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Partial-Volume Bayesian Classification of Material
Mixtures in MR Volume Data Using Voxel

Histograms
David H. Laidlaw,* Kurt W. Fleischer, and Alan H. Barr

Abstract—We present a new algorithm for identifying the
distribution of different material types in volumetric datasets
such as those produced with magnetic resonance imaging (MRI)
or computed tomography (CT). Because we allow for mixtures
of materials and treat voxels as regions, our technique reduces
errors that other classification techniques can create along bound-
aries between materials and is particularly useful for creating
accurate geometric models and renderings from volume data.
It also has the potential to make volume measurements more
accurately and classifies noisy, low-resolution data well.

There are two unusual aspects to our approach. First, we
assume that, due to partial-volume effects, or blurring, voxels
can contain more than one material, e.g., both muscle and fat;
we compute the relative proportion of each material in the voxels.
Second, we incorporate information from neighboring voxels into
the classification process by reconstructing a continuous function,
�(x)�(x)�(x), from the samples and then looking at the distribution of
values that �(x)�(x)�(x) takes on within the region of a voxel. This
distribution of values is represented by a histogram taken over
the region of the voxel; the mixture of materials that those
values measure is identified within the voxel using a probabilistic
Bayesian approach that matches the histogram by finding the
mixture of materials within each voxel most likely to have
created the histogram. The size of regions that we classify is
chosen to match the spacing of the samples because the spacing
is intrinsically related to the minimum feature size that the
reconstructed continuous function can represent.

Index Terms—Bayesian probability theory, discrete signal pro-
cessing, feature detection, function theory, geometric modeling,
image processing, magnetic resonance imaging microscopy, mix-
ture modeling and estimation, multiscale analysis, multispectral
classification, multivariate segmentation, partial volume, scale
space, tissue classification, volume measurement.
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I. INTRODUCTION

I DENTIFYING different materials within sampled datasets
can be an important step in understanding the geometry,

anatomy, or pathology of a subject. By accurately locating
different materials, we can identify them as individual parts
and measure their size and shape. We can also use the
spatial location of materials to selectively visualize parts of
the data, thus, better controlling a volume-rendered image
[1], a surface model [2], or a volume model created from
the data, and making visible otherwise obscured or subtle
features. Classification is a key step toward understanding
such geometry. Fig. 1 shows an example of classified magnetic
resonance imaging (MRI) data; each color represents a single
material identified within the data.

Applications of classified images and geometric models
derived from them include surgical planning and assistance,
diagnostic medical imaging, conventional computer anima-
tion, anatomical studies, and predictive modeling of complex
biological shapes and behavior.

A. Partial-Volume Classification Using Voxel Histograms

We use Bayesian probability theory to estimate the highest-
probability combination of materials within each voxel-sized
region. The estimation is based on the histogram of data values
within the region. The posterior probability, which we maxi-
mize, is based on conditional and prior probabilities derived
from the assumptions about what we are measuring and how
the measurement process works [3]. With this information
we identify the materials contained within each voxel based
on the sample values for the voxel and its neighbors. We
treat each voxel as a region (see Fig. 2), not as a single
point. The sampling theorem [4] allows us to reconstruct
a continuous function, , from the samples. We then
represent all of the values that takes on within a voxel by
creating a histogram of over the voxel. Fig. 3(a) shows
samples, Fig. 3(b) shows the function reconstructed from
the samples, and Fig. 3(c) shows a continuous histogram
calculated from .

We assume that each voxel is a mixture of materials, with
mixtures occurring where partial-volume effects occur, i.e.,
where the band-limiting process blurs measurements of pure
materials together. From this assumption we derive basis
functions that model histograms of voxels containing a pure
material and of voxels containing a mixture of two materials.
Linear combinations of these basis histograms are fit to each
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(a)

(b)

(c)

Fig. 1. One slice of data from a human brain. (a) The original two-valued
MRI data. (b) Four of the identified materials; white matter, gray matter,
cerebro-spinal fluid, and muscle, separated into separate images. (c) Overlaid
results of the new PVB classification mapped to different colors. Note the
smooth boundaries where materials meet and the much lower incidence of
misclassified samples than in Fig. 4.

voxel, and the most likely combination of materials is chosen
probabilistically.

The regions that we classify could be smaller or larger
than voxels. Smaller regions would include less information,
and so the context for the classification would be reduced

Fig. 2. We define a sample as a scalar or vector valued element of a 2-D or
3-D dataset. A voxel is the region surrounding a sample.

(a) (b) (c)

Fig. 3. Continuous histograms. The scalar data in (a) and (b) represent
measurements from a dataset containing two materials, A and B, as shown in
Fig. 5. One material has measurement values nearvA and the other nearvB .
These values correspond to the Gaussian-shaped peaks centered aroundvA

andvB in the histograms, which are shown on their sides to emphasize the
axis that they share. This shared axis is “feature space.”

and accuracy would suffer. Larger regions would contain
more complicated geometry because the features that could
be represented would be smaller than the region. Again,
accuracy would suffer. Because the spacing of sample values
is intrinsically related to the minimum feature size that the
reconstructed continuous function, , can represent, that
spacing is a natural choice for the size of regions to be
classified.

