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Abstract

This thesis presents a computational framework and new algorithms for creating geometric models

and images of physical objects. Our framework combines magnetic resonance imaging (MRI)

research with image processing and volume visualization. One focus is feedback of requirements

from later stages of the framework to earlier ones.

Within the framework we measure physical objects yielding vector-valued MRI volume datasets.

We process these datasets to identify different materials, and from the classified data we create

images and geometric models. New algorithms developed within the framework include a goal-

based technique for choosing MRI collection protocols and parameters and a family of Bayesian

tissue-classification methods.

The goal-based data-collection technique chooses MRI protocols and parameters subject to

specific goals for the collected data. Our goals are to make identification of different tissues

possible with data collected in the shortest possible time. Our method compares results across

different collection protocols, and is fast enough to use for steering the data-collection process.

Our new tissue-classification methods operate on small regions within a volume dataset, not

directly on the sample points. We term these regions voxels and assume that each can contain a

mixture of materials. The results of the classification step are tailored to make extraction of surface

boundaries between solid object parts more accurate.

Another new algorithm directly renders deformed volume data produced, for example, by

simulating the movement of a flexible body.

The computational framework for building geometric models allows computer graphics users
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to more easily create models with internal structure and with a high level of detail. Applications

exist in a variety of fields including computer graphics modeling, biological modeling, anatomical

studies, medical diagnosis, CAD/CAM, robotics, and computer animation. We demonstrate the

utility of the computational framework with a set of computer graphics images and models created

from data.
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Chapter 1

Introduction

1.1 Motivation

Computer graphics is a broad field. Its practitioners gather within it any domain in which images

are generated or enhanced by a computer. One thrust within computer graphics is the creation of

models and images of objects such as plants or animals to further our understanding of them. The

same types of models and images also have applications in entertainment and education.

Our work explores some new techniques for studying anatomy, development, and behavior

through this modeling and rendering process. Given a locust, a human hand, or a frog embryo, how

can we visualize and understand it? What new tools are needed to answer questions about it?

We present a computational framework for attacking some of the difficulties in making models

and images. Our framework is centered around measuring objects, identifying different regions

within the objects, and creating images and models using information about the regions and mea-

surements.

The framework is not a one-way pipeline. Instead, each stage requires input with certain
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characteristics; these required characteristics impact the output of earlier stages. The feedback

assures that the output from each stage meets the requirements for input to the next.

In this chapter we present our computational framework, discuss some of the novel techniques

that we have developed within the framework, and give an overview of the remaining chapters.

1.2 Model-Building Framework

Our framework consists of three main stages, illustrated in Figure 1.1. In the first stage, data

collection and processing, real-world objects are measured and the resulting sampled volume data

processed and stored for later stages. We describe some of the problems and our approaches to

solving them in Section 1.2.1 and in Chapter 2.

The second stage of the framework, classification, identifies regions containing different mate-

rials within the objects we have measured. The sampled volume data is used as input. Section 1.2.2

and Chapter 3 describe our Bayesian methodology for generating classification algorithms, and

Chapters 4 and 5 present three new algorithms.

The third stage of the framework, model building and visualization, generates models, images,

and animations of our objects. We outline some of the challenges and show results of applying our

techniques to classified MRI data in Section 1.2.3 and in Chapters 6 and 7.

1.2.1 Data Collection

In the first stage of our computational framework we measure the physical object we wish to model.

The data we collect must distinguish different materials sufficiently for our classification and model-

extraction processes to work. We have developed techniques that help us to collect data that satisfies

our imaging goals in a minimal amount of time.

Why MRI? We have chosen to use magnetic resonance imaging (MRI) for a number of reasons.

First, MRI measures information about both the inside and the outside of an object. The resulting
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Figure 1.1: This figure shows the computational framework that we use for creating static and dynamic geometric models
from MRI data. 2

volume data identify internal structure, an important factor in the behavior of dynamic models.

Second, MRI measures at least three independent parameters of each material, and so has the

potential to distinguish more different materials than techniques that measure only a single parameter.

Third, it is not invasive, so we can measure living plants and animals without damaging them. Fourth,

although imaging time is expensive, MRI is accessible at most large hospitals and at imaging centers.

Other modalities have been used for creating models. Laser range-scanning is the most

widespread [Turk and Levoy, 1994] primarily due to its low cost and high level of detail. It is,

however, limited to line-of-sight surface measurements, which are sufficient for many static com-

puter graphics applications, but not sufficient for applications requiring internal structure or for

dynamic models where an initially invisible portion of the surface may become visible.
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Computed tomography (CT) data have also been used for similar purposes [Drebin et al., 1988].

CT can produce higher-resolution data than MRI and measures internal structure, but suffers from

two drawbacks. First, it uses ionizing x-radiation, which damages living tissues; and second, its

measurements depend only on a single material parameter, and so cannot differentiate tissues as

well as MRI.

Limitations. MRI datasets have a number of limitations. There are many different MRI methods

or protocols for collecting data, each with a set of parameters that influence how different materials

appear in the resulting images. Choosing a protocol and parameters from this panoply is a formidable

task, often requiring years of experience and frequently only moderately successful. Further

complicating the problem, MRI collections are time-limited by the physics of the spinning hydrogen

nuclei; datasets with a large enough signal-to-noise ratio or contrast-to-noise ratio often require a

prohibitive amount of time to collect.

There are also many distortions that can appear in MRI data. Broadly, the distortions can be

categorized as geometry or intensity related. We avoid some of the distortions by constraining the

data-collection process and reduce others through the parameter optimization process. In a post-

collection step we reduce even more through image-processing techniques. We defer attending to

some of the distortions until the tissue-classification stage where we diminish the artifacts through

new classification algorithms.

Cost and accessibility are additional issues. While MRI machines exist in most large hospitals

and in imaging centers in many large cities, they are expensive to use, currently costing around

$400-1000/hour, and often difficult to access.

MRI Data Collection Parameter Setting. As we describe in more detail in Section 2.1.2, others

have attacked the MRI parameter-setting problem with techniques that optimize the contrast between

two specific materials or that find closed-form solutions for a specific protocol. Some numerical

techniques have also been used to optimize the contrast-to-noise ratio for a particular collection
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algorithm.

In Chapter 2 we directly address the parameter-setting and collection-time problems by codifying

the requirements of the classification, model-building, and visualization algorithms; the complex

constraints of the MRI machines; and the desire to reduce collection time. From the requirements

we construct a mathematical optimization problem that we solve numerically to find collection

parameters that collect data satisfying our requirements in the shortest possible time.

1.2.2 Tissue Classification

The second stage in our computational framework involves classifying or segmenting our sampled

datasets to identify regions of different materials within the datasets. The main motivation for our

classification work is to make computer graphics models and images using volume measurements

of physical objects. Identifying different materials is a key step in the process, particularly when

different materials have different behaviors or appearances. Computer graphics applications include

volume-rendered images [Levoy, 1988], surface models [Lorensen and Cline, 1987], and volume models

created from the data.

Applications of the models and images include surgical planning and assistance, conventional

computer animation, anatomical studies, and predictive modeling of complex biological shapes and

behavior. Some aspects of our classification techniques could also be applied to medical diagnosis.

With further development, the concepts may also apply to computer vision problems or to extracting

mattes for digital optical effects.

Sources of sampled volume data are becoming more numerous and accessible. In addition

to MRI, they include Computed Tomography (CT), as well as astrophysical, meteorological, and

geophysical measurements. The computational sciences frequently produce sampled output, e.g.,

the results of computational fluid dynamics (CFD) and finite element method (FEM) simulations.

We have focused on classifying MRI data, but our techniques apply to other modalities as well.

We describe related classification work in Section 3.1.1. In some of this work classification is

implemented via interactively selected mappings from data values to colors and opacities, which
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are then rendered, or via interactively chosen threshold values for distinguishing regions. Many

more rigorous classification algorithms have also been developed, but are of limited applicability to

classifying sampled MRI data for extracting models.

Bayesian Framework. We have developed a methodology (see Chapter 3) for constructing a

Bayesian classification algorithm from a set of assumptions about the underlying data. Our algo-

rithms start with the premise that the sampled datasets satisfy the Nyquist sampling theorem, which

allows us to reconstruct a continuous function �(x) over the entire dataset [Oppenheim et al., 1983].

We calculate histograms of �(x) over small regions of the dataset and classify those histograms by

fitting histogram basis functions constructed from the set of assumptions.

Classification Algorithms. Using the Bayesian framework we have constructed three different

classification algorithms, described in more detail in Chapters 4 and 5. The first algorithm models

each voxel as a linear combination of pure materials and mixtures of two materials. The second

algorithm models each voxel as either entirely composed of a single pure material, or composed of

a mixture between two materials with a boundary between those two materials. The third algorithm

is substantially similar to the second, but allows the expected value, or signature, of each material

to vary over a dataset, a common characteristic of MRI data. These techniques classify MRI data

better than previously available techniques because they use a more accurate model of the collected

data. They are also tailored to produce accurate results near boundaries between materials where

extracted model details are most visible.

1.2.3 Model Building and Visualization

The final stage in our computational framework involves extracting geometric and dynamic models

and visualizing the results. We describe this work in Chapters 6 and 7. We have primarily

experimented with applying existing techniques to the data that we have collected and classified.

Using these techniques we have created a series of models and images of inanimate and animate
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objects measured with MRI. These examples illustrate our taxonomy of model types and show the

utility of classified MRI data as a method for creating models.

Many of the models that we have created are polygonal isosurfaces of sampled functions created

by classifying collected datasets. In addition to creating static models of these regions of uniform

materials, we have used the regions to define behaviors and calculated rudimentary simulations of

the motion of these models. The behaviors are implemented as time-varying deformations. The

classified datasets also comprise a model of the underlying object; we can directly visualize them,

and, in some cases, directly simulate the behavior of the model.

Our visualizations take two basic forms, surface rendering and volume rendering. Most tradi-

tional computer graphics imagery is rendered as surfaces, although in the last decade volume ren-

dering has emerged as a useful adjunct to the more traditional techniques. Unlike surface-rendering

methods, volume rendering produces images that can show internal structure. The images of solid

objects appear to consist of volumes of transparent or semi-transparent material.

We render static and moving images using both techniques. We have developed an extension to

volume-rendering algorithms that are based on ray tracing. Our extension directly renders deformed

volume data.

1.3 Overview

We present the computational framework shown in Figure 1.1 from top to bottom. Chapter 2

describes the data collection stage. Chapter 3 explains the Bayesian methodology for creating

classification algorithms, with the new algorithms described in Chapters 4 and 5. The third stage,

model extraction and visualization, is illustrated in Chapters 6 and 7.



8

PART I

Data Collection

The following part of the thesis describes goal-based data collection, a tech-

nique for choosing a specific MRI collection technique and specific collection

parameters from the myriad of possibilities. The choice is guided by a series of

goals for the resulting volume data and the collection process.
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Chapter 2

Goal-Based Data Collection

As shown in Figure 2.1, the first computational step in our framework is collecting data that measures

an object that we wish to model. We have chosen to use Magnetic Resonance Imaging (MRI) as our

measurement technique for reasons explained in Chapter 1. There are several challenges, however,

that MRI presents in the context of creating models.

Two of the main challenges are choosing among the many collection techniques, or protocols,

and selecting values for the collection parameters that control each protocol. Our approach is

to define imaging goals for the collection process, translate them into a constrained optimization

problem, and find the protocol and collection parameters that best satisfy the imaging goals.

The novel contributions of our work are in our goal-based framework, in the choice of imaging

goals for the optimization procedure, in the use of the optimization step to steer the acquisition

process, and in our two-level optimization process. The framework gives a methodology for adding

new imaging goals and new collection techniques to the set that we have implemented. The imaging

goals we implemented are motivated by our desire to distinguish adjacent materials sufficiently well

to be able to produce geometric models from the data, but many of the objectives are generally
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Figure 2.1: Our computational framework for creating geometric models, as shown earlier in Figure 1.1. In Chapter 2 we
describe our goal-based data-collection process, emphasized in the diagram. Our new techniques help select an optimal
collection technique and set of collection parameters given a set of imaging goals for the resulting volume data. 2

applicable to imaging applications. These imaging goals differ from other work in that they do not

find collection parameters yielding the most contrast or highest contrast-to-noise ratio (CNR), but

rather find parameters yielding sufficient contrast in the least amount of time. Also, any number

of materials can be specified by a user from a low-resolution dataset, and optimal parameters are

generated taking into account inherent machine limitations and desired collection parameters such

as resolution. Finally, because units of the function we optimize are consistent from protocol to

protocol, we can choose the most appropriate technique or combination of techniques. We can even

choose between collections that produce scalar or vector-valued data.

We validate our technique with results using simulated as well as real MRI data.

The chapter is organized as follows: Section 2.1.1 discusses the collection of MRI data and
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motivates the need for goal-based collection techniques. Section 2.1.2 describes related work in the

area and compares it to our work. We define terms in Section 2.1.3. In Section 2.2 we describe

our imaging goals and give a conceptual description of the optimization process. A mathematical

description follows in Section 2.3 with results, discussion, and conclusions in Sections 2.4–2.6.

2.1 Introduction

2.1.1 Background and Motivation

Collecting good MRI data is difficult because imaging systems are very sensitive to the many

parameters of the various collection techniques, to the choice of technique, to subtle differences in

the materials that are being imaged, and to the fine tuning of the machine being used. Many parts

of the process are also inherently analog and difficult to calibrate.

MRI collection protocols are defined by a set of precisely timed electro-magnetic pulses applied

to an object. A “pulse program” defines and controls the exact timing. Figure 2.2 shows an example.

In these programs many operations occur simultaneously: different magnetic gradients are turned

on and off, and radio frequency energy is transmitted into the subject and is measured as it is

re-radiated. The timing of these operations changes the resulting images that are collected, and it is

often difficult to choose appropriate parameter values to collect data that have the properties needed

for a given application.

In most cases finding an appropriate set of parameters is a trial-and-error process. An exper-

imenter typically collects datasets varying the parameters based on prior experience or published

results of other experiments until the images appear reasonably good.

We have improved on this trial-and-error process by mathematically formulating a set of imaging

goals and using constrained optimization to find an optimal set of collection parameters.
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Collection Parameters, Pc units
N0;N1;N2 samples none number of samples in each direction–N0 is of-

ten called the read direction; N1, the phase-
encode direction; and N2, the slice direction

FOV0,
FOV1,
FOV2

field of view [m] size of imaged region in each of the above
directions

H slice thickness [m]
Na averages none number of acquisitions averaged together in

each sample
TR recycle time [s] time between acquisitions of data for spins to

realign with the static magnetic field
TE echo time [s] time within an acquisition for spins to de-phase

due to T2 effects
TI inversion time [s] time within an acquisition for spins to decay

due to T1 effects
� tip angle degree angle spins are tipped away from the static

magnetic field
DW dwell time [s] time to collect a single data point

Table 2.1: The collection parameters in this table control collection protocols, describing the volume to be imaged, the
number of samples within that volume, and the timing of the pulses that influence contrast between materials. 2

2.1.2 Related Work

Many efforts to find effective MRI collection parameters have centered around finding optimal

contrast between two specific materials, e.g., white matter and grey matter in the human brain

[Dufour et al., 1993]. Other approaches have derived closed-form solutions for optimizing contrast,

contrast-to-noise ratio, or sensitivity [Mitchell et al.,1984] [Fox and Henson, 1986] [Pelc, 1993] [Hendrick

et al., 1984]. Numerical methods have also been employed successfully, most commonly to optimize

the contrast-to-noise ratio, sometimes for a specific collection time [Dreher and Bornert, 1988] [Dufour

et al., 1993] [Epstein et al., 1994].

2.1.3 Terminology

We define terms here that we will use throughout the chapter.

An imaging goal describes a desired property of collected data or of the collection process. An

imaging goal can also be a constraint on a collection parameter or among several parameters. The
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Figure 2.2: Pulse programs describe how various components of an MRI machine all execute in parallel. In this
prototypical diagram of the spin-echo protocol, each horizontal plot represents the activity of one portion of the machine
as time moves to the right. As the pulses execute they perturb spinning hydrogen nuclei, change their phase, and measure
information about them. There are many parameters that control these programs; some control the spatial region to be
imaged (slice location and thickness, and field of view, FOV), the number of of samples over that region (N0 and N1),
and the timing of the pulses that influence contrast between materials (echo time, TE, and recycle time, TR). As long as
certain relationships between parameters are maintained, other parameters, such as sweep width and encode time, can be
varied to avoid machine settings that are not possible. Choosing appropriate values is a difficult process. The diagram
shows pulses to acquire a single 1-D array of data; for a 2-D image or 3-D volume the acquisition is repeated. 2

constraint may encode a hardware limitation or some relationship among parameters.

A protocol is an MRI collection technique. Each protocol is implemented by a pulse program

with parameters that control the location and resolution of the data collected, as well as the timing

of the pulses that influence contrast and noise within the collected data. The set of parameters is

collectively known as collection parameters, or Pc.
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Material Parameters, Pm units
N(1H) spin density [m�3] number of hydrogen nuclei per volume
T1 longitudinal re-

laxation time
[s] time constant for perturbed spins to return to

alignment with the static magnetic field
T2 transverse relax-

ation time
[s] time constant for a collection of spins to go out

of phase

Table 2.2: The three material parameters describe how a region of uniform material will behave under the influence of an
MRI collection protocol. The parameters are based on a model of the behavior known as the Bloch equations [Bloch,
1948]. 2

Spin-echo is an example of a protocol with the contrast-related parameters TR, TE, and �.

Table 2.1 lists collection parameters; Figure 2.2 shows a prototypical diagram of a spin-echo pulse

program.

A machine is an instance of an MRI machine. Because different MRI machines have hardware

with different capabilities, imaging goals are sometimes implemented differently for different

machines.

Table 2.2 lists material parameters for a model of the MRI process. Material parameters,

sometimes referred to as Pm, describe how a region of homogeneous material behaves as a pulse

program collects data. The parameters include the density of hydrogen nuclei, N(1H), and two

exponential time-constants, T1 and T2, that describe the behavior of the nuclei. The behavior

is based on the Bloch equations [Bloch, 1948], a set of coupled differential equations describing

the behavior of spinning nuclei in time-dependent magnetic fields. Each material has its own

material parameters. The signature for a material is the expected value and standard deviation of

measurements of that material for a given set of protocol parameters.

In many of our results we list the mean, �, and standard deviation, �, of a normal distribution

with the notation “� � �.”

