention is that
the higher the measurement the darker the node is. Thus
light gray represents a smaller metric measurement than
dark gray.
Node Position.The X and Y coordinates of the position of
a node can reflect two other measurements. This requires
the presence of an absolute origin within a fixed coordinate
system, therefore not all layouts can exploit this dimension.

1



3 Example Polymetric Views

CodeCrawler visualizes three different types of polymet-
ric views:

Coarse-grained views.Such views are targeted at visu-
alizing very large systems (e.g.,over 100 kLOC to several
MLOC). In Figure 3 we see aSystem Hotspotsview of 1.2
million lines of C++ code. The view uses the number of
methods for the width and height of the class nodes. We
gather for example from this view that there are classes with
several hundreds of methods (at the bottom).

Figure 3. A System Hotspotsview on 1.2 MLOC
of C++ code.

Fine-grained views. The most prominent view is the
Class Blueprintview, a visualization of the internal struc-
ture of classes and class hierarchies [4]. In Figure 4 we see
a class blueprint view of a small hierarchy of 4 classes. The
class blueprint view helped to develop a pattern language
[3]. In the present example we see the patterns pure over-
rider, siamese twin, template method design pattern, and
template class. The limited size of this paper does not allow
us to deepen this discussion, please refer to [3] for more
details.

Evolutionary views. The most prominent view is the
evolution matrixview, a visualization of the evolution of
complete software systems [5]. In Figure 5 we see an exam-
ple of such a visualization, which again allows us to develop
a pattern language applicable in the context of software evo-
lution.

4 Features of CodeCrawler

Moreover, CodeCrawler features grouping support, cus-
tomizable views, has been industrially validated, and
is being used if software industry mainly by consul-
tants. CodeCrawler is freeware and can be obtained at
http://www.iam.unibe.ch/∼lanza/

Figure 4. A Class Blueprintview on a small hi-
erarchy of 4 classes written in Smalltalk.

Figure 5. An Evolution Matrix view on 38 ver-
sions of an application written in Smalltalk.

References

[1] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 –
the FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[2] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an ex-
tensible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[3] M. Lanza. Object-Oriented Reverse Engineering - Coarse-
grained, Fine-grained, and Evolutionary Software Visualiza-
tion. PhD thesis, University of Berne, may 2003.

[4] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of OOPSLA 2001, pages 300–311,
2001.

[5] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002, pages 135–149, 2002.

2