B. Related Work

Many researchers have worked on identifying the locations
of materials in sampled datasets [5]–[8]. An extensive review
of the segmentation of MRI data is given in [9]. However,
existing algorithms still do not take full advantage of all
the information in sampled images; there remains room for
improvement. Many of these algorithms generate artifacts like
those shown in Fig. 4, an example of data classified with a
maximum-likelihood technique based on sample values. These
techniques work well in regions where a voxel contains only a
single material, but tend to break down at boundaries between
materials. In Fig. 4 note the introduction of both stair-step
artifacts, as shown between gray matter and white matter
within the brain, and thin layers of misclassified voxels, as
shown by the white matter between the skull and the skin. Both
types of artifacts can be ascribed to the partial-volume effects
ignored by the segmentation algorithms and to the assignment
of discrete material types to each voxel.

Reference [10] presents a technique that usesa priori infor-
mation about brain anatomy to avoid the layers of misclassified
voxels. However, this work still produces a classification
where each voxel is assigned to a single, discrete material;
results continue to exhibit stair-step artifacts. It is also very
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Fig. 4. Discrete, maximum-likelihood (DML) classification of the same
brain data shown in Fig. 1. This existing method assigns each voxel to a
single material class. The class is identified here by its color: gray for gray
matter, blue for cerebrospinal fluid (CSF), white for white matter, red for
muscle. Note the jagged boundaries between materials within the brain and
the layer of misclassified white matter outside of the skull. See Section VII
for more detail.

dependent on brain anatomy information for its accuracy;
broader applicability is not clear.

Reference [11] demonstrates that accounting for mixtures of
materials within a voxel can reduce both types of artifacts, and
approximates the relative volume of each material represented
by a sample as the probability that the sample is that material.
Their technique works well for differentiating air, soft tissue,
and bone in computed tomography (CT) data, but not for
differentiating materials in MR data, where the measured data
value for one material is often identical to the measured value
for a mixture of two other materials.

References [12] and [13] avoid partial-volume artifacts by
taking linear combinations of components of vector measure-
ments. An advantage of their techniques is that the linear
operations they perform preserve the partial-volume mixtures
within each sample value, and so partial-volume artifacts are
not created. A disadvantage is that the linear operations are
not as flexible as nonlinear operations, and so either more
data must be acquired or classification results will not be as
accurate.

References [14] and [15] address the partial-volume issue by
identifying combinations of materials for each sample value.
As with many other approaches to identifying mixtures, these
techniques use only a single measurement taken within a
voxel to represent its contents. Without the additional infor-
mation available within each voxel region, these classification
algorithms are limited in their accuracy.

Reference [16] derives a distribution of data values taken
on for partial volume mixtures of two materials. We share
the distribution that they derive. Their application of the
distribution, however, fits a histogram of an entire dataset and
then quantifies material amounts over the entire volume. In
contrast with our work, they represent each voxel with a single
measurement for classification purposes, and do not calculate
histograms over single voxels.

Reference [17] presents an interesting approach to partial-
volume imaging that makes assumptions similar to ours about
the underlying geometry being measured and about the mea-
surement process. The results of their algorithm are a material
assignment for each sub-voxel of the dataset. Taken collec-
tively, these multiple sub-voxel results provide a measure of
the mixtures of materials within a voxel but arrive at it in a
very different manner than we do. This work has been applied
to satellite imaging data, and so their results are difficult to
compare with ours, but aspects of both may combine well.

Reference [18] gives an overview of the technique presented
below in the context of the Human Brain Project, and [19]
gives a complete description. Reference [20] describes an
imaging protocol for acquiring MRI data from solids and
applies our classification technique to the extraction of a
geometric model from MRI data of a human tooth (see
Fig. 10).

II. OVERVIEW

In this section we describe the classification problem that
we solve, define terms, state assumptions we make about the
data we classify, and sketch the algorithm and its derivation.
Sections III–VI give more information on each part of the
process, with detailed derivations in Appendixes A and B.
Section VII shows results of the application of the algorithm
to simulated MR data and to real MR data of a human
brain, hand, and tooth. We discuss some limitations and future
extensions in Section VIII and conclude in Section IX.

A. Problem Statement

The input to our process is sampled measurement data, from
which we can reconstruct a continuous, band-limited function,

, that measures distinguishing properties of the underlying
materials. The output is sampled data measuring the relative
volume of each material in each voxel.

B. Definitions

We refer to the coordinate system of the space containing the
object we are measuring as “spatial coordinates,” and generally
use to refer to points. This space is-dimensional,
where is three for volume data, can be two for slices, and
is one for the example in Fig. 3. Each measurement, which
may be a scalar or vector, lies in “feature space” (see Fig. 3),
with points frequently denoted as . Feature space is -
dimensional, where is one for scalar-valued data, two for
two-valued vector data, etc. Tables IV and V in Appendix B
contain these and other definitions.

C. Assumptions

We make a set of assumptions about the objects that we are
measuring and the measurement process.