2.2 Conceptual Approach to Goal-Based Data Collection

Our approach builds on the related numerical optimization work (see Section 2.1.2), but uses a

more general goal-based approach and a set of imaging goals that are applicable to more situations.
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Figure 2.3: The outer-level optimization process in the data collection parameter optimization process. The process
begins at the left with a guess at collection parameters. Datasets are collected with those parameters, and a set of imaging
goals specified, some through interaction with the data. The algorithm then iteratively chooses parameters that satisfy the
goals and collects new data. Figure 2.4 details the inner-level optimization process of choosing new parameters. 2

New imaging goals and protocols can be added to our framework in an object-oriented manner, and

optimal solutions for each protocol can be compared to optimal solutions for other protocols.

In this section we first describe the framework for our optimization process and then present the

set of imaging goals implied by our modeling application.

2.2.1 Optimization Framework

The goal-based framework defines an objective function, E(p), of the collection parameters and

a set of constraints. Through evaluations of E(p) we can computationally find an optimal set of

parameters.

Ideally, the constrained optimization process would collect a dataset each time it wanted to

evaluate a new set of parameters. Unfortunately, the data-collection process is quite slow, and

the constrained optimization process evaluates E(p) for many sets of parameters. To address this

problem we have developed a two-level optimization process. At the outer level, datasets are

collected, but at the inner level the data-collection process is simulated. Figure 2.3 shows the outer
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Figure 2.4: The data collection optimization “inner loop.” This process takes a set of imaging goals and a set of images
and calculates collection parameters that satisfy the goals. A model for each material is first fit to the set of images, and
then a constrained optimizer iteratively finds the optimal set of protocol parameters based on the material parameters. 2

level. The “Choose New Parameters” step contains the inner level, which is shown in more detail

in Figure 2.4.

In collecting optimized data we perform the steps shown in Figure 2.3. First, we choose an

initial range of collection parameters for the optimization process to use as a starting point. We

collect several datasets with these parameter settings, and then choose geometric locations within

the images that represent different tissues. We then specify a set of imaging goals, e.g.,

� differentiate chosen materials

� acquire data at a particular resolution and size

� minimize collection time

� do not violate hardware limitations of the machine

As shown in Figure 2.4 the constrained optimizer finds an optimal set of parameters based on a
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model of each material that we identified in the collected data. New datasets are collected near that

optimal point. Frequently they satisfy the imaging goals, but when they do not, the outer level of

the optimization process is repeated and more new data are collected.

2.2.2 Imaging Goals

We use several different types of imaging goals in our optimization process. Some are related to

the ultimate use of the collected data, some are inferred from constraints of the collection protocol

or machine, and some are practical.

Goal: Good Tissue Discrimination

Our first imaging goal is to be able to unambiguously identify different tissues within an image. The

specific requirements from this goal arise from the tissue-classification algorithms that we present

in Chapters 3–5.

There are two parts to the goal: the first is related to the contrast-to-noise ratio (CNR) [Kanal and

Wehrli, 1986]. We assume that measurements of a particular material will be normally distributed.

We can calculate the mean and standard deviation of the normal distribution for each material from

the interactively selected points. From the selected points, the CNR, which is the ratio of the

difference of their means to the average of their standard deviations, can be calculated for each pair

of materials. For materials with a CNR of less than one, the normal distributions overlap and are

difficult to distinguish. For larger CNR values the distributions overlap less and become easier to

identify, as shown in Figure 2.5. The degree of overlap that is acceptable is determined by our tissue

segmentation method.

The second part of the goal is to collect data at a particular resolution. As we formalize the

imaging goals in a Section 2.3, we incorporate resolution. By fixing the desired resolution, we find

collection parameters that achieve sufficient contrast to identify materials at that resolution.
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Figure 2.5: On the left two summed normal distributions are difficult to identify, and data values do not clearly lie under
either, making them difficult to assign to a material. On the right the distributions are clearly separated. Note that this
separation can be achieved either by moving the centers or by narrowing the widths of the distributions. Figures 2.9
and 2.10 show examples of data that illustrate this effect. 2

Goal: Observe Machine and Protocol Limitations

We also wish to avoid violating assumptions implied by an imaging protocol or by limitations of

our collection hardware. For example, a given implementation of a spin-echo imaging protocol will

have a maximum value for the parameter TE that is dependent on the value for TR. Similarly, a given

implementation on a particular machine will have a minimum value for TR. The minimum may be

a function of other parameters, or may be an absolute value.

Goal: Minimize Collection Time

We wish to achieve the imaging goals above with the smallest amount of collection time. Imaging

time is expensive, so reducing it saves money. Shorter imaging times also tend to reduce the

likelihood of motion artifacts from living subjects because they do not need to remain in the

machine and motionless for as long.

2.3 Mathematical Approach

In this section we mathematically formulate our imaging goals and the MRI model, describe how we

construct an optimization problem from them, and give some details about the numerical solution
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technique that we use.

As shown in Figures 2.3 and 2.4, our algorithm iterates the following steps:

� collect data

� estimate material parameters from data

� optimize collection parameters from MRI model

2.3.1 Model of the MRI Process

The inner loop of our optimization process requires the prediction of material signatures for a given

set of collection parameters. We model the MRI process to do this.

In the model we have chosen [Farrar and Becker, 1971], each material has three parameters, N(1H),

T1, and T2. These parameters are proton spin density, a longitudinal relaxation-time constant and

a transverse relaxation time constant (see Table 2.2). The parameters are defined in the Bloch

equations [Bloch, 1948].

We define three functions that characterize each protocol that we support. We describe them

below. New protocols are added to our framework in an object-oriented manner by specifying these

three functions. The first function, v(Pc;Pm), specifies the data value expected for a given set of

material parameters and collection parameters. The second function, �(Pc;Pm), gives a model of

the standard deviation of the data value as a function of the material and collection parameters.

The third function, t(Pc), defines the collection time necessary to collect data using the collection

parameters.

From data collected with a variety of collection parameters, we estimate the unknown material

parameters for each material, N(1H), T1, and T2, as well as any unknown collection parameters

defined below.

In the estimation procedure we first interactively select locations representing a specific material

within several datasets collected with different collection parameters. For each material in each

dataset, we then calculate the standard deviation of the data values at the selected points and use it
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to estimate the measurement error. With the data values and measurement error estimate, we use an

implementation of Levenburg-Marquardt non-linear parameter estimation [Press et al., 1992] to find

the parameters. The parameter-estimation algorithm returns a value, �2, that measures how well

our model fits the data; �2 = 1:0 is a “perfect” fit.

We next describe the equations for several collection protocols. The details of the protocols are

not described here; we need only to know the expected signal, noise, and collection time for a given

set of collection parameters.

Spin-Echo 2-D Protocol

Spin-echo protocols can be designed for collecting 2-D slices or 3-D volumes. This section describes

a protocol that collects a slice. The protocol has three collection parameters: TR, the time between

excitations; TE , the time from excitation to collection of an echo; and �, the excitation tip angle (see

Table 2.1). The Bloch-equation-based MRI model [Rosen et al., 1984] predicts that the image value,

v, for a particular material with materials parameters N(1H), T1, and T2 will be:

vse2(Pc;Pm) = kv�se2N(1H)
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(2:1)

We choose kv�se2 so that vse2 is unitless and measures the signal per voxel.

The deviation is

�se2(Pc;Pm) =
k��se2p

Na
(2:2)

where N0N1 is the number of samples in a collected slice and Na is the number of acquisitions

averaged together. �se2(Pc;Pm) is unitless and measures noise per voxel.

The acquisition time for 2-D spin-echo protocol is calculated as follows:

tse2(Pc) = NaNgN1TR (2:3)
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where Ng, the number of groups of concurrently-acquired slices, is:

Ng =
N2

max
��

TR

TE+
N0
2

�
; 1
� (2:4)

Spin-Echo 3-D Protocol

Equations for a 3-D spin-echo protocol are similar to the 2-D case. Expected signal per voxel is

vse3(Pc;Pm) = kv�se3N(1H)
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(2:5)

Expected noise per voxel is

�se3(Pc;Pm) =
k��se3p

Na
(2:6)

Collection time is

tse3(Pc) = NaN2N1TR (2:7)

Inversion Recovery 2-D Protocol

Inversion-recovery is a different protocol. It incorporates an additional step where the T1 of a

material can influence the resulting image values. As with spin-echo protocols, both slice and

volume collections can be implemented. We show the equations for a slice-collecting version of the

protocol [Hendrick et al., 1984]. Expected signal per voxel is

vir2(Pc;Pm) = kv�ir2N(1H)
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(2:8)
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Expected noise per voxel is

�ir2(Pc;Pm) =
k��ir2p

Na
(2:9)

Collection time is

tir2(Pc) = tse2(TR; TE;Na;N2;N1;N0) (2:10)

2.3.2 Imaging Goals

We next describe how our imaging goals are turned into a constrained optimization problem. We

define an objective function, E(p), that we want to minimize subject to a set of constraints, ci. The

constraints are all linear in the parameters that we optimize over, and must be inequalities.

Our objective function is

E(p) =
P

I EI(p)

subject to constraints cJ

(2:11)

We decompose each imaging goal into one or more terms, EI(p), in our objective function and

one or more constraints cJ .

Goal: Good Tissue Discrimination

This imaging goal is intended to provide sufficient contrast so that pairs of materials can be

distinguished from one another. For each pair of materials we define a penalty, Edij(p), that is added

to E(p). This penalty is zero where the material data values, vi and vj, are sufficiently separated

relative to their expected deviations, �i and �j.

Edij(p) =
max(0; dij(p) � dgij)

kd

2

(2:12)

where dgij is the goal separation between the two materials and dij(p) is that actual separation. kd is
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a parameter that weights the relative importance of this penalty term with respect to other terms in

E(p). It is measured in units of standard deviation. For our optimizations we set

kd = 0:1 (2:13)

to indicate that we are concerned with overlaps on the order of 0:1 standard deviations.

For scalar data the separation between two materials, dij(p), is defined as the ratio of the

difference between their means and the average of their deviations

dij(p) =

�����2(vi(p) � vj(p))
�i(p) + �j(p)

����� (2:14)

This definition differs from that of contrast-to-noise ratio (CNR) by incorporating a noise estimate

for both signal values.

The definition for separation extends to vector-valued data in a straightforward manner under

the assumption that the noise in each element of the vector is independent.

Goal: Observe Machine and Protocol Limitations

Each protocol has certain limits for its parameters. We implement these as constraints on the

optimization parameters. For the 2-D and 3-D spin-echo protocols, we define constraints for the

minimum and maximum TE values that can be used. They are

cse1 : TE > kse1 +
N0

2
DW (2:15)

where kse1 is a constant defined for a given machine and DW is the time necessary to collect a single

sample (dwell time).

cse2 : TE < TR � kse2 � N0

2
DW (2:16)

For the double-spin-echo acquisition we add another constraint to prevent the acquisition times
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for the echos from overlapping:

cd1 : TE1 + kd1 + N0 DW < TE2 (2:17)

Goal: Minimize Collection Time

We formulate our time-minimization goal as a penalty term, Et(p), added to the objective functions

E(p).

Et(p) =
tprotocol(p)

kt
(2:18)

Note that this term is linear in the collection time tprotocol(p). This means that, in general, the

overlap penalties, Equation 2.12, will be satisfied before this term has an effect on the optimization.

kt scales Et relative to other terms in E(p). We use

kt = 20s (2:19)

to indicate that the amount of collection time that we consider to be significant is 20 seconds.

2.3.3 Solving the Constrained Optimization Problem

We optimize E(p) in two steps: first, we search the space of parameters to find a somewhat inaccurate

global minimum. With that as a starting point, we use a second solver to refine the accuracy of the

minimum. The first search uses a simulated annealing method related to the simplex method [Press

et al., 1992]. This optimizer does not have explicit support for constraints. We convert the constraints

to a penalty that is very large where they are not satisfied, and zero where they are. Because all of

the constraints are inequalities, this has the effect of ruling out infeasible solutions without changing

the objective function in feasible regions. The simulated annealing solver evaluates E(p) many

times while searching for a global minimum, and so does not converge very quickly. We use it to

search the parameter space and to find an approximately optimal solution.
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If there is no feasible solution, the constraints may not be satisfied.

The second optimizer uses a sequential quadratic programming method [NAG, 1993]. It has

very good convergence and explicit support for constraints, but does not search the parameter space

thoroughly, and so would not find the global minimum alone. We start it with the approximate

solution from the first optimizer and it finds a local minimum near its initial solution.

2.4 Results

We tested our methods on simulated data, real data of a Dungeness crab collected in a 1.5 Tesla

clinical machine, and real data of a mouse embryo collected on an 11.7 Tesla research machine.

2.4.1 Simulated Data

We first “collected” simulated data and applied our optimization to it. The “object” that we measured

was a pair of concentric spherical shells, as shown in Figure 2.6. The simulated collection process

used Gaussian sampling to calculate each sample in each dataset based on the geometry, the material

of the “object,” the collection parameters, and Equation 2.1. Normally distributed noise derived

from Equation 2.2 was added to each sample.

Figure 2.7 shows one image for each set of collection parameters used. Table 2.3 shows the

material parameters used and the results of fitting material parameters to the collected data. A �2

of one would indicate that the model has matched the data exactly.

From the estimated material parameters and a set of imaging goals, we estimate collection

parameters that will achieve the goals. Our goals are to achieve a contrast-to-noise ratio of eight

between each of the three pairs of materials and to collect data at the same 10� 40� 40 resolution

at which the calibration data was collected. We chose the resolution and CNR values to collect data

that would work well with our classification algorithms. Figure 2.8 shows two objective functions

for a spin-echo collection. In one Na = 3 and in the other Na = 4. The shape of the objective

function changes for different values of Na with the minimum moving toward smaller TR values on
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Figure 2.6: The shape of the object shown in the simulated datasets of Figures 2.7 and 2.9 is two concentric spherical
shells around a hollow interior. The square shows one slice of collected data. 2
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Figure 2.7: An array of simulated data “collected” with different TR=TE combinations. All images are displayed on the
same intensity scale, so those with low signal are difficult to see, but still have useful information. The shape of the
simulated object in this figure is shown in Figure 2.6. The brighter region is composed of two materials, although they
are similar and not well differentiated by the collection parameters shown. 2
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material parameters
material kN(1H) T1 [s] T2 [s] �2

1 3000 1200 120
fit 2954� 60 1183� 30 123� 2:5 1.01
2 3100 1300 100

fit 3269� 72 1379� 37 97:1� 1:4 1.01
3 0

fit 17:2� 2:1 50:6� 222 122� 87 1.01

Table 2.3: Material parameters for simulated data example. The first row for each material shows the parameters used to
generate the simulated data, and the second row shows the parameters fit to the data, along with a �2 value. A �2 value
of 1.0 indicates that the model fits the data exactly. Values within 0.2 of 1.0 indicate a very good fit. Material 3 has no
signal, so T1 and T2 are not meaningful. 2
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Figure 2.8: The objective function for the simulated example. We have asked for ten slices at 40x40 resolution, and a
contrast-to-noise ratio of eight for each pair of materials. This graph shows two versions of the objective functions for a
single spin-echo acquisition. On the left, Na is fixed at 3, and on the right Na is fixed at 4. The flatter region in the center
is caused by the time minimization goal. It slopes downward toward the origin. The steeper sections are caused by the
material separation goal. Note that the steep sections are less pronounced with a larger Na because the expected noise in
the dataset is reduced. 2

protocol TR TE Na TR2 TE2 NA2 objective coll. time
[ms] [ms] [ms] [ms] [m:s]

spin-echo 1278.9 109.1 4 10.25 3:25
spin-echo 1023.5 96.0 5 10.23 3:25

two spin-echos 1308 110.7 4 13.0 8.0 1 10.75 3:34
double spin-echo 1276.9 104.3 4 114.3 20.52 6:49

Table 2.4: Optimized collection parameters for simulated data using various protocols. Note the two spin-echos solutions
have almost identical collection times but different collection parameters. Both solutions satisfy the imaging goals of
10x10x40 resolution and a contrast-to-noise ratio of eight. For the “two spin-echos” case, two independent spin-echo
acquisitions are run sequentially. 2
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Figure 2.9: Histogram, predicted material distributions, and image from simulated dataset before optimization. There are
two materials in this object, but the data values for both are very similar and difficult to distinguish in the image. The
similarity is shown in the histogram by the two normal distributions that overlap significantly. The relative heights of the
histogram and predicted material distributions are not meaningful. 2
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Figure 2.10: Histogram, predicted material distributions, and image of simulated data post optimization. The relative
heights of the histogram and predicted material distributions are not meaningful. Note that materials are clearly dis-
tinguished in both the histogram and the corresponding slice, unlike in Figure 2.9. Finding equally good collection
parameters by trial and error would be very difficult. 2

the right. Table 2.4 shows the optimal objective function values calculated for different protocols.

Figure 2.10 shows the results from the optimal protocol. Compare this to Figure 2.9, a trial run with

arbitrary parameters. In Figure 2.10 the boundary between the materials is clearly shown.

2.4.2 Real Data: Mouse Embryo
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Figure 2.11: An array of datasets of a mouse embryo collected with different TR=TE combinations. The slices are 500�m
thick and each voxel 40�m� 40�m. All images are displayed on the same intensity scale, so those with low signal are
difficult to see, but still have useful information. 2
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Figure 2.12: Diagram of the shapes shown within each slice of mouse embryo data. Each numbered region indicates an
interactively chosen region in collected slice data. 2

Our next example utilized slice data of a fixed mouse embryo collected in a 11.7 Tesla MRI

microscope. The mouse was surrounded by agar containing a T2 contrast agent to nullify signal.

We first collected data using a variety of collection parameters. The initial data was 500�m slices

with 40�m� 40�m voxels. Figure 2.11 shows one slice for each set of initial collection parameters

used. Within that data we identified regions to treat as uniform materials and interactively picked

points within each region from a display of the slices. We show a diagram of the regions in

Figure 2.12.

From the chosen points within the datasets and the known collection parameters of the datasets,
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estimated material parameters initial data
material kN(1H) T1 [s] T2 [s] �2

1 3793� 28:6 1999� 25:6 53� 0:4 1.85
2 3461� 30:6 1369� 20:5 44� 0:5 1.78
3 45� 1:0 8� 135:6 5728� 11133:1 1.98
4 2963� 38:7 1507� 28:8 35� 0:3 1.83
5 3116� 25:2 1374� 19:4 32� 0:3 1.98

estimated material parameters final iteration
1 3468� 21:3 1710� 15:0 54� 0:3 3.21
2 3373� 29:4 1355� 19:1 45� 0:5 2.05
3 29� 0:5 9� 137:9 100000� 649816029:7 2.52
4 2685� 34:9 1490� 29:0 38� 0:3 1.98
5 3072� 23:9 1328� 16:6 32� 0:2 2.05

Table 2.5: Estimated material parameters for mouse embryo data. We show the parameters as estimated from the initial
datasets, and as re-estimated after four steps of the outer level of the optimization process. Each row shows the material
parameters for one region in the phantom. See Figure 2.12 for the regions corresponding to each row. Because material
3 has virtually no signal, the T1 and T2 parameters have almost no influence on Equation 2.1 and the fitted values are
arbitrary. 2

iter. protocol TR TE Na TR2 TE2 NA2 objective coll. time
[ms] [ms] [ms] [ms] [h:m:s]

1 spin-echo 1272.08 7 28 na na na 238.442 1:15:59
two spin-echos 14.2555 9.26 2 1272.12 7 28 238.763 1:16:03

2 spin-echo 1317.62 8.28 30 na na na 258.747 1:24:20
two spin-echos 1318.64 8.27 30 12 7 2 259.177 1:24:27

3 spin-echo 1524.26 7 30 na na na 310.623 1:37:33
two spin-echos 1126.71 7 16 1738.63 7 16 310.715 1:37:48

4 spin-echo 1343.72 9.40 38 na na na 336.161 1:48:56
two spin-echos 1344.3 9.39 38 19.483 14.48 2 336.653 1:49:04

Table 2.6: Optimized collection parameters for phantom data using two protocols. 2

we estimated material parameters for each of the materials as outlined in Section 2.3.1. The

estimated material parameters for this example are shown in the top half of Table 2.5. Because

material 3 produces virtually no signal in the datasets we collected, the T1 and T2 values are not

meaningful.

From the estimated material parameters and a set of imaging goals we estimate collection

parameters that achieve the goals. Our collection goals are to achieve a contrast-to-noise ratio of

six between each pair of materials, and to collect data at the same 256 � 128 resolution as the
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Figure 2.13: An example of the objective function for the mouse embryo. We have asked for one slice at 256x128
resolution, and a contrast-to-noise ratio of six for each pair of adjacent materials. This graph shows the objective function
for single spin-echo acquisition with Na fixed at 38. 2

initial data. We iterated the outer loop of the optimization process four times collecting data at the

suggested optimum after each iteration. The results of each step of the outer-level optimization

are shown in Table 2.6. For each step we estimated new material parameters from both the initial

datasets and all new ones. The results of the material parameter estimation for the fourth and final

iteration are shown in the bottom half of Table 2.5.

Figure 2.13 shows the objective function for the fourth iteration of the outer level optimization,

a spin-echo collection with a fixed Na = 38.

Figure 2.14(i) shows a larger image of one of the initial datasets, and Figures 2.14(ii)–(iv) show

data collected using the optimal protocol and parameters from the last three outer-level optimization

steps. The results of the outer-level optimization are discussed in Section 2.5.1.

2.4.3 Real Data: Dungeness Crab

Our next example utilized Dungeness crab embedded in gelatin. The crab was dispatched with an

overdose of anesthetic; the gelatin prevented motion and provided contrast between the crab shell

and the surrounding space.
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(i) (ii)

(iii) (iv)

Figure 2.14: Data collected: (i) initially and (ii)–(iv) during the last three outer-level optimization steps. Table 2.6 shows
the collection parameters for (ii)–(iv) optimization. See Section 2.5.1 for a discussion of the outer-level optimization
process. 2

material parameters
material kN(1H) T1 [ms] T2 [ms] �2

gelatin 1477� 3:8 1782� 10:1 701� 9:1 1.49
muscle 1410� 10:4 1193� 15:6 64� 0:8 2.38

water 1420� 20:6 1803� 42:2 147� 3:3 1.93
shell 80� 6:3 141� 15:9 1424� 528:7 1.33

Table 2.7: Material parameters for crab data example. Each row shows the material parameters for one material in the
crab. A set of points representing each material is chosen interactively. 2

We first collected data using a variety of collection parameters. Figure 2.15 shows one slice for

each set of collection parameters used, and Table 2.7 shows the results of estimating parameters for

each material we have chosen within the crab.

From the estimated material parameters and a set of imaging goals, we estimate collection

parameters that achieve the goals, which were a contrast-to-noise ratio of ten between each pair of

materials and a collection resolution of 512x512x34 identical to the initial data. Table 2.8 shows
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Figure 2.15: An array of datasets collected with different TR=TE combinations. All images are displayed on the same
intensity scale, so those with low signal are difficult to see, but still have useful information. 2

protocol TR TE Na TR2 TE2 NA2 objective collection time
[ms] [ms] [ms] [ms] [m:s]

double spin-echo 2589 55 1 70 66.314 22:05
two spin-echos 3246 89.5 1 714 15 1 101.376 33:48

spin-echo 4232 63.7 1 109.515 36:07

Table 2.8: Optimized collection parameters for crab data using three protocols. The collection time value is for thirty-four
3-mm slices of resolution 512x512 with no inter-slice spacing. The goal contrast-to-noise ratio was ten. 2

the optimal objective function values calculated for different protocols and Figure 2.16 the objective

function for a fixed Na = 1. Figure 2.17 shows data collected using the optimal protocol and

parameters.

Figure 2.18 compares the predicted data and noise values from the optimization process with

the data and noise values collected on the machine. Each cross is centered at the mean value for
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Figure 2.16: Objective function for the crab datasets. We have asked for 34 slices at 512� 512 resolution, and a contrast-
to-noise ratio of ten for each pair of materials. This graph shows the objective function for a single spin-echo acquisition
with Na fixed at 1. As in Figure 2.8, the flat area is due to the time-minimization goal and the steep areas surrounding it
to the material separation goal. The objective function is shown as zero where constraints preclude solutions, primarily
around the left and back edges. 2

Figure 2.17: One slice of crab data collected using the optimized parameters. Note the contrast between gelatin, shell,
muscle, and water. The muscle and water are distinct materials within the claws. 2
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Figure 2.18: Mean and deviation values predicted by the optimization process and collected on the machine. Each cross
represents one material and is centered at the mean value for the material. The cross extends one standard deviation away
from the mean in each direction. The four solid crosses show the predicted values for the optimal collection parameters.
The dashed crosses nearest the solid ones show predicted values for the collection parameters we actually used. The other
set of dashed crosses shows the measured mean and deviation in data collected from a real crab. See Section 2.5.2 for
more discussion. Data was collected on a GE Signa 1.5 Tesla MRI machine. 2

a material and extends one standard deviation away from the mean in each direction. The crosses

labeled “optimum predicted” are the expected mean and deviation for the optimal protocol listed in

Table 2.8. Due to changes in the size of the crab and surrounding gelatin and due to inaccuracies

in the machine protocol limitations, the optimal parameters were not possible. Instead of collecting

data at TR=TE1=TE2 = 2589=55=70, we used TR=TE1=TE2 = 2583=53=71. The “predicted” and “data”

crosses show the expected and measured mean and deviation for the parameters we collected.

2.5 Discussion

In this section we explain how our results show the tradeoffs between different protocols, speculate

on some characteristics of our MRI material model, reflect on the impact of various choices for
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Figure 2.19: Predicted and measured mean values and standard deviations for each material/iteration combination in the
mouse embryo optimization process. The dashed lines represent predicted values and the solid lines measured values.
Each mean/deviation is shown as a line segment extending one deviation to the left and right of the mean value, and mean
values for the same material are connected together. 2

the contrast-to-noise imaging goal, and discuss some issues surrounding the simulated annealing

solver.

2.5.1 Data Collected from Mouse Embryo

The outer-level optimization process did not converge well in four steps. With each step, the

algorithm discovered a new predicted optimal solution, but the predictions did not match the data

collected with the suggested parameters.

Figure 2.19 shows the predicted and measured mean and deviation for each of the materials for

each of the optimization steps. Each mean/deviation pair is represented by a line segment centered

at the mean and extending for one deviation to the right and left. Mean values for a single material

are connected, with iterations running from the bottom to the top. The solid lines are predicted

values and dashed lines measurements.

We believe that the prediction inaccuracies are due to inaccuracies in the MRI material and

collection model, which we discuss further in Section 2.5.3. In particular, for the slices we
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collected, the slice thickness was over ten times larger than the other voxel dimensions, and so

voxels containing a pure material were difficult to find.

2.5.2 Data Collected from Dungeness Crab

We collected data from one crab and used it to optimize parameters for another. The signal and noise

values in the datasets from the second crab did not exactly match the predicted values generated

using the datasets from the first crab. There are a number of possible explanations for this. First,

the sample was different, although the species in both cases were the same and the preparation

as similar as possible. Second, in addition to regular calibration changes, the MRI machine was

serviced between the initial and final collections, and parts of the gradient amplifiers were replaced.

Third, the temperature of the sample was different between the initial collections and the final

collection. Any of these changes could have affected the data values.

A solution to this problem is to collect initial data, run the optimization while the sample

remains in the machine, and then immediately collect optimized data. The reduced lag time has the

advantage of providing immediate improvement to the collection process and avoiding any changes

that are likely to impact the results. The time to run the optimization is only a few minutes with the

current implementation, and could be sped up significantly.

Our MRI material and collection model also impacts the accuracy of the predictions. See

Section 2.5.3 for more detail.

2.5.3 MRI Material and Collection Model

For a model that matches a set of data values with known normally distributed noise, �2 should be

1. Our simulated data, which is generated with the same model used to fit it, has �2 = 1:01 for all

materials. Within the Dungeness crab and mouse embryo datasets, however, �2 ranges from 1:33

to 3:2. A model that does not fit well creates less-accurate predictions, and data collected at the

predicted points will not satisfy our goals.

We speculate on a number of reasons for the large �2 values. First, in materials with very little
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signal, such as gasses, hard solids, or the agar/contrast-agent combination used around the mouse

embryo, there is virtually no decay of the signal values. The T1 and T2 parameters, therefore,

provide unused degrees of freedom to the fitting process. In addition, because data values in MR

images are magnitudes of complex numbers, the values will not be normally distributed. For values

where the mean is far from zero relative to the standard deviation, the distribution is very close

to normal. When the mean is close to zero relative to the standard deviation, the distribution can

be quite different from a normal distribution. Our current implementation treats the distribution

as normal, and so gets inaccurate estimates for the signal and noise measurements. It should be

possible to identify both of these cases and correct for them in fitting the model and predicting

results.

A second reason for the large �2 values is that each sample value is an integral over a region

of space. The value incorporates effects from each material within that region, and may not be

representable with a single N(1H); T1, and T2 value. This effect can occur in regions where materials

are mixed together at a scale much smaller than a single voxel. It should be possible to identify cases

where this is happening and address them either by choosing points where materials are not mixed

or by fitting multiple parameter sets to each material to take this small-scale mixing into account.

Chapters 3 and 4 illustrated work in classification of voxels containing mixtures of materials, and

this work may be applicable to the material parameter fitting problem as well.

Finally, the MRI model may fit collected data well, and yet not predict data values accurately. In

particular, when predicting values for collection parameters far from the collection parameters used

to estimate material parameters, material signatures are less accurate. Iterating the outer loop of the

optimization procedure to collect data near the predicted optimal point addresses this problem.

2.5.4 Choice of Protocol

We observe from our experiments that optimizations on machines that support a double spin-echo

collection protocol generally achieve the requested imaging goals with a shorter collection time than

either one or two single spin-echo acquisitions. The double spin-echo protocol collects twice the
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Figure 2.20: Optimal collection time as a function of contrast-to-noise ratio (CNR). 2

data in the same amount of time, improving the signal-to-noise ratio by a factor of
p

2, an advantage

that almost always overshadows the advantage of two single-echo acquisitions, despite their two

different TR values. In addition to the increase in the signal-to-noise ratio over one single-echo

dataset, the second data value collected by a double spin-echo acquisition has a second echo time

and so can achieve contrast between materials not distinguished by the first echo alone.

2.5.5 Choice of Contrast-to-Noise Ratio (CNR)

The choice of contrast-to-noise ratio between pairs of materials has a significant impact on the

resulting collection time. Figure 2.20 shows optimal collection times for the Dungeness crab

dataset for a selection of CNR values. For CNR goals less than about 10, the CNR can be achieved

without increasing the number of averages, Na. As the goal goes above 10, Na must be increased.

Each factor of n CNR gain, then, requires a factor of n2 increase in Na, and a correspondingly

quadratic increase in collection time.
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2.5.6 Solver

Simulated Annealing. Simulated annealing is essential for finding good solutions to the opti-

mization problem we have constructed. The objective function has multiple local minima, some

comparable in magnitude, and some not. Most non-stochastic solvers will find only a nearby local

minima, which may not be adequate. The objective function can also have discontinuities, particu-

larly for the spin-echo 2-D protocol, where the collection time depends on the number of slices that

can be simultaneously collected during a single TR. Many solvers assume continuity and fail when

that assumption is violated.

Annealing Schedule. We have implemented the annealing schedule suggested in [Press et al.,

1992]. The initial annealing temperature is dependent on the CNR imaging goal that we set because

a higher CNR goal creates higher ridges in the objective function. For a CNR goal, g, the maximum

contribution along a ridge created by the goal is
�

g
2kd

�2
. Taking into account overlapping ridges

and the collection-time component of the objective function, we have used an initial temperature of

5000 for CNR goals up to 10.

The annealing schedule must be sufficiently long to explore the space of possible parameters

to find the optimum. The number of function evaluations depends on the number of parameters a

protocol has. For three parameters (2-D spin-echo), 7000 evaluations have been sufficient; for four

parameters (2-D double spin-echo), 12000; and for six parameters (two 2-D spin-echos), 18000.

Speed. Simulated annealing is slow, but for our problems the algorithm has been fast enough,

requiring on the order of 2–15 minutes on an HP9000/700 workstation to find an optimal solution

among two or three protocols. This is fast enough for an object to remain in a scanner while a new

set of parameters is calculated.
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2.6 Conclusion

We have presented a goal-based framework for setting up and solving an optimization problem

to find the best protocol and set of parameters for collecting MRI data. Within this framework

we have shown how to implement imaging goals that encode resolution and contrast-to-noise-ratio

requirements of the resulting data, limitations of the MRI machine and collection protocol, and

other goals such as the desire to minimize collection time. The optimization process is independent

of protocol, and we have incorporated a selection of protocols into our implementation.

We have used our implementation to find an optimal protocol and set of parameters for samples

in two MRI machines, as well as for simulated data. The results indicate that an accurate model of

the MRI process improves the accuracy of the optimization process and support our hypothesis that

constrained optimization can be used to select good MRI collection protocols and parameters.
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PART II

Bayesian Tissue Classification

The following three chapters describe a Bayesian framework for classifying

MRI data and two algorithms developed within the framework. Chapter 3 gives

an introduction to the problem, describes a new Bayesian frameworkfor creating

algorithms to solve the problem, and summarizes a family of new algorithms

we have created within the framework. The algorithms are described in detail

in Chapters 4 and 5.
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Chapter 3

Bayesian Tissue-Classification Framework

Material classification is a key step in creating computer graphics models and images from vol-

ume data (see Figure 3.1). We present a new Bayesian framework for constructing classification

algorithms and several new algorithms constructed within the framework.

The new algorithms identify the distribution of different material types in volume data such

as those produced with Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). We

apply them to MRI data because MRI measures spatial information about the chemical structure

of an object. Our algorithms treat a voxel as a volume, not as a single point. We reconstruct a

continuous function from the sampled data and use all of the values within each voxel volume to

identify materials within the voxel using a probabilistic approach. The algorithms further assume

that voxels can contain more than one material, e.g., muscle, fat and bone; we compute the relative

quantity of the constituent materials within each voxel.

Other classification methods, as discussed in Section 3.1.1, have utilized Gaussian probability

density functions to model the distribution of values within a dataset. Gaussian basis functions work

well for voxels containing unmixed materials. They do not work well where the materials are mixed
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Figure 3.1: Our computational framework for creating geometric models, as shown earlier in Figure 1.1. In Chapters 3–5
we describe the classification step, emphasized in the diagram. Our new techniques identify materials in sampled volume
data to produce a new sampled volume dataset for each material. 2

together because measurements combine characteristics of their component materials and are not

normally distributed. We extend the approach by deriving non-Gaussian “mixture” basis functions.

Because we model mixtures of materials and treat voxels as volumes, our techniques reduce the

classification artifacts that occur along boundaries between materials. The techniques are useful for

making higher quality geometric models and renderings from volume data, and have the potential

to make calculations of tissue volumes within a dataset more accurate. They also classify noisy,

low-resolution data well.
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3.1 Introduction

We begin by describing related work and defining terms. We then present the Bayesian framework

we have developed to create classification algorithms and work through a simple example to illustrate

the process. Section 3.3 gives an overview of the family of new algorithms that we have developed,

deferring their detailed descriptions to Chapters 4 and 5.

3.1.1 Related Work

Much previous work is devoted to material classification in sampled datasets such as those produced

by MRI or CT [Duda and Hart, 1973]. [Clarke et al., 1995] presents a review of classification methods

applied to MRI data. Many of the techniques introduce classification artifacts, particularly on

boundaries between different materials. The artifacts, which tend to appear as jaggy stair steps or

as additional surfaces, are particularly detrimental to computer graphics images and models.

Discrete statistical classification techniques are often used to identify a single class for each

sample within a dataset [Vannier et al., 1985], [Vannier et al., 1988], [Cline et al., 1990]. Each class

contains samples representing a particular material. These techniques work well in regions where

only one material is present, as in the interiors of single-material regions, but tend to fail where

voxels contain boundaries between regions, since a given sample does not represent a single material

there (see Figure 4.1).

[Choi et al., 1991] presents a method that models each sample as representing a mixture of

materials. The technique, like many others, classifies a region based on a single measurement

within the region, effectively treating each voxel as a single point.

3.1.2 Definitions

We refer to the coordinate system of the space of the object we are measuring as spatial coordinates

and generally use x 2 X to refer to points. X is nx-dimensional, where nx is 3 for volume data, but

can be 2 for slices.
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Figure 3.2: We define a sample as a scalar or vector valued element of a multi-dimensional dataset. A voxel is the region
surrounding a sample. 2

Each measurement, or sample (see Figure 3.2), may be a scalar or vector and lies in feature

space (see Figure 4.3), with points frequently denoted as v 2 V . Feature space is nv-dimensional,

where nv is one for scalar-valued data, two for two-element vector data, etc.

From the samples we reconstruct a continuous function �(x) over X by interpolating sample

values. We use tricubic interpolation and so incorporate information from 64 nearby samples into

each interpolated measurement. A voxel, voxel volume, or voxel region (see Figure 3.2) is the

volume surrounding a sample. The terms are interchangeable. We use voxel volumes that exactly

cover the volume, but overlapping or non-adjacent voxels are also possible. We are frequently

interested in the behavior of �(x) over the region defined by the volume of a voxel.

Classification algorithms classify a voxel based on information derived from the raw data in or

near the voxel. We refer to the information as voxel-info, and label it h.