1) Discrete Materials: The first assumption is that mate-
rials within the objects that we measure are discrete at the
resolution that we are sampling. Boundaries need not be
aligned with the sampling grid. Fig. 5(a) shows an object
with two materials. We make this assumption because we
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(a)

(b)

Fig. 5. Partial-volume effects. (a) Real world object and (b) sampled data.
We start from the assumption that in a real-world object each point is exactly
one material, as in (a). The measurement process creates samples that mix
materials together; from the samples we reconstruct a continuous, band-limited
measurement function,�(x). PointsP1 andP2 lie inside regions of a single
material. PointP3 lies near a boundary between materials, and so in (b) lies
in the A and B region where materials A and B are mixed. The grid lines
show sample spacing and illustrate how the regions may span voxels.

are generally looking for boundaries between materials, and
because we start from sampled data, where information about
detail finer than the sampling rate is blurred.

This assumption does not preclude homogeneous com-
binations of sub-materials that can be treated as a single
material at our sampling resolution. For example, muscle may
contain some water and yet be treated as a separate material
from water. This assumption is not satisfied where materials
gradually transition from one to another over many samples
or are not relatively uniformly mixed; however, our algorithm
appears to degrade gracefully even in these cases.

2) Normally Distributed Noise:We assume that noise from
the measurement process is added to each discrete sample and
that the noise is normally distributed. We assume a different
variance in the noise for each material. This assumption is
not strictly satisfied for MRI data, but seems to be satisfied
sufficiently to classify data well. Note that the sample values
with noise added are interpolated to reconstruct the contin-
uous function, . The effect of this band-limited noise is
discussed further in Section VI.

3) Sampling Theorem Is Satisfied:The third assumption we
make is that the sampled datasets we classify satisfy the
sampling theorem [4]. The sampling theorem states that if we
sample a sufficiently band-limited function, we can exactly
reconstruct that function from the samples, as demonstrated
in Fig. 3(b). The band limiting creates smooth transitions in

as it traverses boundaries where otherwise would
be discontinuous. The intermediate region of Fig. 5(b) shows a

sampling grid and the effect of sampling that satisfies the sam-
pling theorem. Partial-volume mixing of measurements occurs
in the region labeled “A&B.” Multislice MRI acquisitions do
not satisfy this assumption in the through-plane direction. For
these datasets we interpolate the data only within each plane.

4) Linear Mixtures: Each voxel measurement is a linear
combination of pure material measurements and measurements
of their pair-wise mixtures created by band limiting (see
Fig. 5).

5) Uniform Tissue Measurements:Measurements of the
same material have the same expected value and variance
throughout a dataset.

6) Box Filtering for Voxel Histograms:The spatial mea-
surement kernel, or point-spread function, can be approxi-
mated by a box filter for the purpose of deriving histogram
basis functions.

7) Materials Identifiable in Histogram of Entire Dataset:
The signatures for each material and mixture must be iden-
tifiable in a histogram of the entire dataset.

For many types of medical imaging data, including MRI and
CT, these assumptions hold reasonably well, or can be satisfied
sufficiently with preprocessing [21]. Other types of sampled
data, e.g., ultrasound, and video or film images with lighting
and shading, violate these assumptions, thus our technique
does not apply directly to them.

D. Sketch of Derivation

Histograms represent the values taken on by over
various spatial regions. In Section III we describe the his-
togram equation for a normalized histogram of data values
within a region. In Section IV we use the histogram equa-
tion to create basis functions that model histograms taken
over small, voxel-sized regions. These basis functions model
histograms for regions consisting of single materials and for
regions consisting of mixtures of two materials. Using Bayes’
Theorem, the histogram of an entire dataset, our histogram
model basis functions, and a series of approximations, we
derive an estimate of the most likely set of materials within
an entire dataset in Section V. Similarly, given the histogram
of a voxel-sized region, we derive, in Section VI, an estimate
of the most likely density for each material in that voxel. The
classification process is illustrated in Fig. 6.

III. N ORMALIZED HISTOGRAMS

In this section we present the equation for a normalized
histogram of a sampled dataset over a region. We will use
this equation as a building block in several later sections, with
regions that vary from the size of a single voxel to the size
of the entire dataset. We will also use this equation to derive
basis functions that model histograms over regions containing
single materials and regions containing mixtures of materials.

For a given region in spatial coordinates, specified by,
the histogram specifies the relative portion of that
region where , as shown in Fig. 3. Because we
treat a dataset as a continuous function over space, histograms,
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Fig. 6. The classification process. We collect MR data, calculate a histogram
of the entire dataset,hall(v), and use that to determine parameters of
histogram-fitting basis functions, one for each pure material and one for
each mixture in the dataset. We then calculate histograms of each voxel-sized
region,hvox(v), and identify the most likely mixture of materials for that
region. The result is a sampled dataset of material densities within each voxel.

, are also continuous functions

(1)

Equation (1) is the continuous analog of a discrete histogram.
is nonzero within the region of interest and integrates to

one. We set constant in the region of interest, making
every spatial point contribute equally to the histogram ,
but can be considered a weighting function that takes
on values other than zero and one to more smoothly transition
between adjacent regions. Note also that integrates to
one, which means that it can be treated as a probability density
function, or PDF. is the Dirac-delta function.

A. Computing Voxel Histograms

We calculate histograms in constant-sized rectangular
“bins,” sized such that the width of a bin is smaller than the
standard deviation of the noise within the dataset. This ensures
that we do not lose significant features in the histogram.