3.2 A Framework for Solutions

We define a new statistical framework (see Figure 3.3), using Bayesian probability theory [Loredo,

1989] and approximations of conditional and prior probabilities, for creating classification algo-

rithms. Within that framework we have created a family of new algorithms that calculate the

probability of a particular combination of materials given the histogram over a small region. We

then find the most likely combination for the region.

In contrast with other work, we treat each voxel as a volume. Ideally, we would like to measure
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Figure 3.3: Steps in creating and using a new Bayesian classifier. In the first step we construct classification probabilities,
which estimate the probabilities of different combinations of materials within a voxel. The second step, classification,
iterates over each voxel applying the classifier to determine the most likely materials. 2

the exact material at each point within the volume. The data-collection process does not sample the

volume at every point; however, based on an assumption about the process, we can reconstruct from

the samples a band-limited function �(x) that is defined over the volume [Oppenheim et al., 1983].

With the distribution of values from �(x) over the volume of a voxel, we identify materials within

the voxel probabilistically. By using the reconstructed continuous measurement function �(x) and

not just a single measurement, we incorporate more information into the classification process and

therefore increase its accuracy.

In this section we outline how to construct a new classification algorithm within our framework,

illustrating the process with an existing algorithm.

3.2.1 Bayesian Construction of Material Probabilities

The construction involves four steps: choosing voxel-info to represent the information in a voxel,

selecting a set of assumptions about the collection process, defining a parameterized model of the

voxel-info, and deriving material probability estimates.

Choose voxel-info. Our new algorithms use histograms calculated over the region of a voxel as

voxel-info; other choices are possible, as we explore in Section 8.2.3. We have chosen histograms

for a number of reasons. First, they generalize single measurements to measurements over a region,
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Figure 3.4: Benefits of histograms of vector-valued data. We show histograms of an object with three materials. (i) is a
histogram of scalar data and shows that material mean values are collinear; therefore, distinguishing among more than two
materials is often ambiguous. (ii) represent a histogram of vector-valued data, with one MRI value along the axes at the
bottom of the figure and one along the left side. Brighter points represent larger values of the histogram. The histogram
shows that mean values often move away from collinearity in higher dimensions. (iii) is another representation of the same
histogram. (iv) shows a different histogram demonstrating that the collinearity problem can occur with vector-valued
data. 2

so classification concepts that apply to single measurements generalize. Second, the histograms can

be calculated easily. Third, the histograms capture information about neighboring voxels, which

increases the information content of the voxel-info and improves the classification results. Fourth,

histograms are orientation independent; orientation independence reduces the number of parameters

in the classification process hence simplifying and accelerating it.

As with many other techniques, ours works on vector-valued volume data, in which each material

has a characteristic vector value rather than a characteristic scalar value. Vector-valued datasets have

a number of advantages and generally give better classification results. First, they have an improved



3.2 A Framework for Solutions 49

signal-to-noise ratio. Second, they frequently distinguish similar materials more effectively (see

Figure 3.4).

In particular, the jump from scalar to two-element vector data is very important. In scalar-valued

datasets it is difficult to distinguish a mixture of two pure materials with values vA and vB from

a pure material with some intermediate value such as vC = (vA + vB)=2. This is because all three

material values are collinear, as they must be for such a dataset.

With more measurement dimensions in the dataset, collinearity is less frequent for most combi-

nations of three or more materials, although Figure 3.4(iv) illustrates that it can still occur. When it

does occur, classification works as for scalar-valued data.

We assume different scalar-valued datasets are spatially aligned so that we can build vector-

valued datasets from them.

Codify collection assumptions. In the second step we codify a set of assumptions about the

data-collection process. The assumptions embody information about:

� how sampling works on the machine we are using,

� the responses of materials or combinations of materials to the measurement process,

� the spatial uniformity of the measurements, and

� geometric restrictions in our objects.

For our example we will assume that there is a known discrete set of materials, that measurements

for a single material are distributed normally, and that each voxel consists of exactly one material.

Section 3.3 lists the assumptions for our new algorithms, some of which are illustrated in Figures 4.1

and 5.1.

Model voxel-info. From our choice of voxel-info and the set of assumptions about the data-

collection process, we define a parameterized model of the voxel-info, f (�). The parameters for the

voxel-info model are divided into two classes. The first, dataset parameters, consists of those that
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Dataset parameters
�i continuous mean value for material i
�i continuous standard deviation for material i

Voxel parameter
� discrete material

Table 3.1: Parameters for the example classification algorithm. Dataset parameters are constant within a given dataset,
while the voxel parameter varies for each voxel. 2

are known before the voxel classification process. The second, voxel parameters, can vary from

voxel to voxel.

For our example the dataset parameters are shown in Table 3.1.

Estimate material probabilities. Given voxel-info, h, which encodes information from a single

voxel and a parameterized model of the voxel-info, f (�), we want to find the most likely set of

parameters�. The posterior probabilitydefines how likely a set of parameters� is given an observed

voxel-info h:

P(�jh) (3:1)

By maximizing the posterior probability we find the most likely set of parameters. Equation 3.1

cannot, in general, be calculated directly, so we use Bayes’ Theorem to decompose it into pieces

that we can either calculate directly or estimate.

P(�jh) =
P(�)P(hj�)

P(h)
(3:2)

P(hj�) is the likelihood of a particular instance of voxel-info for a given set of voxel parameters.

We calculate it by comparing the parameterized model of the voxel-info to the actual voxel-info and

quantifying the difference.

P(�) is the prior probability and tells us how likely each set of parameters is. We estimate the

prior probability from the model of the voxel-info and from the assumptions that we make about
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the data-collection process.

P(h) is the global likelihood of a particular instance of voxel-info. We assume that it is a constant

function of h. It becomes a normalization factor for Equation 3.2.

The specific estimates for each of our algorithms are described in subsequent chapters. In the

following section we work through the derivation for an example.

The posterior probability calculation is used within the classifier. For our example, the classifier

calculates the probability of each material for a given measurement and chooses the most likely

material. See Section 4.11 for the detailed derivation of a classifier.

3.2.2 Classification

Estimate dataset parameters. The dataset parameters must be estimated before the classifier

can be used. We estimate them by calculating their values for a training set of voxel-info with

known voxel parameters. In our example we would calculate the mean and variance of a set of

measurements known to be from each discrete material.

Classify voxels. Finally, we calculate the voxel-info for each voxel and use the classifier to

estimate the voxel parameters.

3.2.3 Example of Classification Algorithm Construction

In this section we construct the Bayesian classifier for the example we introduced in Section 3.2.

This classifier is not new [Duda and Hart, 1973], but its construction within our framework illustrates

how to create a classifier.

Example voxel-info. For our example we define voxel-info he as the single data measurement at

the center of a voxel.
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Example assumptions.

e1: Each measurement comes from exactly one material.

e2: The measurements from each material are normally distributed.

e3: We know the number of materials and can identify samples from each material within the

data.

e4: All materials are equally likely.

Example model of voxel-info. Our model of the voxel data, fe(�e), has a single discrete voxel

parameter, �e, that specifies the material within the voxel.

fe(�e) = ��e (3:3)

For each material i, our model has two dataset parameters, �i and �i, defining the expected value

and the standard deviation of measurements.

Example material probabilities. From assumptions e1 and e2, the likelihood, P(hej�e), can be

calculated by evaluating a normal distribution with mean ��e and variance �2
�e

:

Pe(hej�e) =
1

��e

p
2�

exp

 
�1

2

�
�e � ��e

��e

�2
!

(3:4)

From assumption e4, the prior probability, Pe(�e), is 1
nm

where nm is the number of materials.

Example dataset parameters. The dataset parameters consist of the mean and variance of mea-

surements of each discrete material.

We can calculate the posterior probability, P(�ejhe), for an instance of voxel-info, he, and a value

of �e given values for the dataset parameters. From assumption e3 we find the dataset parameters

by interactively selecting a set of points in the dataset for each material. We define each set as
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measurements of the single material they represent; from them we calculate the mean and variance

for each material.

Example classification. We iterate over each voxel calculating the most likely value for the single

voxel parameter �e; for each voxel we measure he, the value at the center of the voxel. For each

possible material we calculate the corresponding posterior probability, P(�ejhe), and choose the

largest of these values. This gives us the most likely material.

3.3 A Family of Solutions

In this section we give an overview of three new classification algorithms constructed within our

framework to compare and contrast them with one another. The algorithms are described in detail

in Chapters 4 and 5. We first list the assumptions that are common to all three algorithms and the

dataset parameters that these assumptions imply. We then present the assumptions unique to each

algorithm and summarize both the dataset and voxel parameters.

3.3.1 Assumptions Common to New Algorithms

We make several assumptions that are consistent among the new algorithms that we have developed.

Each algorithm also makes additional assumptions detailed in Sections 3.3.3–3.3.5.

ec1: Discrete materials. The first assumption is that materials within the objects that we measure

are discrete at the resolution that we are sampling, but not necessarily aligned with the

sampling grid. We make this assumption because we are generally looking for boundaries

between materials, and because we are starting from sampled data, which loses information

about detail that is finer than the sampling rate.

This assumption does not preclude homogeneous combinations of sub-materials that can be

treated as a single material at our sampling resolution. For example, muscle may contain

some water, and yet be treated as a separate material from water. This assumption is not
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satisfied where materials gradually transition from one to another over many samples or are

not relatively uniformly mixed. Section 4.8 discusses cases where this assumption is not

satisfied.

ec2: Normally distributed noise. The second assumption is that noise is added to each discrete

sample and that noise is normally distributed. We assume a different variance in the noise for

each material. This assumption is not strictly satisfied for MRI data in some cases, but seems

to be satisfied sufficiently to classify data well.

ec3: Nyquist sampling theorem is satisfied. The third assumption we make is that the sampled

datasets we classify satisfy the Nyquist sampling theorem [Oppenheim et al., 1983]. The

sampling theorem states that if we sample a sufficiently band-limited function, we can exactly

reconstruct that function from the samples.

From assumption ec1 the underlying physical object has discontinuous boundaries between

materials, and an infinite-precision MRI machine would generate a dataset with discontinuities

at material boundaries. At finite resolutions, the measurement function must be band limited

so that it can be reconstructed from the samples.

MRI slice data generally satisfies this assumption or can be pre-processed to satisfy it [Laidlaw,

1992b] within the slice. Without data that satisfy the Nyquist sampling theorem, we cannot

reconstruct a continuous function, and without a continuous function, we cannot extract

geometric models as described in Chapter 6.

3.3.2 Voxel-info: Histograms

For each of our classification techniques we use a histogram over the small region defined by a

voxel to encode the information contained in the voxel. We first reconstruct a continuous function

over the entire dataset from the samples and then use Equation. 4.1 to calculate a histogram over

each voxel.
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3.3.3 Overview of Algorithm A: Partial Volume Mixtures

Our new partial volume mixtures algorithm, described in more detail in Chapter 4, was developed

to create classified data with fewer boundary artifacts so that we could produce better geometric

models. The choice of voxel-info, the model of the voxel-info, and some of the assumptions

are formulated to capture and identify information about the boundaries. The remainder of the

assumptions help make some of the probability calculations more tractable.

Additions to common assumptions.

em4: Linear mixtures. Each voxel measurement is a linear combination of pure material mea-

surements and measurements of their pair-wise mixtures.

em5: Uniform tissue measurements. Measurements for the same material have the same expected

value throughout a dataset.

em6: Box filtering. The spatial measurement process can be approximated by a box filter. This

assumption contradicts ec3, but helps us derive a tractable calculation for the histogram basis

function for mixtures which appears to be accurate enough to classify data well.

em7: Materials identifiable in histogram of entire dataset. The signatures for each material and

mixture must be identifiable in a histogram of the entire dataset.

Description. The parameters for each voxel in this algorithm are density values for each pure

material and for each pair-wise combination of materials and an estimate of the low-frequency noise

within the voxel. The densities sum to one, and each density weights a histogram basis function for

either a pure material or a mixture. The basis function for pure materials is a normal distribution.

The basis function for a mixture is derived in Section 4.10. Both are shown in Figure 4.4.

The dataset parameters are the mean and variance values for each pure material, as well as an

expected deviation of the model histogram from actual histograms. The parameters are estimated
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by analyzing a histogram taken over the entire dataset and fitting a combination of materials to that

histogram. See Chapter 4 for a complete description.

3.3.4 Overview of Algorithm B: Boundary Distance

Our new boundary distance algorithm, further described in Chapter 5, addresses some of the

limitations we discovered in the partial volume mixtures algorithm. The voxel-info and most of the

assumptions are the same, but the histogram basis functions are new. The main change is that the

distance from a boundary is explicitly incorporated into the histogram basis function for mixtures.

The explicit model better fits histograms of voxels near boundaries. A secondary change is that the

histogram basis functions are derived with the more-accurate assumption of Gaussian filtering.

Addition to common assumptions.

eb4: Only pair-wise mixtures. Each voxel measurement is either a pure material or a mixture of

exactly two materials near a boundary.

eb5: Uniform tissue measurements. Measurements for the same material have the same expected

value throughout a dataset.

eb6: Gaussian filtering. The measurement process can be approximated by a Gaussian filter.

This assumption helps us derive a tractable calculation for the new histogram model of

boundary-parameterized mixtures and also models the actual collection process better than

box filtering.

eb7: Known materials. We know the number of materials and can identify samples from each

material and mixture within the data.

Description. The voxel parameters for this algorithm are a discrete parameter that determines

the material or mixture, a signed distance from a boundary for mixtures, and an estimate of the

low-frequency noise within the voxel. Once again, the histogram basis functions for pure materials
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are normal distributions. The basis functions for mixtures are derived in Section 5.8.2 and are shown

in Figures 5.2 and 5.3.

The dataset parameters are the mean and variance values for each pure material, as well as

an expected deviation of the model histogram from actual histograms. They are estimated from

a training set of points interactively chosen for each material and mixture. See Chapter 5 for a

complete description.

3.3.5 Overview of Algorithm C: Boundary Distance with Non-Uniform Material

Signatures

Our third new algorithm, further described in Chapter 5, augments the boundary distance algorithm

to handle a common characteristic of MRI data that often complicates classification: MRI measure-

ments of the same material that are different at different spatial locations. There are a number of

factors that can cause these intensity distortions, from antenna coils that produce spatially dependent

RF radiation to different amounts of absorption of the RF energy in different parts of the object.

The algorithm relaxes the assumption that the expected value for a material is constant. Instead, the

expected value is a function of spatial location.

Additions to common assumptions. Only ev5 differs from the assumptions for the boundary

distance algorithm.

ev4: Only pair-wise mixtures. Each voxel measurement is either a pure material or a mixture of

exactly two materials.

ev5: Predictable tissue measurements. Measurements for the same material have an expected

value that can be modeled with a small number of parameters across a dataset.

ev6: Gaussian filtering. The measurement process can be approximated by a Gaussian filter. This

assumption helps us derive a tractable calculation for the histogram model.
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ev7: Known materials. We know the number of materials and can identify samples from each

material and mixture within the data.

Description. This algorithm is very similar to the boundary distance algorithm. The basis func-

tions and voxel parameters are the same. Only the dataset parameters that determine the expected

value for a tissue measurement are different. In this case, the expected value is a parameterized

function of space. Its parameters are calculated from a set of interactively-specified points for each

material. The calculation is similar to calculating a mean and variance from a set of points, but the

mean is now a function of spatial location.

3.4 Summary

We have presented a Bayesian framework for developing classification algorithms and have outlined

three instances of algorithms. We describe the three algorithms in more detail in the following two

chapters. Chapter 4 discusses the partial volume mixtures algorithm, provides more detail about the

assumptions that it makes, describes the implementation, and presents the results. Chapter 5 does

the same for the two boundary distance algorithms.
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Chapter 4

Bayesian Classification Algorithm A:

Partial Volume Mixtures

In this chapter we describe a new classification technique. We follow the framework presented in

Chapter 3, first describing the construction of the classification technique and then describing the

implementation that classifies each voxel.

The algorithm uses the probability estimates to classify each voxel in a sampled dataset. The first

step estimates basis-function parameters applicable to the entire dataset. The second step estimates

basis-function parameters for each voxel using the dataset parameters and the probability estimates

and then classifies each voxel based on the estimates.

The input to our process is sampled measurement data, from which we reconstruct a continuous,

band-limited function �(x) that measures distinguishing properties of the underlying materials. Our

unit of voxel-info is a histogram of �(x) taken over a small region. The output is sampled data

measuring the relative volume of each material. We call the output “material volume ratio densities”

(see Figure 4.2).
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Figure 4.1: We start from the assumption that in a real-world object each point is exactly one material, as in (i). The
measurement process creates samples that mix materials together, from which we reconstruct a continuous, band-limited
measurement function �(x). For some values of x, e.g., P1 and P2, �(x) returns the signature of a pure material. For other
values of x, e.g., P3, �(x) returns a combination of the pure material signatures. (ii) shows regions A and B where �(x)
returns pure material signatures and region A&B, where �(x) returns a combination. The grid lines show how the material
regions may span voxels. 2

We assume, as in Figure 4.1, that each voxel is a mixture of materials, with mixtures like A & B

occurring where the band-limiting effects of the data collection process blur pure materials together.

From this assumption we derive basis functions that model histograms for pure materials and for

mixtures of two materials.

We give an overview of the construction of the algorithm in Section 4.1 and of the implementation

in Section 4.2. Sections 4.3 and 4.4 give more details on histograms and the basis functions for

modeling them, and Sections 4.5 and 4.6 describe estimating dataset and voxel parameters. We

present results in Section 4.7 and discuss the results and algorithm in Section 4.8. Detailed

derivations follow in Sections 4.10 and 4.11.

4.1 Construction

The construction of the algorithm starts with a choice of voxel data and a set of assumptions and

proceeds through a derivation of basis functions to match a model to the voxel data. This section

describes the construction process.
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4.1.1 Voxel-info

As we described in Section 3.2.1, our algorithm uses histograms over voxel regions to represent the

information contained in a voxel.

4.1.2 Assumptions

A sample measures a combination of materials. A simplifyingassumption of some previous

techniques is that each sample represents a measurement of one material, rather than a combination

of materials. Because the data-collection process blends measurements of more than one material

at points near boundaries, this assumption is not always satisfied (see Figure 4.1).

[Drebin et al., 1988] mention the need for mixture classification. They approximate the relative

volume of a material represented by a sample with the probability that the sample is the material.

As they point out, this works reasonably well for differentiating air, soft tissue, and bone in CT data,

but not in general. In MRI data the expected data value for one material may often be identical to

the expected value for a mixture of two other, different materials. We address this problem below.

We make the following assumptions about the measurement function, �(x) : R3 ! R
nv , and

about the collection process. nv is the dimensionality of our data. The assumptions are described in

detail in Sections 3.3.1 and 3.3.3.

ec1: Discrete materials.

ec2: Normally distributed noise.

ec3: Nyquist sampling theorem is satisfied.

em4: Linear mixtures.

em5: Uniform tissue measurements.

em6: Box filtering.

em7: Materials identifiable in histogram of entire dataset.
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For many types of medical imaging data, including MRI and CT, these assumptions hold

reasonably well, or can be satisfied sufficiently with preprocessing [Laidlaw, 1992a]. Other types

of sampled data, e.g., ultrasound and sequences of video or film images with lighting and shading,

violate these assumptions, and our technique does not apply directly.

4.1.3 Sketch of Derivation

As shown in Figure 4.1 we start with the assumption that each spatial location in the real world

object is exactly one material, and that the measurement process mixes materials together as it band

limits the measurements to the Nyquist frequency of the sampling rate. From that assumption we

will derive (in Section 4.3) an equation for a normalized histogram of data values within a region.

This histogram function is a probability density function (PDF) that tells us the probability that a

measurement will lie within a range of values in that region.

In Section 4.10 we create basis functions to model histograms. These basis functions are

parameterized probability density functions for regions consisting of single materials and for regions

consisting of mixtures of two materials. These mixtures are assumed to have been created by the

band-limiting process accompanying sampling. The parameters represent the mean value, c, and

variance, s, of a measurement.

Using Bayes’ Theorem, the histogram of the entire dataset, our model basis functions, and a

series of approximations, we derive an estimate of the most likely set of materials within an entire

dataset (Section 4.11). Similarly, given the histogram of a voxel region, we derive an estimate of

the most likely density for each material in that region (Section 4.6).

4.2 Algorithm

The algorithm produces, as its end result, a sampled dataset containing estimates of material volume

ratio densities. The process is illustrated in Figure 4.2.
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Figure 4.2: Steps in the classification process. We collect MR data, calculate a histogram of the entire dataset, hall(v), and
use that to determine parameters of histogram-fitting basis functions. We then calculate histograms of each voxel region,
hvox(v), and identify the most likely mixture of materials for that region. The result is a sampled dataset of volume ratio
densities. 2

Estimating dataset parameters. First, we collect and preprocess data to satisfy the assumptions

listed above. Second, we calculate a histogram of the entire dataset, and fit parameterized material

probability density functions to the histogram to get an estimate of basis function parameters that

are constant throughout the dataset.
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Estimating voxel parameters. Using the fitted parameters, we process the region for each voxel in

the dataset as follows. We first calculate a histogram for the small region and find the combination of

materials most closely fitting the histogram. Using the estimated parameters, we calculate material

volume ratio densities for that small region.

4.3 Normalized Histograms

In this section we present the equation for a normalized histogram of a sampled dataset over a

region. We will use this equation as a building block in several later sections, with regions that

vary from the size of a single voxel to regions covering the entire dataset. We will also use this

equation to derive basis functions that model histograms over regions containing single materials and

regions containing mixtures of materials. Figure 4.3 shows an example of calculating a normalized

histogram from a continuous function.

For a given region in spatial coordinates, specified by R, the histogram hR(v) specifies the

relative portion of that region where �(x) = v. We define histograms, hR(v) : Rnv ! R; as

probability density functions (PDFs). These histograms over regions are also continuous functions:

hR(v) =
Z
R(x)�(�(x) � v)dx (4:1)

This equation is the continuous analog of a discrete histogram. R(x) is non-zero within the

region of interest, and integrates to 1. We defineR(x) to be constant in the region of interest making

every spatial point contribute equally to the histogram hR(v). Note also that hR(v) integrates to 1,

which is important for our interpretation as a PDF. � is the Dirac-delta function.

We use this equation both as a starting point for deriving material intensity PDFs, and also as

a basis for calculating histograms of regions of our datasets. The derivations are outlined in the

following two sections and detailed in Section 4.10. We will now discuss a few implementation

considerations for calculating histograms.
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Figure 4.3: Noise and mixtures in histograms. The scalar data on the left representmeasurements from a dataset containing
two materials, A and B, such as that shown in Figure 4.1. One material has measurement values near vA and the other
near vB. These values correspond to the Gaussian-shaped peaks centered around vA and vB in the histograms, which are
shown on their sides to emphasize the axis that they share. Feature space lies along this axis. In (i) we show a histogram
of a function that has not been band limited, but does have noise. In (ii) the function has been band limited, and the
measurement transition between vA to vB now appears in the histogram as the flat region between feature space values vA

and vB. The process extends to higher dimensions. 2

Implementation Considerations. For each voxel we calculate a histogram during the classifica-

tion process. We describe the histogram calculation briefly. We calculate histograms in rectangular

bins, sized such that the width of a bin is smaller than the standard deviation of the noise within the

dataset. This ensures that we do not lose significant features in the histogram.

We calculate a histogram iteratively, first initializing the bins to zero. For the region of each

voxel in the dataset we use the first terms of the Taylor series of �(x) to create a linear approximation

of �(x) over the region. We then calculate a piecewise-constant approximation of the histogram over

that region, and add that to the bins. The histogram approximation is obtained by substituting the

linearized version of �(x) into Equation 4.1 and integrating that over the small regions. This takes

into account correlation of values between different elements of vector data.
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Figure 4.4: Dataset parameters for a single material PDF, shown in (i) include c, the mean value for the material, and
s, which measures the variance of the noise (see Equation 4.2). (ii) shows corresponding parameters for a two-material
mixture basis function. s0 and s1 affect the slopes of the two-material PDF at either end. For vector-valued data c and s
are vectors and are the mean values and variances of the noise for the two constituent materials (see Equation 4.3). 2

4.4 Histogram Basis Functions for Pure Materials and Mixtures

In this section we present definitions of basis functions that model histograms of pure materials

and of material mixtures. These basis functions are PDFs that specify the probability that a sample

lies within a range of values given that it is a particular material or mixture. The parameters of the

basis functions specify the expected value, c, and variance, s, of each material’s measurements (see

Figure 4.4).

We use Equation 4.1 to derive these basis functions, which we fit to the data. We then verify

that the equations provide reasonable fits to typical MRI data, which gives us confidence that our

assumptions about the measurement function �(x) were reasonable. The details of the derivations

are in Section 4.10.

For a single material, the PDF is a normal distribution:

fsingle(v; c; s) =
nvY
i=1

1

si
p

2�
exp

 
�1

2

�
vi � ci

si

�2
!

(4:2)

We derive this equation by manipulating Equation 4.1 evaluated over a region of constant material,

where the measurement function �(x) is a constant value plus additive, normally distributed noise.

For mixtures along a boundary between two materials, we derive another equation similarly. As

with the single material, this derivation follows from Equation 4.1 evaluated over a region where two
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materials mix. In this case, we approximate the band-limiting filter of the data-collection process

with a box filter, and make the assumption that the variance of the additive noise is constant across

the region. This basis function is a superposition of normal distributions representing different

amounts of the two constituent mixtures:

fdouble(v; c; s) =
Z 1

0
fsingle(v; (1� t)c1 + tc2; s)dt (4:3)

where c1 and c2 are the expected values of the two materials, and s the variance of measurements.

The assumption of a box filter affects the shape of the resulting PDF. We derived similar

equations for different filters (triangle, Gaussian, and Hamming), but chose the box filter derivation

because we found it sufficiently accurate in practice and because the numerical tractability of the

PDF in this case saved computation.

4.5 Estimating Dataset Parameters

In this section we describe the parameter estimation procedure for fitting material intensity PDFs to

a dataset. For a given dataset we first calculate the histogram, hall(v), of the entire dataset.

We then combine an interactive process of specifying the number of materials and approximate

feature-space locations for them with an automated optimization to estimate the parameters. Under

some circumstances, users may wish to group materials with similar measurements into a single

“material,” whereas in other cases they may wish the materials to be separate. The result of this

process is a set of PDFs that describe the various materials and mixtures of interest in the dataset.

The optimization process estimates the relative volume of each material (vector �all), the mean

value (vector c), and the variance (vector s) of measurements of each material. The process is

derived from the assumption that all values were produced by pure materials and two-material

mixtures. We define nm as the number of pure materials in a dataset and nf as the number of material

intensity PDFs. nf � nm, since nf includes any material intensity PDF’s for mixtures, as well as

those for pure materials.
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The optimization minimizes the function

E(�all; c; s) =
Z  

q(v;�all; c; s)
w(v)

!2

dv (4:4)

where:

q(v;�all; c; s) = hall(v) �
nfX
j=1

�all
j fj(v; cj; sj) (4:5)

The function q(v) is analogous to the difference between the expected histogram and the measured

histogram. The function w(v) is analogous to a deviation at each point v in feature space, and gives

the expected value of jq(v)j. We approximate w(v) as a constant, and discuss it further in Section 4.8.

These equations are derived in Section 4.11, using Bayesian probability theory with estimates

of prior and conditional probabilities.

4.6 Classification: Estimating Voxel Parameters

In this section we describe the process of classifying each voxel. This process is similar to that

described in Section 4.11 for fitting the material PDFs to the entire dataset, but now we operate

on each voxel region. We use the previously computed material PDFs as fixed basis functions

and no longer vary the mean vector c and variance s. The only voxel parameters are the relative

material volumes (vector �vox
j ) and an estimate of the local noise in the local region (vector �N) (see

Equations 4.6 and 4.7).

Over large regions the noise is normally distributed with zero mean. However, for small regions

the mean noise is generally non-zero due to the band limiting introduced in the data-collection

process. We label this local mean voxel noise value �N. As derived in Section 4.11 the equation that

we minimize is:

E(�vox; �N) =
nvX
i=1

� �Ni

�i

�2

+
Z �

q(v;�vox; �N)
w(v)

�2

dv (4:6)
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Object Source Voxel Size Figures
spherical shells simulated 1x1x10 mm Figure 4.5
human hand GE 1.5T 0.7x0.7x3 mm Figure 3.1, Figure 4.9
human brain GE 1.5T 0.8x0.8x3 mm Figure 4.6, Figure 4.7

Table 4.1: Dataset shown in examples with some collection parameters. 2

where

q(v;�vox; �N) = hvox(v� �N)�
nfX
j=1

�vox
j fj(v) (4:7)

and subject to the constraints

0 � �vox
j � 1; and

nfX
j=1

�vox
j = 1:

Vector � is the expected variance of the noise over the entire dataset. We estimate this as an

average of the variances of the material intensity PDFs.

With vector �vox for a given voxel region and the mean value, vector �v, within that region, we

solve for the amount of each pure material contributed by each mixture to the voxel. This is our

output, the estimates of the amount of each pure material in the voxel region.

4.7 Results

We have applied our new technique to several datasets. Table 4.1 lists the datasets, their sources,

the voxel size, and the figures in which each dataset appears. All datasets were collected with a

spin-echo or fast spin-echo protocol, with one proton-weighted and one T2-weighted acquisition.

In Figs. 4.5, 4.6, and 4.7 we compare our technique with a probabilistic approach that uses pure

materials only and only a single measurement value per voxel. The new technique produces many

fewer misclassified voxels, particularly in regions where materials are mixed due to filtering. In

Figure 4.5(iii) and (iv) the difference is particularly noticeable where an incorrect layer of back-

ground material has been introduced between the white and red regions, where multiple materials

are present in the same voxel. Figures 4.6 and 4.7(iii) also show comparative results between the
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(i) Geometry of slices

(ii) \Ideal"
classi�cation

(iii) Discrete
classi�cation
(no mixtures)

(iv) Continuous,
multi-material
classi�cation

(v) Original simulated two-valued data

Figure 4.5: Comparison of discrete, single-material classification (iii), and the new classification (iv). (ii) is a reference
for what “ideal” classification should produce. Note the band of background material in (iii) between the two curved
regions. This band is incorrectly classified and could lead to errors in models or images produced from the classified data.
The original dataset, (v), is simulated, two-valued data of two concentric shells as diagramed in (i). 2

two methods.

Models and volume rendered images, as shown in Figure 4.9, also benefit because less incorrect

information is introduced into the classified datasets, and so the images and models more accurately

depict the objects they are representing. With other classification techniques, models and images

contain jaggy artifacts along surfaces where materials meet.
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Figure 4.6: Discrete, single-material classification of the same slice shown in Figure 4.7. 2

Implementation. Our implementation is written in C and C++ on Unix workstations. We use

a sequential quadratic programming constrained optimization algorithm [NAG, 1993] to fit hvox

for each voxel region, and a quasi-Newton optimization algorithm for fitting hall. The algorithm

classifies approximately 10 voxels per second on a single HP9000/730, IBM RS6000/550E, or DEC

Alpha AXP 3000 Model 500 workstation. We have implemented this algorithm in parallel on these

machines, and get a corresponding speedup on multiple machines.

4.8 Discussion

We have made several assumptions and approximations while developing and implementing this

algorithm. This section will discuss some of the tradeoffs and suggest some possible directions for

future work.

Mixtures of Three or More Materials. We assume that each measurement contains values

from at most two materials, although our approach easily extends to mixtures with more materials.
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(i) Original Data
(ii) Results of Algorithm

Classi�ed White Matter (white), Gray Matter (gray)
Cerebro-Spinal Fluid (blue), Muscle (red)

(iii) Combined Classi�ed Image

Figure 4.7: One slice of data from a human brain. (i) shows the original two-valued data, (ii) shows four of the identified
materials, white matter, gray matter, cerebro-spinal fluid, and muscle, separated out into different images, and (iii) shows
the results of the new classification mapped to different colors. Note the smooth boundaries where materials meet and the
much lower incidence of misclassified samples than in Figure 4.6. 2
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Figure 4.8: Basis functions fit to histogram of human hand dataset. The bottom and left edges of the image are axes for
each MRI value, with the intensity of the image representing the height of the histogram function. Bright spots are pure
materials, while the lines connecting the dots are mixtures. The rightmost two white dots are pure fat and bone marrow
in the hand. The lower yellow and red dot are pure skin and muscle, respectively. The mixture between muscle (red) and
fat (white) is a salmon colored streak. The green streak between the red and yellow dots is a mixture of skin and muscle.
These fitted basis functions were used to produce the classified data used in Figure 4.9 2

Figure 4.9: A volume-rendering image of a human hand dataset. The opacity of different materials is decreased above
cutting planes to show details of the classification process within the hand. 2
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We chose two-material mixtures because surfaces between boundaries of pure materials are one of

the most important parts of computer graphics models. Voxels containing three-material mixtures

happen near lines where three materials meet, and are generally much less common, because the

dimensionality of the lines is smaller than the dimensionality of surfaces where two materials meet.

Our algorithm chooses a classification for voxels containing more than two materials from the

set of 2-material mixtures. Generally, the two largest materials in the voxel influence the choice,

producing a dataset with small artifacts where three or more materials come together.

Partial Mixtures. We note that the histograms hvox(v) for some voxel regions are not ideally

matched by a linear sum of basis functions. We address two problems here.

The first problem is that, within a small region, the assumption that we still have normally

distributed noise is no longer valid. �N models the fact that the noise no longer averages to zero, but

we do not attempt to model the change in the shape of the distribution as the region size shrinks.

The second problem is related. A small region may not contain the full range of values that

the mixture of materials can produce. As a result, the histogram over that small region is not

modeled ideally by a linear combination of pure material and mixture distributions. We investigate

an additional parameter to address this problem in Chapter 5.

We postulate that these two effects weight the optimization process such that it tends to make �N

much larger than we expect. As a result, we have found that setting the normalization factor, w(v),

to approximately 30 times the maximum value in hvox(v) gives good classification results. Smaller

values tend to allow �N to move too much, and larger values hold it constant. Without these problems

we would expect the algorithm to work best for values of w(v) equal to some small percentage of

the maximum of hvox(v). Once again, we address this problem more effectively in Chapter 5.
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4.9 Conclusion

We have developed a new classification algorithm within the Bayesian framework described in

Chapter 3. The new algorithm uses histograms taken over small voxel regions to represent the

information within a voxel, and models these histograms as a linear combination of basis functions

for pure materials and for mixtures of materials. The pure material basis function is a normal

distribution, but the mixture basis function is new and is derived in Section 4.10. The new algorithm

classifies MRI data better than previous algorithms, especially near boundaries between materials,

because the histogram incorporates more information about the voxel than a single measurement

and because the histogram model explicitly incorporates boundaries between materials.

4.10 Derivation of Material PDFs

In this section we derive material PDFs that we use as basis functions (fi) for fitting histograms.

We derive two forms of basis functions: one for single, pure materials and another for two-material

mixtures (which arise due to sampling). Here is Equation 4.1, the histogram equation:

hR(v) =
Z
R(x)�(�(x) � v)dx (4:8)

Note that if �(x) contains additive noise n(x; s) with a particular distribution kn(v; s), then the

histogram of � with noise is the convolution in v of the normal distribution kn(v; s) with �(x)�n(x; s)

(i.e, �(x) without noise). We represent the convolution in v with the operator �v. Thus

hR(v) =
R R(x)�(�(x) � v)dx

hR(v) = kn(v; s) �v
R R(x)�((�(x) � n(x; s))� v)dx

(4:9)
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4.10.1 Pure Materials

For a single pure material we assume that the measurement function has the form:

�single(x) = c + n(x; s); (4:10)

where c is the constant expected value of a measurement of the pure material, and n(x; s) is the

normally distributed noise at x with variance s.

The basis function we use to fit the histogram of the measurements of a pure material is

fsingle(v; c; s) =
R R(x)�(�single(x) � v)dx

=
R R(x)�(c + n(x; s)� v)dx

= kn(v; s) � R R(x)�(c � v)dx

=
Qnv

i=1
1

si
p

2�
exp
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�1

2

�
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si

�2
�

(4:11)

Thus fsingle(v; c; s) is a normal distribution with mean c and variance s. We assume the noise is

independent in each element of vector-valued data, which for MRI appears to be reasonable.

4.10.2 Mixtures

For a mixture of two pure materials, we assume the measurement function has the form:

�double(x) = `double(x; c1; c2) + n(x; s) (4:12)

where `double approximates the band-limiting filtering process, a convolution with a box filter, by

interpolating the values within the region of mixtures linearly between c1 to c2, the mean values for

the two materials.
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fdouble(v; c; s) =
R R(x)�(�double(x) � v)dx

=
R R(x)�(`double(x; c1; c2) + n(x; s)� v)dx

= kn(v; s) � R R(x)�(`double(x; c1; c2) � v)dx

=
R 1

0 kn(v; s) � �((1� t)c1 + tc2 � v)dt

=
R 1

0 kn((1 � t)c1 + tc2 � v; s)dt

(4:13)

4.11 Derivation of Classification Parameter Estimation

In this section we derive the equations that we optimize to find material PDF parameters and to

classify voxel regions. We use Bayesian probability theory [Loredo, 1989] to derive an expression

for the probability that a given histogram was produced by a particular set of parameter values in

our model. We maximize an approximation to this “posterior probability” to estimate the best fit

parameters:

maximize P( parameters j histogram ) (4:14)

We use this optimization procedure for two purposes:

� Find material PDF parameters. Initially, we find parameters of basis functions to fit

histograms of the entire dataset hall. This gives us a set of basis functions that describe the

pure materials and mixtures.