(a) (b)

Fig. 7. Parameters for histogram basis function. (a) Single-material his-
togram parameters includec, the mean value for the material, ands, which
measures the standard deviation of measurements [see (2)]. (b) Corresponding
parameters for a two-material mixture basis function.s0 and s1 affect
the slopes of the two-material histogram basis function at either end. For
vector-valued data,c ands are vectors and are the mean values and standard
deviations of the noise for the two constituent materials [see (3)].

We first initialize the bins to zero. We subdivide each
voxel into subvoxels, usually four for two-dimensional (2-D)
data or eight for three-dimensional (3-D) data, and evaluate

and its derivative at the center of each sub-voxel.
is interpolated from the discrete data using a tricubic B-
spline basis [22] that approximates a Gaussian. Thus, function
and derivative evaluations can be made not only at sample
locations, but anywhere between samples as well. From the
function value and the derivative we use (1) to calculate
the contribution of a linear approximation of over the
subvoxel to each histogram bin, accumulating the contributions
from all subvoxels. This gives us a more-accurate histogram
than we would obtain by evaluating only the function values
at the same number of points.

IV. HISTOGRAM BASIS FUNCTIONS

FOR PURE MATERIALS AND MIXTURES

In this section we describe basis functions that model his-
tograms of regions consisting of pure materials and of regions
consisting of pairwise mixtures of materials. Other voxel con-
tents are also possible and are discussed in Section VIII. The
parameters of the basis functions specify the expected value

and standard deviation of each material’s measurements
(see Fig. 7).

We use (1) to derive these basis functions which we fit
to histograms of the data. We then verify that the equations
provide reasonable fits to typical MR data, which gives us
confidence that our assumptions about the measurement func-
tion are reasonable. The details of the derivations are in
Appendix A.

For a single material, the histogram basis function is a
Gaussian distribution

(2)

where is the vector-valued mean, the vector-valued stan-
dard deviation, and and scalar components of
and , respectively. We derive this equation by manipulating
(1) evaluated over a region of constant material, where the
measurement function, , is a constant value plus additive,
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normally distributed noise. Because the noise in different chan-
nels of multi-valued MRI images is not correlated, the general
vector-valued normal distribution reduces to this equation with
zero covariances.

For mixtures along a boundary between two materials, we
derive another equation similarly

(3)

As with the single material case, this derivation follows
from (1) evaluated over a region where two materials mix.
In this case, we approximate the band-limiting filter that
causes partial-volume effects with a box filter and make the
assumption that the variance of the additive noise is constant
across the region. This basis function is a superposition of
normal distributions representing different amounts of the
two constituent pure materials. is the normal distribution,
centered at zero,the relative quantity of the second material,

(comprised of and ) the expected values of the two
materials, and the standard deviation of measurements.

The assumption of a box filter affects the shape of the re-
sulting histogram basis function. We derived similar equations
for different filters (triangle, Gaussian, and Hamming), but
chose the box filter derivation because we found it sufficiently
accurate in practice and because its numerical tractability saves
significant computation.

V. ESTIMATING HISTOGRAM BASIS FUNCTION PARAMETERS

In this section we describe parameter-estimation procedures
for fitting histogram basis functions to a histogram of an entire
dataset. For a given dataset we first calculate the histogram

of the entire dataset. We then combine an interactive
process of specifying the number of materials and approx-
imate feature-space locations for them with an automated
optimization [21] to refine the parameter estimates. Under
some circumstances, users may wish to group materials with
similar measurements into a single “material,” whereas in other
cases they may wish the materials to be separate. The result of
this process is a set of parameterized histogram basis functions,
together with values for their parameters. The parameters
describe the various materials and mixtures of interest in
the dataset. Fig. 8 shows the results of fitting a histogram.
Each colored region represents one distribution, with the
labeled spot-shaped regions representing pure materials and
connecting shapes representing mixtures.

To fit a group of histogram basis functions to a histogram,
as in Fig. 8, the optimization process estimates the relative
volume of each pure material or mixture (vector ), and
the mean value (vector) and standard deviation (vector)
of measurements of each material. The process is derived
from the assumption that all values were produced by pure
materials and two-material mixtures. We define as the
number of pure materials in a dataset, andas the number
of histogram basis functions. Note that , since
includes any basis functions for mixtures, as well as those for
pure materials.

Fig. 8. Basis functions fit to histogram of entire dataset. This figure illus-
trates the results of fitting basis functions to the histogram of the hand dataset.
The five labeled circular regions represent the distribution of data values
for pure materials, while the colored regions connecting them represent the
distribution of data values for mixtures. The mixture between muscle (red)
and fat (white), for example, is a salmon-colored streak. The green streak
between the red and yellow dots is a mixture of skin and muscle. These fitted
basis functions were used to produce the classified data used in Fig. 11.

The optimization minimizes the function

(4)

with respect to and , where

(5)

Note that may be a pure or a mixture basis function and
that its parameter will be a single feature-space point for
a pure material or a pair for a mixture. The function is
analogous to a standard deviation at each point,, in feature
space, and gives the expected value of . We approximate

as a constant, and discuss it further in Section VIII.
Equations (4) and (5) are derived in Appendix B using

Bayesian probability theory with estimates of prior and con-
ditional probabilities.