� Classify voxel regions. We fit a weighted sum of the basis functions to the histogram of a

voxel region hvox. This gives us our classification in terms of the weights, �.

The posterior probabilities Pall and Pvox share many common terms. In the following derivation we

distinguish them only where necessary, using P where their definitions coincide.

4.11.1 Definitions

Tables 4.2 and 4.3 list definitions that we use in the following derivations.
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Term Dimensionality Definition
nf scalar number of materials and mixtures
nv scalar dimensions of measurement (feature space)
� nf relative volume of each mixture and material

within the region
c nf � nv mean of material measurements for each material
s nf � nv variance of material measurements for each

material
�N nv mean value of noise over the region
p1:::6 scalars arbitrary constants
hall(v) Rnv ! R histogram of an entire dataset
hvox(v) Rnv ! R histogram of a tiny, voxel region

Table 4.2: Definitions used in derivations. 2

Probabilities (using Bayesian terminology [Loredo, 1989]):
P(�; c; s; �Njh) posterior probability (we maximize this)
P(�; c; s; �N) prior probability
P(hj�; c; s; �N) likelihood
P(h) global likelihood

Table 4.3: Probabilities (using Bayesian probability terminology [Loredo, 1989]) 2

4.11.2 Optimization

We perform the following optimization to find the best fit parameters:

maximize P(�; c; s; �Njh) (4:15)

With P � Pall, we fit material PDF parameters c; s, �all to the histogram of an entire dataset

hall(v). With P � Pvox, we fit �vox, �N to classify the histogram of a voxel region hvox(v).

4.11.3 Derivation of the posterior probability P(�; c; s; �Njh)

We start with Bayes’ Theorem, expressing the posterior probability in term of the likelihood, the

prior probability, and the global likelihood.
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P(�; c; s; �Njh) =
P(�; c; s; �N)P(hj�; c; s; �N)

P(h)
(4:16)

Each of the terms on the right-hand side is approximated below, using p1:::6 to denote constants

(which can be ignored during the optimization process).

Prior Probabilities. We assume that �, c, s and �N are independent, so

P(�; c; s; �N) = P(�)P(c; s)P(�N) (4:17)

Because the elements of � represent relative volumes, we require that they sum to 1 and are

positive.

P(�) =

8>>>>><
>>>>>:

0 if
Pnf

j=1 �j 6= 1

0 if �j < 0 or �j > 1

p1 (constant) otherwise

(4:18)

We use a different assumption for P(c; s) depending on whether we are fitting hall or hvox. For

fitting hall(v), we consider all values of c; s equally likely

Pall(c; s) = p6 (4:19)

For fitting hvox, c; s are fixed at c0; s0 (the values determined by the earlier fit to the entire data set).

Pvox(c; s) = �(c� c0; s� s0) (4:20)

For a small region, we assume that the noise vector, �N, has normal distribution with variance

�.

Pvox(�N) = p2e�
Pnv

i=1
(
�Ni
�i

)2
(4:21)

For a large region, the mean noise �N should be very close to zero and hence Pall(�N) will be a delta



4.11 Derivation of Classification Parameter Estimation 80

function at �N = 0.

Pall(�N) = �(0) (4:22)

Likelihood. We approximate the likelihood P(hj�; c; s; �N) by analogy to a discrete normal dis-

tribution. We define q(v) to measure the difference between the expected histogram for particular

�; c; s; �N and a given histogram h(v)

q(v;�; c; s; �N) = h(v � �N)�
nfX
j=1

�jfj(v; c; s) (4:23)

Now we create a function by analogy to a normal distribution. w(v) is analogous to the variance of

q at each point of feature space.

P(hj�; c; s; �N) = p3e�
1
2

R
( q(v;�;c;s;�N )

w(v) )2dv (4:24)

Global Likelihood. Note that the denominator of Equation 4.16, P(h) is constant. It normalizes

the numerator.

Assembly of Terms.

Using the approximations discussed above, we arrive at the following expression for the posterior

probability:

P(�; c; s; �Njh) = p5P(�)P(c; s)
�

e�
Pnv

i=1
(
�Ni
�i

)
2��

e�
R

( q(v;�;c;s;�N )
w(v) )2dv

�
(4:25)

For fitting hall, the mean noise is assumed to be zero. The coefficient of the exponential are

constant with respect to the parameters, so maximizing Equation 4.25 is equivalent to minimizing
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the argument of the exponential to find the free parameters (�all; c; s):

Eall(�all; c; s) =
Z  

q(v;�all; c; s)
w(v)

!2

dv (4:26)

subject to P(�all) 6= 0.

For fitting hvox, the parameters c and s are fixed. Once again, the coefficients of the exponential

are constant with respect to the parameters, so maximizing Equation 4.25 is equivalent to minimizing

the argument of the exponential to find the free parameters (�vox; �N):

Evox(�vox; �N) =
nvX
i=1

� �Ni

�i

�2

+
Z �

q(v;�vox; �N)
w(v)

�2

dv (4:27)

subject to P(�vox) 6= 0.

As described in Equation 4.6, Section 4.6, Equation 4.27 is minimized to estimate volume ratio

densities �vox and the mean noise vector �N.
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Chapter 5

Bayesian Classification Algorithms B and

C: Boundary Distance

In this chapter we describe two new classification techniques developed within the Bayesian frame-

work of Chapter 3.

The techniques we develop here are similar to that of Chapter 4; as before, the voxel-info

consists of histograms taken over voxel regions. The significant differences between the techniques

are that we use new histogram basis functions and that the dataset parameters are estimated using a

different algorithm.

The new histogram basis functions model voxels near boundaries between two materials. The

histogram model has a single parameter: the distance from the center of the voxel to the boundary.

The basis functions fit histograms of real datasets better than the partial volume mixtures algorithm,

but at the cost of somewhat greater computational expense. The resulting distance parameter is

particularly useful in making models of objects because it measures the distance from surface

boundaries between materials. These boundaries are generally boundaries between parts of objects
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or between objects and their surroundings.

We present the modified assumptions in Section 5.1, the new histogram basis functions in

Section 5.2 and the dataset- and voxel parameter estimation in Sections 5.3 and 5.4. Section 5.5

shows results, Section 5.6 discusses them, and Section 5.7 concludes. Detailed derivations are in

Section 5.8.

5.1 Assumptions

The first three and the fifth assumptions for this technique are identical to those in the previous

chapter.

ec1: Discrete materials.

ec2: Normally distributed noise.

ec3: Sampling theorem is satisfied.

eb5: Uniform tissue measurements.

As outlined in Section 3.3.4, we replace assumptions em4 and em6 as follows.

eb4: Pair-wise mixtures. Rather than assuming that each voxel volume can contain some of every

material, we assume that each voxel volume consists of either a pure material or of two pure

materials separated by a boundary.

eb6: Gaussian filtering. The histogram basis function derivation uses the assumption that the

sampling filter kernel is approximately Gaussian. This assumption helps us derive a tractable

calculation for the new histogram model of boundary-parameterized mixtures and also models

the actual collection process better than box filtering.

eb7: Known materials. We know the number of materials and can identify samples from each

material and mixture within the data.
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5.2 Histogram Basis Functions

Once again we use two types of histogram basis functions, one for pure materials and one for

mixtures of materials. The basis function for pure materials remains a normal distribution. The

basis function for a mixture now has an additional parameter that defines the distance from the

center of a voxel to a boundary between materials (see Figure 5.1).

From the assumptions and Equation. 4.1 we derive the equation for a pure-material basis

function. Because the data collection process band-limits the noise, and because we are looking

at histograms over very small regions, the noise is not normally distributed. We divide the noise

into two components, one that is constant over a voxel (with mean c and standard deviation � over

the dataset), and one that is normally distributed around the constant component (with mean 0 and

standard deviation s over a voxel). The equation for a single material, then, is a normal distribution

with center c + �N and variance �2:

fsingle(v; �N; c; s) =
nvY
i=1

1

si
p

2�
exp

 
�1

2

nvX
i=1

�
v � (c + �N)

si

�2
!

(5:1)

Dataset parameters for this basis function are c, s, and �. Because �N is constant within a voxel,

but varies over the dataset with a normal distribution, � also becomes a dataset parameter.

From the assumptions and Equation. 4.1 we derive the equation for a mixture basis function.

The function uses the same parameters for its pure materials components and adds two additional

parameters d and kw, as shown in Figure 5.1. See Figures 5.2 and 5.3 for examples.

fboundary(v; d; �N; c; s; kw) =

kn(v; s) �
��

H(d + kh
2 � ke(v)

kw
) � H(d � kh

2 � ke(v)
kw

)
� ��� eke(v)p�

(c2�c1)kw

���� (5:2)

where ke(v) = erf�1( c1+c2�2v
c1�c2

) and H(x) is the Heaviside, or step, function. The derivation follows

from Equation. 4.1 evaluated over a region centered at distance d from a boundary between two

materials. The boundary is assumed to be planar and the function low-pass filtered uniformly in all

directions so that the sampling theorem is satisfied. kw depends on the width of the sampling kernel
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A

B

P1

P2

P3

(i)

A

B

P1

P2

P3

kw

d

(ii)

Figure 5.1: We start from the assumption that in a real-world object each point is exactly one material, as in (i). The
measurementprocess creates samples that combine measurements of different materials. From the samples we reconstruct
a continuous, band-limited measurement function �(x). Points P1 and P2 lie inside regions of a single material. Point
P3 lies near a boundary between materials in (i), and so in (ii) P3 is shown with a parameter d that indicates how far the
center of the surrounding voxel is from the boundary. The parameter kw shows the width of the region where the pure
material measurements mix together and is dependent on the width of the sampling kernel. The grid lines show voxel
boundaries and how they relate to the regions. 2
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Figure 5.2: The shapes of histogram basis functions, fboundary (v), for different values of d, the distance from the boundary
to a voxel center. Note that the shapes approach normal distributions as d moves away from 0. The histograms shown are
for scalar data and are 1-dimensional. Figure 5.3 shows histogram basis functions for vector-valued data. 2
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Figure 5.3: The shapes of fboundary (v) histogram basis functions for vector-valued data. Three different values of d, the
distance from the boundary to a voxel center, are represented. Figure 5.2 shows examples for scalar data. 2

used to create the samples. Section 5.8 presents a more detailed derivation.

The parameter d is estimated individually for each voxel we classify as described in Section 5.4.

kw is estimated once for an entire dataset as described in Section 5.3.

5.3 Estimating Dataset Parameters

In this section we describe the process of estimating the material parameters that are constant

throughout a dataset. For each pure material the dataset parameters include the expected center

value of the voxel, c; the expected deviation of c from voxel to voxel, s, the expected deviation from

c of values within a voxel, � and w(v). For material mixtures the dataset parameters also include

kw, the sampling kernel width. w(v) is an analog of the standard deviation of a histogram from the

expected value of the histogram. We discuss this further below.

We estimate these parameters from several interactively selected sets of voxels. Each set consists

of voxels containing a single pure material or of voxels near a boundary between two known pure
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materials.

For each voxel in a set representing one pure material, we calculate a mean and deviation of

the values within the voxel. The mean value of all of the voxel means is c. The deviation of all the

voxel mean values is s. The mean of all the voxel deviations is �.

For each voxel in a set representing a mixture, we fit fboundary() to the histogram over the voxel

allowing d and kw to vary. This gives us a value for kw. We use the mean value of these voxel kw

values for classifying voxels over the entire dataset.

5.3.1 Non-uniform Material Signatures

Our third classification algorithm differs from the second only in the estimation of dataset parameters.

For the third algorithm, the material parameter c, which measures the expected value of a material

within a dataset, is defined as a function c(x) over the imaging volume. We model c(x) with a simple

parameterized function of space according to our knowledge of the sources of intensity changes

across an MRI dataset, and then fit that function to the interactively chosen points as described

above. s and � are calculated as for the second algorithm, but using c(x).

When estimating the voxel parameters as described in the next section, we can evaluate c(x) for

a given voxel and use that value in finding the voxel parameters.

5.4 Estimating Voxel Parameters

With estimates for dataset parameters we can estimate the voxel parameters for each voxel in a

dataset. One voxel parameter, �b, is discrete and determines which material or pair of materials

a voxel contains. We break the classification process up into one optimization over a continuous

domain for each material or pair. We then choose the one that fits best.

The optimization process for a particular pure material minimizes the equation

Epure(�N) =
nvX
i=1

� �Ni

�i

�2

+
nbX
i=1

�
h(vi � �Ni)� fpure(vi)

w(vi)

�2

(5:3)
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where nb is the number of points in feature space over which we evaluate the difference between

the histogram and its model. The remainder of the equation is a series of squares of ratios between

differences and their expected values. The expected value of each term is 1, and so the expected

value for E is nv + nb, which gives us a measure of how well a basis function fits a voxel histogram.

We choose a set of feature space points on a regular grid with spacing smaller than the smallest

�. Any points on the grid with positive histogram values are used in the summation.

The optimization process for a particular mixture minimizes the equation

Eboundary(�N; d) =
nvX
i=1

� �Ni

�i

�2

+
nvX
i=1

�
h(vi � �Ni)� fboundary(vi)

w(vi)

�2

(5:4)

The derivations of Equations 5.3 and 5.4 are described in more detail in Section 5.8.

Values from Equations 5.3 and 5.4 cannot be compared directly, as is shown in Section 5.8.

Instead, we convert them to probabilities with the following equations and compare the results at

the optimized points to choose the most likely material or combination.

P̂pure(�N) =
1

(2�)
nv+nb

2
Qnv

i=1 �i
Qnb

i=1 w(vi)
e�

1
2Epure(�N) (5:5)

P̂boundary(�N; d) =
1

(2�)
nv+nb

2
Qnv

i=1 �i
Qnb

i=1 w(vi)
e�

1
2Eboundary (�N;d) (5:6)

5.5 Results

We have classified simulated MRI data with the boundary distance algorithm and compare them

with results from several other algorithms in Figure 5.4. The simulated data that we classified is

shown in Figure 5.4(ii) with Figure 5.4(iii) illustrating what an ideal classification algorithm would

produce. Discrete classification, using vector data, but only a single measurement point per voxel

and assuming only pure materials, produces the results in Figure 5.4(iv). Note the jaggy edges

and the band of misclassified data for material 3 along the boundary between materials 1 and 2.
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(i) Geometry of
slices

(ii) Raw data

Mat. 1:

Mat. 2:

Mat. 3:

(iii) \Ideal"
classi�cation

(iv) Discrete
classi�cation
(vector)

(v) Partial volume
mixture

classi�cation
(vector)

(vi) Boundary
distance

classi�cation
(scalar)

Figure 5.4: The boundary distance algorithm is compared to other algorithms in classifying simulated MRI data. (ii)
shows the simulated data, which contains three different materials. The geometry that the data measures is shown in (i).
(iii) shows what an “ideal” classification algorithm should produce and (iv)-(vi) show results from different algorithms.
Note that the new algorithms (v) and (vi) produce results most similar to the ideal case, and that (vi) does so even with
scalar data. 2
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Figure 5.4(v) and Figure 5.4(vi) show the partial volume mixtures algorithm from Chapter 4 and

the boundary distance algorithm from this chapter. Note that even with scalar data, the boundary

distance algorithm achieves results very close to the ideal case.

5.6 Discussion

Ambiguous classification. For a voxel that is well within a region of pure material A, the algorithm

sometimes correctly classifies the voxel as pure material A, and sometimes classifies it as a mixture of

A and a very small amount of some other material. Both solutions are physically reasonable because

the mixture basis functions approach a normal distribution as the boundary distance parameter d

moves away from zero.

Similarly, two different mixtures, each containing material A, can match a voxel that is within

a region of pure material A. Again, the choice is not critical.

Sensitivity to interactively selected material classes. The results of the algorithm are highly

dependent on the material points selected interactively to represent each pure material and each

pair of materials. These points must be selected carefully, and should come from a set of points

that actually represent a single consistent material. Representing points from two materials as one

material can create a situation where the distributions of the sample values do not match a normal

distribution, and the classification results are less accurate.

The algorithm could verify that the selected points are normally distributed to identify the

problem and report it to the user.

Sensitivity to contrast between materials. The classification is sensitive to the contrast-to-noise

ratio between different materials. If this ratio is too small, materials cannot be distinguished. This

requirement is fed back to the data-collection process described in Chapter 2.
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Computational expense. The implementations described in this chapter are computationally

expensive. The optimization process must be run on each voxel in a dataset. At ten voxels

per second, a medium-sized dataset of 256 � 256 � 64 voxels runs in about 5 days. Through

approximations it may be possible to reduce this time significantly.

The algorithm processes each voxel independently, and so is highly amenable to a domain-

decomposition parallel solution. In fact, we have run it on a network of ten HP 9000/700 and DEC

Alpha workstations and gotten a speedup of almost ten in classifying medium to large datasets.

More sophisticated geometric basis functions. The basis functions that we have developed

model the two most common geometric cases: samples within regions of pure material and samples

near surface boundaries. Additional basis functions, however, could model other geometries and

create more accurate models. Examples include samples near edges where three materials come

together, or points near membranes that are thinner than the sample spacing, where, again, three

materials would have an effect on the measurement.

Incorporating additional global information. Except for the interpolation of samples, we cur-

rently classify each voxel without regard to its neighbors and without directly using the interactively

selected representative points for each material. Both types of information could be incorporated

into the prior probability estimates to influence the classification process.

5.7 Conclusion

We have presented two new classification algorithms, one a variation on the other, built within the

Bayesian framework we described in Chapter 3. The algorithms are based on a more accurate

model of the MRI process than the algorithm of Chapter 4, and so produce better results, but are

computationally more expensive.
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5.8 Detailed Derivations

This section derives the boundary distance histogram basis functions for pure materials and for

mixtures as well as the prior probability optimization equations used in Section 5.4.

5.8.1 Pure Histogram Basis Function

The derivation for pure material basis functions is identical to that of Ch. 4 and is in Section 4.10.1.

5.8.2 Mixture Histogram Basis Function

For a sample taken near a boundary between two pure materials we start with an object that spans

all of 3-space and that has two materials separated by a planar boundary. Because we are going to

use a rotationally symmetric Gaussian sampling kernel, we can perform a change of coordinates on

our object to make the planar boundary pass through the origin and be perpendicular to the x0-axis.