VI. CLASSIFICATION

In this section we describe the process of classifying each
voxel. This process is similar to that described in Section V
for fitting the histogram basis functions to the entire dataset
histogram, but now we are fitting histograms taken over
small, voxel-sized regions. We use the previously computed
histogram basis functions calculated from the entire dataset
histogram and no longer vary the mean vector,, or standard
deviation, . The only parameters allowed to vary are the
relative material volumes (vector ), and an estimate of
the local noise in the local region (vector) [see (6) and (7)].

Over large regions including many voxels, the noise in
is normally distributed, with zero mean; however, for voxel
regions the noise mean is generally nonzero. This is because
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(a) (b) (c) (d) (e)

Fig. 9. Comparison of old DML classification (b), old PPVC classification (c), our new PVB classification (d), and a reference for what “ideal” classification
should produce (a). Note the band of dark background material in (b) and (c) between the two curved regions. This band is incorrectly classified, and
could lead to errors in models or images produced from the classified data. The original dataset is simulated, two-valued data of two concentric shells,
as shown in (e), with SNR of 14.2.

normally distributed noise is added to each sample value, not
to each point of . When the samples are used to reconstruct

, the values takes on near a particular sample tend
to be similar, and so have a nonzero mean. We label the local
mean voxel noise value . As derived in Appendix B the
equation that we minimize, with respect to and , is

(6)
where

(7)

the minimization is subject to the constraints

and

and vector is the standard deviation of the noise over the
entire dataset. For MR data the standard deviations in the
signals for different materials are reasonably similar, and so
we estimate to be an average of the standard deviations of
the histogram basis functions.

With optimal vector for a given voxel-sized region and
the mean value, vector, within that region, we solve for the
amount of each pure material contributed by each mixture to
the voxel. This is our output, the estimates of the amount of
each pure material in the voxel-sized region

(8)

contains the mean signature of the portion of the histogram
that arises only from regions with partial-volume effects. We
determine how much of each pure component of pairwise
mixture materials would be needed to generate, given the
amount of each mixture that indicates is in the voxel.
represents this relative amount for mixture, with
indicating that the mixture is comprised of only the first
pure component, indicating that it is comprised of
only its second component, and intermediate values of
indicating intermediate mixtures. The values are calculated

by minimizing the following equation with respect to, subject
to the constraint

(9)

Vector is the mean value for the first pure material
component of mixture , and vector the mean value for
the second component. The total amount of each material is
the amount of pure material added to the-weighted portion
of each mixture.

VII. RESULTS

We have applied our new technique to both simulated and
collected MRI datasets. When results can be verified and
conditions are controlled, as shown with the classification of
simulated data, the algorithm comes very close to “ground
truth,” or perfect classification. The results based on collected
data illustrate that the algorithm works well on real data, with
a geometric model of a tooth showing boundaries between
materials, a section of a human brain showing classification
results mapped on to colors, and a volume-rendered image
of a human hand showing complex geometric relationships
between different tissues.

We compare our partial volume Bayesian algorithm (PVB)
with three other algorithms. The first, DML, assigns each voxel
or sample to a single material using a maximum-likelihood
algorithm. The second, Probabilistic Partial Volume Classifier
(PPVC), is described in [23], and the third is a Mixel classifier
[14].

PVB significantly reduces artifacts introduced by the other
techniques at boundaries between materials. In Fig. 9 we
compare performance of PVB, DML, and PPVC on simu-
lated data. PVB produces many fewer misclassified voxels,
particularly in regions where materials are mixed due to
partial-volume effects. In Fig. 9(b) and (c) the difference
is particularly noticeable where an incorrect layer of dark
background material has been introduced between the two
lighter regions, and where jagged boundaries occur between
each pair of materials. In both cases this is caused by partial-
volume effects, where multiple materials are present in the
same voxel.

Table I shows comparative rms-error results for the PPVC
and PVB simulated data results, and also compares PPVC
with the Mixel algorithm. Signal-to-noise ratio (SNR) for the
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TABLE I
COMPARITIVE RMS ERROR FORTHREE ALGORITHMS: PVB, PPVC,AND

MIXEL. THE PPVC/PVB COMPARISONIS FROM A SIMULATED -DATA

TEST CASE ILLUSTRATED IN FIG. 9, SNR= 14.2. THE PPVC/MIXEL

COMPARISON IS TAKEN FROM [14, FIGS. 7 AND 8], SNR= 21.6,
PVB, IN THE PRESENCE OFMORE NOISE, REDUCES THEPPVC RMS

ERROR TO APPROXIMATELY HALF THAT OF THE MIXEL ALGORITHM

PPVC PVB Improvement Ratio
PPVC/PVB

Background 20% 6.5% 3.09
Outer 25% 4.3% 5.79
Inner 20% 6.5% 3.04

PPVC Mixel PPVC/Mixel

Background 16% 9.5% 1.68
Tumor 21% 13.5% 1.56

White matter 37% 16.0% 2.31
Gray matter 36% 17.0% 2.11

CSF 18% 13.0% 1.38
All other 20% 10.0% 2.00

TABLE II
COMPARITIVE VOLUME MEASUREMENT ERROR FORTHREE ALGORITHMS (PVB,
PPVC,AND MIXEL). THE PPVC/PVB COMPARISON IS FROM THE SIMULATED