The object function is:

v(x) =

8><
>:

c1 if x0 < 0

c2 if x0 > 0
(5:7)

Our measurement function is:

�boundary(x) =
Z Z Z

k(x̂0)k(x̂1)k(x̂2)v(x � x̂)dx̂2dx̂1dx̂0 + n(x; s) (5:8)

where k(x) is the 1-D Gaussian sampling kernel. Its width is determined by an implicit parameter

kw. v(x � x̂) is independent of x1 and x2, so

�boundary(x) =
Z

k(x̂0)v(x � x̂)
�Z Z

k(x̂1)k(x̂2)dx̂2dx̂1

�
dx̂0 + n(x; s) (5:9)
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The term in parentheses is one, and so:

�boundary(x) =
Z 1

�1
k(x̂0)v(x0 � x̂0)dx̂0 + n(x; s) (5:10)

We assume a Gaussian kernel function:

k(x) =
1

kw
p
�

e�
�

x
kw

�2

(5:11)

By evaluating the integrals we find:

�boundary(x) =
R1
�1 k(x̂0)v(x0 � x̂0)dx̂0 + n(x; s)

= c1
R x0
�1 k(x̂0)dx̂0 + c2

R1
x0

k(x̂0)dx̂0 + n(x; s)

= 1
2 (c2 + c1 + (c2 � c1)erf(kwx0))) + n(x; s)

(5:12)

This measurement function can now be substituted into Equation. 4.1 to derive the boundary

basis function:

fboundary(v; d; �N; c; s; kw) =
R R(x)�(fboundary(x) � v)dx

=
R R(x)�(1

2 (c2 + c1 + (c2 � c1)erf(kwx0))) + n(x; s)� v)dx

= kn(v; s) �v
R R(x)�(1

2 (c2 + c1 + (c2 � c1)erf(kwx0)))� v)dx

(5:13)

We define the region R(x) as a rectangular solid kh on a side and distance d from the boundary

at 0. Because the integrand depends only on x0, we can reduce this to a single integral

= kn(v; s) � k2
h

Z d+
kh
2

d� kh
2

�(
1
2

(c2 + c1 + (c2 � c1)erf(kwx0))) � v)dx0 (5:14)

= kn(v; s) �
 �

H(d +
kh

2
� ke(v)

kw
) � H(d � kh

2
� ke(v)

kw
)
� ����� eke(v)p�

(c2 � c1)kw

�����
!

(5:15)

where ke(v) = erf�1( c1+c2�2v
c1�c2

) and H(x) is the Heaviside, or step, function.
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H(x) =

8><
>:

0 if x < 0

1 if x > 0
(5:16)

We refer to the right operand of the convolution as r(v)

r(v) =

 �
H(d +

kh

2
� ke(v)

kw
)� H(d � kh

2
� ke(v)

kw
)
� ����� eke(v)p�

(c2 � c1)kw

�����
!

(5:17)

fboundary(v) = kn(v) � r(v) (5:18)

Implementation Considerations

Our implementation evaluates this function by creating a piecewise-linear approximation to r(v)

and summing the convolutions of the linear pieces. r(v) is non-zero only between

1
2

(c2 + c1 + (c2 � c1)erf(kw(d +
kh

2
))) (5:19)

and

1
2

(c2 + c1 + (c2 � c1)erf(kw(d � kh

2
))) (5:20)

We evaluate r(v) at regularly spaced points between those endpoints, scale the resulting values to

preserve the total integral, evaluate the convolution, and sum the results.

5.8.3 Pure Material Parameter Estimation

We wish to be able to evaluate

P(�Njh) =
P(�N)P(hj�N)

P(h)
(5:21)

where h is the histogram over a voxel and �N is the voxel parameter for a pure material.
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Prior probability is defined as

P(�N) =
1

(2�)
nv
2
Qnv

i=1 �i

e�
1
2

Pnv
i=1

�
�Ni
�i

�2

(5:22)

Likelihood is defined by analogy to a multi-dimensional normal distribution. We choose nb points

in feature space and calculate the difference between the histogram model and the histogram at those

points.

P(hj�N) =
1

(2�)
nb
2
Qnb

i=1 w(vi)
e
� 1

2

Pnb
i=1

�
h(vi��Ni)�fpure (vi)

w(vi)

�2

(5:23)

Global likelihood is a constant as in Section 4.11.3.

Assembly of prior probability.

P(�Njh) =
1

P(h)
1

(2�)
nv+nb

2
Qnv

i=1 �i
Qnb

i=1 w(vi)
e
� 1

2

�Pnv
i=1

�
�Ni
�i

�2
+
Pnb

i=1

�
h(vi��Ni)�fpure (vi)

w(vi)

�2
�

(5:24)

Because the coefficient of the exponential is constant with respect to the arguments of P(�Njh),

maximizing P(�Njh) is equivalent to minimizing:

Epure(�N) =
nvX
i=1

� �Ni

�i

�2

+
nbX
i=1

�
h(vi � �Ni)� fpure(vi)

w(vi)

�2

(5:25)

In comparing the optimization result among different materials, we convert to probabilities,

neglecting the global likelihood, which is not a function of the material.

P̂pure(�N) =
1

(2�)
nv+nb

2
Qnv

i=1 �i
Qnb

i=1 w(vi)
e�

1
2Epure(�N) (5:26)

5.8.4 Material Mixture Parameter Estimation

We wish to be able to evaluate
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P(�N; djh) =
P(�N; d)P(hj�N; d)

P(h)
(5:27)

where �N and d are voxel parameters and h is the histogram over a voxel.

The derivation follows that of the previous section.

Prior probability is defined as

P(�N; d) = P(�N)P(d) (5:28)

P(�N) is identical to Equation 5.22.

Effects from a boundary do not occur at significant distances from the boundary. We define

significant distance as 3 times the width of the spatial sampling kernel and create a probability

density function for P(d) that integrates to one:

P(d) =

8><
>:

1
6 if � 3 < d < 3

0 otherwise
(5:29)

Likelihood is defined in the same manner as Equation 5.23.

P(hj�N; d) =
1

(2�)
nb
2
Qnb

i=1 w(vi)
e
� 1

2

Pnb
i=1

�
h(vi��Ni)�fboundary (vi)

w(vi)

�2

(5:30)

Global likelihood is a constant as in Chapter 4.

Assembly of prior probability.

P(�N; djh) =
1

P(h)
1

(2�)
nv+nb

2
Qnv

i=1 �i
Qnb

i=1 w(vi)
e
� 1

2

Pnv
i=1

�
�Ni
�i

�2
+
Pnb

i=1

�
h(vi��Ni)�fboundary (vi)

w(vi)

�2

(5:31)

Because the coefficient of the exponential is constant with respect to the arguments of P(�N; djh),

maximizing P(�N; djh) is equivalent to minimizing:



5.8 Detailed Derivations 97

Eboundary(�N; d) =
nvX
i=1

� �Ni

�i

�2

+
nbX
i=1

�
h(vi � �Ni)� fboundary(vi)

w(vi)

�2

(5:32)

In comparing the optimization result among different materials, we convert to probabilities,

neglecting the global likelihood, which is not a function of the material mixture.

P̂boundary(�N; d) =
1

(2�)
nv+nb

2
Qnv

i=1 �i
Qnb

i=1 w(vi)
e�

1
2Eboundary (v;d) (5:33)
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PART III

Applications

The following two chapters describe computer graphics applications that use the

data collection and classification techniques of the earlier chapters. Chapter 6

describes a taxonomy of computer graphics models and Chapter 7 describes a

new algorithm for directly volume-rendering deformed volume data.
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Chapter 6

Model Building

A major unsolved problem in computer graphics is that of making high-quality models. Tradi-

tionally, models have consisted of interactively or algorithmically described collections of graphics

primitives such as polygons or patches. The process of constructing these models is painstaking

and often misses features and behavior that we wish to model.

In this chapter we present a taxonomy of computer graphics models that can be created from

classified sampled MRI data. We use results from the earlier chapters to create examples of both

static and dynamic models of objects from MRI measurements. These new results illustrate the

utility of the data-collection and classification processes.

Many of the goals used in developing the data-collection and tissue-classification algorithms

derive from requirements of the model-extraction process, providing feedback to those earlier stages

of the pipeline.
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Figure 6.1: Model-building and visualization context. The model-building and visualization stages are the final stage in
the pipeline for extracting computer graphics models from MRI data. 2

6.1 Taxonomy of Computer Graphics Models

Our modeling taxonomy splits models into those with regions of constant material and those with

materials that vary continuously. Constant-material models, from which our examples are taken,

can be divided into static and dynamic.

Within each category we define both surface models and volume models. Surface models

capture the shape of an object showing the boundaries where pairs of materials meet. Volume

models incorporate information about the internal structure of each region. The volumes are solid

regions of space that exhibit a common appearance and behavior.

Dynamic models capture not only the shape, but characteristics of the behavior of an object–how

it moves and changes shape in the course of performing some task. For many objects, different
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Uniform-Material Models
Static Dynamic

Surface lobster (Figure 6.2)
tooth (Figure 6.4)

“bear” (Figure 6.6)
Volume bee (Figure 6.7) jade plant (Figure 6.9)

banana (Figure 6.10)

Table 6.1: Examples from within our taxonomy of computer graphics models of objects with regions of relatively uniform
materials. 2

materials within an object have a strong influence on their behavior. For example, a human hand

modeled as only skin behaves differently than one modeled with bone, muscle, fat, and skin. MRI

volume data provides us with internal measurements. Our dynamic models are all volume models,

but surface models, representing cloth, for example, have also been developed [Weil, 1986].

Table 6.1 shows the part of the taxonomy from which we draw our examples and gives references

to figures illustrating the different categories.

6.2 Modeling Examples

Our surface-based models are calculated as isosurfaces of continuous functions. Isosurfaces of a

function over space are analogs to isocontours of a function over a plane. The functions from which

we extract our surfaces are reconstructed from the sampled data produced by our classification

algorithms, and so must satisfy the Nyquist sampling theorem.

By operating on classified data we can extract surface models where the surfaces define the

boundaries between materials. Because the histogram basis functions from our classification

techniques model the boundaries between materials, the parameters of the basis functions provides

us with a physical basis for where the surfaces lie.

Classified data serves as a volume model. The relevant spatial information is encoded in

that data, and can be extracted with rendering and simulation algorithms. Volume rendering is

particularly useful because it integrates over an entire volume and tends to reduce image artifacts
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Figure 6.2: A rigid model of the external surface of a lobster. MRI data of a lobster was collected, each voxel classified
using the partial volume mixtures algorithm, and then a polygonal isosurface of the surrounding material calculated. The
underside of the lobster is shown in Figure 6.3. 2

caused by noise in collected data.

We show a collection of models, beginning with static surface models and progressing through

static volume models to dynamic volume models.

6.2.1 Static Surface Models

Surface models capture the shape of an object. Using data classified with the partial-volume mixtures

algorithm (Chapter 4), we approximate the boundary for each material as the point where the local

density function is 0:5. For data classified with the boundary distance algorithms (Chapter 5) we

similarly approximate the boundary as the locus of points where the boundary-distance function is

0. The isosurface at these levels is the best approximation to the correct surface given the sampled

data.

In either case, we use an algorithm such as marching-cubes [Lorensen and Cline, 1987], available in

the visualization software product AVS [Upson et al.,1989], to produce a polygon mesh approximation

to the boundary given sampled data. We also use standard polygon rendering algorithms to generate
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Figure 6.3: Underside of the rigid model shown in Figure 6.2. 2

Figure 6.4: A geometric model of tooth dentine and enamel created by collecting MRI data using a technique that images
hard solid materials, classifying dentine and enamel in the volume data with our new partial volume mixtures algorithm.
Polygonal isosurfaces define the bounding surfaces of the dentine and enamel. 2
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Figure 6.5: MRI data of a human molar collected using a new technique that images solid materials. 2

images from polygon meshes.

Figures 6.2 and 6.3 show the top and underside of a lobster model extracted from classified

MRI data. Three interleaved, multi-slice, two-echo acquisitions were combined to produce data

satisfying the Nyquist sampling theorem. The data were classified with our partial volume mixtures

algorithm, and an isosurface defining where the surrounding material ended was used to represent

the surface of the animal. Note the detail in the model, particularly on the underside.

Figure 6.4 shows images of a surface model of a human molar tooth. The surface model was

created from MRI data (Figure 6.5) collected using an MRI technique that is capable of imaging

hard solids [Ghosh et al., 1995] [Gravina and Cory, 1994]. Our partial volume mixtures classification

algorithm identifies three materials, enamel, dentine, and the surrounding air, despite the similar

values for enamel and air in the sampled data. We calculated polygonal isosurfaces for the dentine

and enamel and rendered both together, to show the entire tooth, and the dentine alone, to show the

dentine/enamel boundary.

Figure 6.6 shows a surface model created from a plastic bear. The plastic bear was prepared for

data acquisition by embedding it in agar to provide MRI contrast between it and its surroundings.
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Figure 6.6: Polygonal model extracted from MRI data of a plastic bear. The plastic does not provide signal with
conventional MRI acquisition techniques, so the bear was set in agar to provide contrast between it and its surroundings.
A polygonal isosurface extraction captured the surface geometry directly from the data because only agar and plastic
needed to be identified. The texture on the geometric model was specified using a new technique that spreads small
patches across the surface maintaining orientation between neighbors to attain a combed appearance [Fleischer et al.,
1995]. 2

Three multi-slice datasets consisting of 3mm slices were collected, each offset by 1mm from the

others, and the results interleaved to produce data satisfying the Nyquist sampling theorem. Only

two materials are present in the dataset, so a polygonal isosurface was extracted directly from the

data. A new algorithm to specify surface texture [Fleischer et al., 1995] spread patches of “fur”

across the surface and maintained a consistent local orientation of the patches to produce a combed

appearance.

6.2.2 Static Volume Models

Classified volume data serves as a model of the underlying objects, and can be rendered with

volume-rendering algorithms [Drebin et al., 1988] [Levoy, 1988] [Upson and Keeler, 1988].

Figure 6.7 shows volume-rendered images of a model of a bee. The model consists of MRI data

classified with the our partial volume mixtures algorithm. The image on the left shows primarily

the surface by using opaque materials. The image on the right shows the materials in different,

transparent colors.
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Figure 6.7: Classified MRI data of a bee rendered with opaque materials on the left and semi-transparent materials on the
right. The volume data was classified with the partial volume mixtures algorithm. 2

Figure 6.8: Volume-rendered images of human hand model from the front and back, with muscle in red, fat in yellow,
and tendon in white. Multi-slice data was classified with the partial volume mixtures algorithm. 2

Figure 6.8 shows volume-rendered images of a classified human hand dataset. Tendon is shown

in opaque white, muscle in semi-opaque red, and fat in transparent yellow. To better show the

internal structure, the skin has not been rendered.

6.2.3 Dynamic Models

We represent dynamic models in two different ways: physically-based deformations and

kinematically-specified deformations. Much related work has been devoted to representing flexible

bodies for computer graphics, e.g., [Platt and Barr, 1988],[Baraff and Witkin, 1992]. We have chosen
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Figure 6.9: Results of collecting MRI data of a jade plant, classifying each voxel in the volume data with the partial
volume mixtures algorithm, creating a flexible model, and simulating a twisting deformation of the model over time. 2

Figure 6.10: Results of collecting MRI data of a banana, identifying peel and flesh in the data, creating solid parts for
each material information, and flexibly deforming the outer material to peel it. We used the partial volume mixtures
classification algorithm. 2

a simple mass points and springs representation, but more complex and accurate finite element

method representations would also be possible.

Our physically-based deformations consist of a collection of mass points and springs connected

in a regular, 3-D, rectangular grid surrounding the object. The strengths of the springs and mass

values at the points are chosen based on the materials within each grid rectangle. By exerting

forces on selected mass points, we cause deformations that simulate the behavior of the modeled

materials. The deformations are specified via control points [Sederberg and Parry, 1986] that take on

the positions of the simulated mass points.

Figures 6.9 and 6.10 show examples created with this technique. In Figure 6.9 we show three

frames from an animation in which an initial twisting force was specified for all of the points.

Frames were generated as the model returned to equilibrium. In Figure 6.10 forces were applied

to points of the banana peel near its apex to pull the peel away from the flesh. The banana was

measured with MRI and the data classified to distinguish peel from flesh. Four frames from the
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Figure 6.11: This figure shows the results of collecting MRI data, classifying each voxel in the volume data using the
partial volume mixtures algorithm, and creating solid parts using the material information. We deform the outer layers to
peel the skin back showing internal structure. Chapter 7 describes the rendering process used to create this image. 2

animation are shown.

The kinematically-specified deformations are defined with the same type of rectangular control-

point grid. Instead of using simulation output, however, we specify the control points kinematically.

Figure 6.11 shows an example where the skin is peeled back from the palm of a human hand model

to show internal anatomy. Internal materials are shown in different colors to differentiate them.

The hand dataset was classified into air, tendon, muscle, fat and skin. These images were rendered

directly from the volume dataset and the description of the deformation using a new algorithm

detailed in Chapter 7.
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6.3 Conclusion

Through a sequence of examples we have shown that classified MRI volume data can be used to

create both static and dynamic models. While the resolution of conventional MRI data is somewhat

less than that of surface measurement techniques, it is sufficient to create many types of models,

and the internal measurements available make dynamics more accurate for models with interior

structure.

By creating a series of geometric models we have determined a number of requirements for

the earlier steps in our computational framework. First, because real-world objects contain more

than one material, we need to be able to identify and separate the multiple different materials in

our sampled datasets. Isosurfaces do this in unclassified MRI data only for exactly two materials,

and only if the boundary between them is at a consistent and known value. Through classification

we can define isosurfaces for each material. Together the surfaces combine to represent all of the

material-material boundaries. Our classification process also provides a physical interpretation for

the data that defines a choice of isovalue for calculating a surface.

While many classification algorithms work well at identifying materials within regions of pure

materials, they do not produce accurate results where materials meet one another. Our investigations

have motivated the need for classification algorithms that are accurate at these boundaries. The

boundaries are where surface models are defined, and errors there cause artifacts in the extracted

models. Our new classification techniques reduce these artifacts significantly.

Third, there must be sufficient information in the collected data for our classification algorithms

to identify boundaries. We have translated this requirement into a contrast-to-noise goal in the

goal-based collection process.

Fourth, our model-extraction techniques find isosurfaces in continuous functions. If collected

data does not satisfy the Nyquist sampling theorem, then any continuous function that we reconstruct

from the samples will have aliasing and hence lead to artifacts in the extracted model.
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Chapter 7

Deformed Volume Rendering

In this chapter we present a method for directly rendering deformed volume data. Deformations are a

technique for simulating the behavior of flexible bodies, as we outlined in the previous chapter. The

new rendering method gives us a way to create images showing the simulated behavior. Figure 7.1

shows an example of volume data of a human hand with the skin peeled back to show internal

structure.