DATA TEST CASE ILLUSTRATED IN FIG. 9, SNR= 14.2. THE PPVC/MIXEL

COMPARISON IS FROM FIG. 9 AND IN [14, TABLE V], SNR= 21.6

PPVC PVB PPVC Mixel

2.2% 0.01% 5.6% 1.6%
�5.3% �0.45% 44.1% 7.0%

0.3% 0.15%

TABLE III
MRI DATASET SOURCES, ACQUISITION PARAMETERS, AND FIGURE REFERENCES

Object Machine
Voxel Size

mm
TR=TE =TE

s/ms/ms
Figs.

shells simulated 1:92 � 3 N/A 9

brain GE 0:942 � 3 2=25=50 1, 4

hand GE 0:72 � 3 2=23=50 11

tooth Bruker 0:3123 15=0:080 10

data used in PPVC/PVB comparison was 14.2. SNR for the
data used in PPVC/Mixel comparison was 21.6. Despite lower
SNR, PPVC/PVB rms error improvement is approximately
double that of the PPVC/Mixel improvement. rms error is
defined as , where is classified data
and is ground truth. The sum is made only over voxels
that contain multiple materials.

Table II shows similar comparative results for volume mea-
surements made between PPVC and PVB on simulated data,
and between PPVC and Mixel on real data. Volume measure-
ments made with PVB are significantly more accurate that
those made with PPVC, and the PPVC to PVB improvement
is better than the PPVC to Mixel improvement.

Figs. 1 and 4 also show comparative results between PVB
and DML. Note that the same artifacts shown in Fig. 9 occur
with real data and are reduced by our technique.

Models and volume-rendered images, as shown in Figs. 10
and 11, benefit from our new techniques because less incorrect
information is introduced into the classified datasets, thus

Fig. 10. A geometric model of tooth dentine and enamel created by col-
lecting MRI data samples using a technique that images hard solid materials
[20] and classifying dentine, enamel, and air in the volume data with our new
PVB algorithm. Polygonal isosurfaces define the bounding surfaces of the
dentine and enamel. The enamel-dentine boundary, shown in the left images,
is difficult to examine noninvasively using any other technique.

Fig. 11. A volume-rendering image of a human hand dataset. The opacity
of different materials is decreased above cutting planes to show details of the
classification process within the hand.

the images and models more accurately depict the objects
they are representing. Models and images such as these are
particularly sensitive to errors at geometric boundaries because
they illustrate the underlying geometries.

Table III lists the datasets, the MRI machine they were
collected on, some collection parameters, the voxel size, and
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the figures in which each dataset appears. The GE machine was
a 1.5-T Signa. The Bruker machine was an 11.7-T AMX500.
Acquired data were collected with a spin-echo or fast spin-
echo protocol, with one proton-weighted and one-weighted
acquisition. The tooth was acquired with a technique described
in [20]. Preprocessing was only performed on data used for
the hand example (Fig. 11). For this case each axial slice
was multiplied by a constant and then offset by another to
compensate for intensity falloff as a function of the distance
from the center of the RF coil. The constants were chosen
to make the mean values of user-identified material regions
consistent from slice to slice.

VIII. D ISCUSSION

We have made several assumptions and approximations
while developing and implementing this algorithm. This sec-
tion will discuss some of the tradeoffs, suggest some possible
directions for further work, and consider some related issues.

A. Mixtures of Three or More Materials

We assume that each measurement contains values from at
most two materials. We chose two-material mixtures based
on the following dimensionality argument. In an object that
consists of regions of pure materials, as shown in Fig. 5, voxels
containing one material will be most prevalent because they
correspond to volumes. Voxels containing two materials will
be next most prevalent, because they correspond to surfaces
where two materials meet. As such, they are the first choice to
model after those containing a single material. Our approach
can be extended in a straightforward manner to handle the
three-material case as well as cases with other less-frequent
geometries, such as skin, tubes, or points where four materials
meet. This extension could be useful for identifying sub-
voxel-sized geometry within sampled data, thus extending the
resolution.

B. Mixtures of Materials Within an Object

Based on our assumptions, voxels only contain mixtures of
materials when those mixtures are caused by partial-volume
effects. These assumptions are not true in many cases. By
relaxing them and then introducing varying concentrations
of given materials within an object, one could derive his-
togram basis functions parameterized by the concentrations
and could fit them to measured data. The derivation would be
substantially similar to that presented here.

C. Benefits of Vector-Valued Data

As with many other techniques, ours works on vector-valued
volume data, in which each material has a characteristic vector
value rather than a characteristic scalar value. Vector-valued
datasets have a number of advantages and generally give better
classification results. Such datasets have improved SNR and
frequently distinguish similar materials more effectively (see
Fig. 12).

(a)

(b)

(c) (d)

Fig. 12. Benefits of histograms of vector-valued data. We show histograms
of an object with three materials. (a) This histogram of scalar data shows
that material mean values are collinear. Distinguishing among more than
two materials is often ambiguous. (b), (c) Two representations of histograms
of vector-valued data. They show that mean values often move away from
collinearity in higher dimensions, and so materials are easier to distinguish.
High/bright locations indicate more-common(v0; v1) data values. While less
likely, (d) shows that the collinearity problem can exist with vector-valued
data.

D. Partial Mixtures

We note that the histograms for some voxel-sized
regions are not ideally matched by a linear sum of basis
functions. We discuss two possible sources of this mismatch.

The first source is the assumption that within a small region
we still have normally distributed noise. models the fact that
the noise no longer averages to zero, but we do not attempt
to model the change in shape of the distribution as the region
size shrinks.

The second source is related. A small region may not contain
the full range of values that the mixture of materials can
produce. The range of values is dependent on the bandwidth
of the sampling kernel function. As a result, the histogram
over that small region is not modeled ideally by a linear
combination of pure material and mixture distributions. We are
investigating model histogram basis functions with additional
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parameters to better match histograms [18], [19]. Modeling
the histogram shape as a function of the distance of a voxel
from a boundary between materials is likely to address both
of these effects and give a result with a physical interpretation
that will make geometric model extraction more justifiable and
the resulting models more accurate.

We postulate that these two effects weight the optimization
process such that it tends to make much larger than we
expect. As a result, we have found that setting to
approximately 30 times the maximum value in gives
good classification results. Smaller values tend to allowto
move too much, and larger values hold it constant. Without
these problems we would expect to take on values equal
to some small percentage of the maximum of .

E. Nonuniform Spatial Intensities

Spatial intensity in MRI datasets can vary due to inhomo-
geneities in the RF or gradient fields. We assume that they are
small enough to be negligible for our algorithm, but it would be
possible to incorporate them into the histogram basis functions
by making the parameter vary spatially.

F. Quantitative Comparison with Other Algorithms

Because of the lack of a “gold standard” against which
classification algorithms can be measured, it is difficult to
compare our technique with others. Each technique presents
a set of results from some application area, and so anecdotal
comparisons can be made, but quantitative comparisons re-
quire reimplementing other algorithms. Work in generating a
standard would greatly assist in the search for effective and
accurate classification techniques. Our technique appears to
achieve a given level of accuracy with fewer vector elements
than the eigenimages of [12] or the classification results of
[14], which use three-valued data. Their results are visually
similar to ours, and underscore the need for quantitative com-
parison. Because we interpolate neighboring sample values,
we are able to achieve a given accuracy with two-valued or
even scalar data, while their technique is likely to require more
vector components. [13] shows good results for a human brain
dataset, but we believe their technique will be less robust in the
presence of material mixture signatures that overlap, a situation
their examples do not include.

G. Implementation

Our implementation is written in C and C on Unix work-
stations. We use a sequential-quadratic-programming (SQP)
constrained-optimization algorithm [24] to fit for each
voxel-sized region, and a quasi-Newton optimization algorithm
for fitting . The algorithm classifies approximately ten
voxels/s on a single HP9000/730, IBM RS6000/550E, or
DEC Alpha AXP 3000 Model 500 workstation. We have
implemented this algorithm in parallel on these machines
and get a corresponding speedup on multiple machines. The
performance is slower than many other methods and the
current implementation would not be practical for a clinical
situation. However, we believe that the algorithm can be
sped up significantly through a more efficient implementation,

which we have not attempted, and through the inevitable
speedups in computer technology.

IX. CONCLUSIONS

Our new algorithm for classifying scalar- and vector-valued
volume data produces more-accurate results than existing
techniques in many cases, particularly at boundaries between
materials. The improvements arise because: 1) we reconstruct
a continuous function from the samples, 2) we use histograms
taken over voxel-sized regions to represent the contents of the
voxels, 3) we model sub-voxel partial-volume effects caused
by the band-limiting nature of the acquisition process, and 4)
we use a Bayesian classification approach. We have demon-
strated the technique on both simulated and real data, and it
correctly classifies many voxels containing multiple materials.
It also enables the creation of more-accurate geometric models
and images. Because the technique correctly classifies voxels
containing multiple materials, it works well on low-resolution
data, where such voxels are more prevalent. The examples also
illustrate that it works well on noisy data (SNR 15).

The construction of a continuous function is based on
the sampling theorem, and while it does not introduce new
information, it provides classification algorithms such as ours
a richer context for the information. It incorporates neighbor
information into the classification process for a voxel in a
natural and mathematically rigorous way and thereby greatly
increases classification accuracy. In addition, because the
operations that can be safely performed directly on sampled
data are so limited, treating the data as a continuous function
helps to avoid introducing artifacts.

Histograms are a natural choice for representing voxel
contents for a number of reasons. First, they generalize single
measurements to measurements over a region, allowing clas-
sification concepts that apply to single measurements to be
generalized. Second, the histograms can be calculated easily.
Third, the histograms capture information about neighboring
voxels; this increases the information content over single
measurements and improves classification results. Fourth, his-
tograms are orientation independent; orientation independence
reduces the number of parameters in the classification process
hence simplifying and accelerating it.

Partial-volume effects are a nemesis of classification al-
gorithms, which traditionally have drawn from techniques
that classify isolated measurements. These techniques do not
take into account the related nature of spatially correlated
measurements. Many attempts have been made to model
partial-volume effects, and ours continues that trend, with
results that suggest that continued study is warranted.

We believe that the Bayesian approach we describe is a
useful formalism for capturing the assumptions and infor-
mation gleaned from the continuous representation of the
sample values, the histograms calculated from them, and the
partial-volume effects of imaging. Together, these allow a
generalization of many sample-based classification techniques,
one of which we have demonstrated.
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APPENDIX A
DERIVATION OF HISTOGRAM BASIS FUNCTIONS

In this Appendix we derive parameterized model histograms
that we use as basis functions,, for fitting histograms of
data. We derive two forms of basis functions: one for single,
pure materials; another for two-material mixtures that arise
due to partial-volume effects in sampling. Equation (1), the
histogram equation, is

and measures a histogram of the function over a re-
gion defined by . ranges over spatial locations, and

over feature space. Note that if contains additive
noise, , with a particular distribution , then
the histogram of with noise is the convolution of
with (i.e., without noise). is, in
general, a normal distribution. Thus

(10)

A. Pure Materials

For a single pure material we assume that the measurement
function has the form

(11)

where is the constant expected value of a measurement of
the pure material, and is the standard deviation of additive,
normally distributed noise.

The basis function we use to fit the histogram of the
measurements of a pure material is

(12)

Thus, is a Gaussian distribution with mean
and standard deviation. and are scalar components
of and . We assume the noise is independent in each
element of vector-valued data, which for MRI appears to be
reasonable.

B. Mixtures

For a mixture of two pure materials, we assume the mea-
surement function has the form

(13)

TABLE IV
PROBABILITIES, USING BAYESIAN TERMINOLOGY FROM [3]

P �; c; s; N jh posterior probability (we maximize this)

P �; c; s; N prior probability

P hj�; c; s; N likelihood

P (h) global likelihood

where approximates the band-limiting filtering process,
a convolution with a box filter, by interpolating the values
within the region of mixtures linearly between and , the
mean values for the two materials

(14)

(15)

APPENDIX B
DERIVATION OF CLASSIFICATION PARAMETER ESTIMATION

In this Appendix we derive the equations that we optimize
to find model histogram parameters and to classify voxel-
sized regions. We use Bayesian probability theory [3] to derive
an expression for the probability that a given histogram was
produced by a particular set of parameter values in our model.
We maximize an approximation to this “posterior probability”
to estimate the best-fit parameters

maximize parametershistogram (16)

We use this optimization procedure for two purposes.

• Find Model Histogram Parameters:Initially, we find pa-
rameters of basis functions to fit histograms of the entire
dataset . This gives us a set of basis functions that
describes histograms of voxels containing pure materials
or pairwise mixtures.

• Classify Voxel-Sized Regions:We fit a weighted sum of
the basis functions to the histogram of a voxel-sized
region . This gives us our classification (in terms
of the weights ).

The posterior probabilities and share many common
terms. In the following derivation we distinguish them only
where necessary, using where their definitions coincide.

A. Definitions

Table IV lists Bayesian probability terminology as used in
[3] and in our derivations. Table V defines additional terms
used in this Section.
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TABLE V
DEFINITIONS OF TERMS USED IN THE DERIVATIONS

Term Dim. Definition

nm scalar number of pure materials

nf scalar number of pure materials and mixtures
nv scalar dim. of measurement (feature space)
� nf relative volume of each mixture and

material within the region
c nf � nv mean of material measurements for each

material
s nf � nv standard deviation of material

measurements (chosen by procedure
discussed in Section V) for each material

N nv mean value of noise over the region
p1�6 scalars arbitrary constants

hall(v) R
n
! R histogram of an entire dataset

hvox(v) R
n
! R histogram of a tiny, voxel-sized region

B. Optimization

We perform the following optimization to find the best-fit
parameters:

maximize (17)

With , we fit histogram basis function parameters
, to the histogram of an entire dataset . With

, we fit to classify the histogram of a
voxel-sized region .

C. Derivation of the Posterior Probability

We start with Bayes’ Theorem, expressing the posterior
probability in term of the likelihood, the prior probability, and
the global likelihood.

(18)

Each of the terms on the right-hand side is approximated
below, using to denote positive constants (which can
be ignored during the optimization process).

1) Prior Probabilities: We assume that , and are
independent, so

(19)

Because the elements of represent relative volumes, we
require that they sum to one and are positive

if
if or
(constant) otherwise.

(20)

We use a different assumption for depending on which
fit we are doing ( or ). For fitting , we consider
all values of equally likely

(21)

For fitting , the means and standard deviations,, are
fixed at (the values determined by the earlier fit to the
entire data set)

(22)

For a small region, we assume that the mean noise vector
has normal distribution with standard deviation

(23)

For a large region, the mean noise vectorshould be very
close to zero; hence, will be a delta function centered
at .

2) Likelihood: We approximate the likelihood
by analogy to a discrete normal distribution.

We define to measure the difference between the
“expected” or “mean” histogram for particular
and a given histogram

(24)

Now we create a normal-distribution-like function. is
analogous to the standard deviation ofat each point of
feature space

(25)
3) Global Likelihood: Note that the denominator of (18) is

a constant normalization of the numerator

(27)

4) Assembly:Using the approximations discussed above,
we arrive at the following expression for the posterior prob-
ability:

(28)

For fitting , the mean noise is assumed to be zero, so
maximizing (28) is equivalent to minimizing to find the
free parameters

(29)

subject to . Because both and
are constant valued in that region, they are not included.

For fitting , the parameters and are fixed, so
maximizing (28) is equivalent to minimizing to find the
free parameters

(30)

subject to .
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As stated in (6), Section VI, (30) is minimized to estimate
relative material volumes, , and the mean noise vector.
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