7.1 Introduction

We describe a rendering algorithm that is applicable to volume rendering algorithms that use

ray tracing techniques. Our approach extends these algorithms by directly ray tracing deformed

volumes. We inversely transform each ray into the undeformed coordinate system of the dataset

and then perform the volume ray tracing integration along that curved path. Figure 7.3 illustrates

this process with a ray on the right and its inverse image on the left.
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Figure 7.1: Volume-rendering of a three-dimensional MRI dataset of a human hand with the “skin” kinematically peeled
away from the rest of the hand. Figure 7.6 shows a slice through the dataset with different materials identified, and a
rendered image of the undeformed data. 2

7.1.1 Related Work

Volume rendering. Computer graphics rendering has historically dealt with surfaces and a large

body of research has concentrated on rendering surfaces [Foley et al., 1990] [Kajiya, 1986]. As

computational and storage capacity have increased and volume imaging technologies have been

developed, volume datasets have become practical. As a consequence, techniques for rendering

these volumes directly have been developed [Drebin et al., 1988] [Upson and Keeler, 1988] [Sabella,

1988] to replace those that converted the volume data to surface, curve, or point primitives.

Some of these volume rendering techniques operate much like traditional ray tracing: by

intersecting rays with the volume and accumulating contributions into each pixel. While slower
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than some other techniques, ray tracing often has the advantage of producing more informative

results with sophisticated lighting models that include visual cues such as shadows.

Deformations. Deformations are a powerful tool for manipulating volume datasets. Deformations

generalize rigid body (affine) transformations and can model flexible behavior. They can be produced

from flexible body simulations of models representing objects in a volume dataset [Laidlaw, 1992a].

They can also be created as part of a modeling system and applied to synthetically generated volume

data produced by a sculpting system [Sederberg and Parry, 1986] [Coquillart, 1990] [Galyean and Hughes,

1991] [True and Hughes, 1992] or other modeling methods.

7.1.2 Our Approach

We augment volume ray tracing techniques by introducing a method to directly render deformed

volumes. Our algorithm can be incorporated into a volume ray tracer as a modification of the data

sampling step.

Our technique is an alternative to resampling the deformed dataset and then rendering the

resampled, undeformed version. For a deformation that changes over time our technique may be

advantageous because it does not require creating a resampled dataset for each time step. This can

be a significant advantage for rendering an animation, especially if motion blur is used. It can also

be an advantage for adjusting deformations interactively because a separate, resampled dataset is

not required for each modification of the deformation. Finally, because our algorithm scales in

computation time with the number of pixels rendered, and resampling scales in time with the size

of a volume dataset, our algorithm is more efficient for small images or large datasets.

Uniform resampling of a deformed dataset causes either oversampling where the data is expanded

or undersampling where it is compressed. Oversampling requires more storage space for the

resulting dataset, and undersampling may lose information. Our algorithm avoids these potential

problems by using the original data, saving the storage and maintaining the original information.

We do not address the sampling issues involved in the volume rendering algorithms, but instead
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provide all of the original information in the dataset for those algorithms to operate on.

Our technique may perform more slowly than a resampling approach in cases where a small

number of deformations of a dataset are rendered many times. In this case, the storage and

time needed to resample the dataset are probably worthwhile. Our implementation is also likely

to be more complex than resampling a dataset, although resampling a deformed dataset without

introducing artifacts is non-trivial.

Our work is similar to [Barr, 1984] and [Barr, 1986] because it operates in the coordinate system

of an undeformed object. It differs by calculating the path through the undeformed space rather

than finding a single surface intersection between an inversely deformed ray and an object.

7.1.3 Overview

Section 7.2 defines terms and presents notation that we use to describe our algorithm. In Section 7.3

we present the algorithm, which uses interval methods [Moore, 1979] [Snyder, 1992] to find inter-

sections with the boundary of a deformation, and then numerically solves a differential equation to

find the rest of the inverse ray path through the undeformed dataset. Section 7.3.3 discusses some

implementation considerations. In Section 7.4 we illustrate the technique with volume rendered

images of deformed datasets and summarize our results.

7.2 Terms and Definitions

This section defines terms and notation that we will use to describe our algorithm.

7.2.1 Interval Methods

We give a brief review here of interval terminology. For more details see [Moore, 1979]. An interval

is a range over the real numbers. We use a bar, ‘�’, over a variable to indicate an interval.

Given a function f (x) : R ) R, an inclusion function,2f (�x), of f returns an interval guaranteed

to contain the image of the interval �x. An inclusion function must also have the property that the
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output interval can be made arbitrarily small for some input interval around a given point. Inclusion

functions generalize in a straightforward way to higher dimensions.

Interval methods use inclusion functions for solving problems robustly [Snyder, 1992]. Inclusion

functions provide bounds for mathematical operations and so can be used to guarantee that some

property of an algorithm is true.

7.2.2 Volume Rendering

We model a dataset as a function

v(~xbody) : R3
body ) Rm (7:1)

where m is the dimensionality of the dataset.

An affine transformation is often employed to place, scale and orient a dataset. We define this

as a function

~M(~xbody) : R3
body ) R3

world (7:2)

Note that this can be implemented as a matrix operation using homogeneous coordinates [Foley

et al., 1990].

We define a ray as

r(ŝ) : R ) R3
world (7:3)

The inverse of the affine transformation applied to that ray gives another ray in the coordinate system

of the dataset

~P(s) = ~M�1(r(s)) (7:4)

We use the following volume rendering equation to model the operation of most ray tracing

volume renderers.

I(s) =
Z s

0
e�
R ŝ

0
f (~P(^ŝ);v(^ŝ))d^ŝg(~P(ŝ); v(ŝ))dŝ (7:5)

where f (^̂s) and g(ŝ) are functions that model light interacting with material at a point in space. See
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(a)

(b)

(c)

(d)

OK No Good

Figure 7.2: Examples of deformations from R2
) R2. Note that these deformations lie completely within the plane.

Examples (a) and (b) satisfy the derivative existence and invertibility condition. (c) maps a line segment to a point creating
a non-invertible Jacobian, and (d) has a singular Jacobian along the silhouette edge of its fold. 2

[Danskin and Hanrahan, 1992] for more details on this equation. We do not discuss this equation

further, except to describe how we modify ~P to integrate through deformed datasets.

7.2.3 Deformations

A deformation generalizes the affine transformation ~M(~xbody). A deformation can be defined

globally, over the entire range of R3
body; or over only a portion. Currently, we use deformations

defined over finite regions.

Sbody � R3
body is the region over which a deformation is defined. The deformation

D(~xbody) : Sbody � R3
body ) R3

world (7:6)

maps the undeformed space containing the dataset into world coordinates. We define bbody as

the boundary of Sbody. Sworld = ~D(Sbody) is the image of the volume of the deformation and

bworld = ~D(bbody) is the image of the boundary of the deformation under ~D(~xbody). Figure 7.3 shows

these relationships for a simple two-dimensional deformation.

We define J(~xbody) as the Jacobian of ~D(~xbody), i.e.:

Jij(~xbody) =
d

dxj
Di(~xbody) (7:7)

We require that two conditions be met by the deformation. First, the derivative of ~D(~xbody),
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J(~xbody), must exist and be invertible and continuous in Sbody. This rules out deformations that

squeeze a line or area into a single point, as well as deformations that switch handedness, or “fold

over” on themselves. Figure 7.2 gives some examples of two-dimensional deformations that satisfy

and violate this constraint. Second, we must have an inclusion function2~D(~xbody) for~xbody � bbody.

The path through the dataset is now redefined, using the deformation in place of the affine

transformation:

~P(s) = ~D�1(r(s)) (7:8)

We have implemented our algorithm using deformations specified as tricubic B-splines [Bartels

et al., 1987] over rectangular solid regions of R3
body. These rectangular solids can be chosen to

surround the data, and can abut with one another to generate more complex deformations than can

be specified over a single rectangular solid. Each rectangular solid has 64 control points, and shares

48 with each neighbor in order to enforce C2 continuity across the boundary. bbody, the boundary

of the deformation, is the set of rectangular faces that are not shared. In Figure 7.3 and Figure 7.4

a single rectangle is used to define each deformation. For Figure 7.1 a 4� 4 grid of 48 rectangular

solids and an additional three separate rectangular solids define the deformation.

We have implemented an inclusion function for these deformations using interval arithmetic

and the mean-value form [Moore, 1979].

7.3 Algorithm

In this section we describe how to find the inversely deformed path through R3
body of a ray in R3

world.

Figure 7.3 shows a simple, two-dimensional example. There are a few potential complications

in finding the path. First, parts of the inversely deformed path may not lie within any part of

the deformation. In the figure, the segment VW is an example. Second, different parts of a ray

may map to separated curve segments within R3
body, as with segments UV and WX. And finally,

for a deformation like case (b) in Figure 7.2, parts of a ray can lie in more than one segment
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U
V
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X

xworld

S world
bworld

D

xbody

U

VW

X

S body

bbody

y body yworld

Figure 7.3: A simple two-dimensional deformation. On the left, a circle is enclosed by a square, which is the portion of
R2

body that will be deformed. On the right, that square and its contents have been deformed to flatten and bend the circle.
A ray is shown on the right with the corresponding segments UV and WX mapped back onto the undeformed volume. A
similar deformation produced the three-dimensional object in Figure 7.4 by flattening and bending a cube containing a
spherically symmetric sampled dataset. 2

Figure 7.4: Volume-rendered images of an undeformed, spherically symmetric dataset on the left and two deformations
of that dataset in the center and on the right. A two-dimensional analog of the deformation is shown in Figure 7.3. 2

simultaneously.

To solve the problem we first find all intersections of the ray with bworld, the image of the

boundary of the deformation. Section 7.3.1 describes this process in detail. In Figure 7.3 this step

finds all four points, U;V ;W; and X on the top edge of the deformation. We pair the intersections

into “segments,”where each segment represent a contiguous piece of a ray within the deformation.

Each segment contains a starting and ending distance, s, along the ray and a starting point in Sbody

for the segment.
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S world
bworld

Inclusion
function
outputpiece of face

Figure 7.5: Inclusion function example for Figure 7.3. The curve along the top of Sworld is a face of the deformation. We
recursively divide that face into pieces to find the intersection of a ray with the face. The pieces of the face are shown
separated by dots in the diagram. For each piece we calculate an inclusion function, shown as a rectangle around each
piece, guaranteed to contain the portion of the face. We intersect the ray with the rectangle and subdivide further if there
is an intersection. Otherwise we can ignore that piece of the face. Gray rectangles intersect the ray, and white ones do
not. Note that unshade portions of the face do not need to be subdivided as finely as others, since the inclusion function
guarantees there is no intersection. 2

For each of these segments we set up a differential equation for ~P(s). Section 7.3.2 describes

this process. As we increment s along a ray for the volume-rendering integral, we check to see if s

is within the segments along the ray. If so, we look up the data value v(~P(s)) using the solution to

the differential equation for that segment. If more than one segment is active, then the data values

can be added, averaged, or otherwise combined. If s is not within any segment, then we are outside

the deformation, and we return the value that v(~xbody) returns outside of the dataset.

7.3.1 Finding All Boundary Intersections

In this section we describe how to find all intersections of a ray with the boundary bworld in R3
world

and how to group them together into segments. Figure 7.5 shows a two-dimensional example for a

single face of a deformation.
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We use the inclusion function 2~D(�xbody) to find all intersections. We evaluate the inclusion

function for each rectangular face of the boundary in R3
world . The interval result is a three-dimensional

interval in R3
world. For example, 2~D([x0; x1]; [y1; y1]; [z0; z1]) returns an interval in R3

world containing

the image of the face where y = y1. If the ray ~r(s) intersects the interval in R3
world, we save the

intersection and boundary information in a priority queue indexed by the nearest value of s within

the R3
world interval.

Once all the faces that the ray might intersect are in the priority queue, we remove them one at

a time. If the current candidate is sufficiently small, we save it in a list of potential intersections.

If not, we subdivide it in half in each direction, repeat the interval evaluation for the smaller range,

and repeat the ray intersection test for the smaller R3
world interval. The new, smaller intervals may

or may not intersect the ray, so we save the intersection and boundary information only for those

R3
world intervals that do. Figure 7.5 shows an example of the lowest-level intervals that are tested by

this procedure. The large interval in the upper left is discarded early, because it does not overlap

the ray. The final list of potential intersections is represented by the shaded boxes.

We repeat until the priority queue is empty, and then construct segments from the list of

potential intersections. We are interested in pairing together each entrance with an exit, and we start

by identifying each potential intersection as one or the other. We use the surface normal in R3
world

and compare it with the ray direction. For the y = y1 face,

~N(x; y1; z) =
@~D
@x

(x; y1; z)^ @~D
@z

(x; y1; z) (7:9)

~N(x; y1; z) � rd < 0 ) entering (7:10)

and similarly for the other faces.

Each intersection can be represented by more than one potential intersection in the list because

the inclusion functions are always larger than the actual function values. Once we have subdivided

so that the size of the intervals is smaller than the error tolerance threshold of our renderer, we

coalesce potential intersections that are all entering or exiting and that have overlapping R3
world
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intervals into a single potential intersection. Finally, we pair together entrances and exits into

segments. For each segment we save the start value, s0, the end value, s1, and the initial point,

~P(s0)�R3
body, where the ray first intersects the deformation.

7.3.2 Calculating the Path Through the Dataset

In Section 7.6 we derive the following differential equation to solve for the path ~P(s) through R3
body:

d~P
ds

(s) =
h
J(~P(s))

i�1 d~r
ds

(s)k: (7:11)

We set this up as an initial value problem (IVP) rather than as a boundary value problem (BVP)

for several reasons. First, solving a BVP is more complex and slower. Second, a BVP solver must

solve for the entire path to evaluate any of it. We often only need to integrate part of the way along

the ray, since further points may be occluded by material, and using an IVP allows us to do this

incrementally. We find that it is reasonable to trade these advantages off against the loss in accuracy

as we move along the ray. By adjusting the accuracy of the IVP solution, we can limit this loss to

an acceptable amount.

We start the solution at s0 with value ~P(s0), using the values from the segment we saved in

Section 7.3.1.

We solve this equation with a Runge Kutta [Press et al., 1992] and Adam’s method [NAG, 1993]

differential equation integrators.

7.3.3 Implementation Considerations

We discuss a few implementation details in this section.

First, because of inaccuracies in numerical integration, and because many numerical integra-

tors evaluate a derivative function slightly outside the range of its solution, the Jacobian for our

deformations must be defined slightly outside of Sworld. In order to maintain a continuous, invert-

ible Jacobian we project any evaluation point outside of Sbody into the nearest deformation domain
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Figure 7.6: Classified data, colored histogram, and image of undeformed hand dataset shown deformed in Figure 7.1.
The top left image shows one slice from a three-dimensional MRI dataset of a human hand. At each spatial point we have
two data values. The plot in the lower left shows a top view of the 2-dimensional histogram of that data, with MRI values
along the left and bottom axes and values for different materials given different colors. The slice has those colors applied
to it, with skin orange, muscle red, fat and bone marrow yellow/green, and tendon black. The right image shows the same
dataset volume-rendered. 2

Figure 7.7: A photograph of a jade plant, a volume rendering of undeformed data collected from the jade plant, and a
volume rendering of that data deformed. The right-hand image is one frame from those shown in Figure 6.9 2

boundary point and use the Jacobian value there.

Second, we have found that the interval evaluation for finding intersections is the most costly

part of our implementation. We have significantly increased performance by caching the interval

calculations for the first three levels of the subdivision hierarchy.

Third, our initial rays must start outside of a deformation in order to find their initial intersection

points. The interval methods could be extended to find an initial point within the deformation,but our

implementation does not do this. Rays created within a volume must start with “pseudo-entrance”

intersections for each segment active at the point the new ray was spawned. The intersection-finding

algorithm will then pair them up with exiting intersections to create segments for the new ray.
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7.4 Results

We have shown several examples of volume datasets directly rendered with deformations. Figure 7.1

shows MRI volume data classified to identify skin, fat, muscle, tendon, and bone. The skin is

deformed to peel it back from the other materials, showing the interior structure of the dataset.

Figure 7.6 shows a single slice through the dataset with materials identified by their colors, and

a rendering of the hand with no deformation. The dataset was classified using the partial volume

mixtures algorithm.

Figure 7.4 illustrates a rendering of simple deformations applied to a simulated MRI dataset of

a solid ball.

Figure 7.7 shows a photograph of a living jade plant, an undeformed rendering of MRI data

collected from the jade plant, and a deformed version of the jade plant rendered with our algorithm.

The deformation was calculated as one frame of an animation showing how a jade plant might move

(see Figure 6.9).

7.5 Conclusion

We have described an algorithm for directly ray tracing deformed volume data. The algorithm

inversely deforms each ray and traces its curved path through the undeformed data. We have shown

several examples of images rendered using our implementation.

There are several advantages to directly ray tracing deformed volumes. As an alternative to

creating a new regularly sampled dataset by resampling the deformed one, our technique provides

a more concise representation for a deformed volume. This conciseness is particularly useful for

multiple deformations, or for deformations that vary over time. The space savings is also a benefit

when rendering small images of large datasets, because it is proportional to the size of the dataset,

while the run-time cost is proportional to the size of the image. Our technique also avoids the

oversampling or undersampling that is implied by resampling a deformed dataset.

While the implementation increases rendering time in our volume ray tracer by a factor of two
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to three, we have several avenues to explore for speeding the calculation. Because most of the cost

is in finding intersections, we propose implementing tighter inclusion functions, using an interval

Newton method to converge on a solution more quickly. We could also exploit coherence more in

the interval evaluations by adaptively caching them in addition to the static caching of the first three

subdivision levels.

7.6 Derivation of Deformed Path

We derive the differential equation in Section 7.3.2 here. The derivation is in Einstein Summation

Notation (ESN) [Blinn, 1992].

~P(s) = ~D�1(~r(s)) is a portion of the path in R3
body. It is only defined where ~D�1(~r(s)). This is

where the ray is within Sworld. In those regions, by definition:

~Pi(s) =
Z s

0

d~Pi

ds
(s)ds + ~Pi(s0) (7:12)

Differentiating and rewriting the integrand using the definition of ~P and the chain rule,

d~Pi

ds
(s) = (D�1)i;j(r(s))rj;s(s) (7:13)

Because we restrict the Jacobian of the deformation to be invertible at all points, the derivative of

the inverse deformation is the matrix inverse of the Jacobian of the deformation.

(D�1)i;j(~xworld) =
�
[J(~xbody)]

�1
�

ij
(7:14)

so Equation 7.13 becomes:
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d~Pi

ds
(s) =

�
[J(P(s))]�1

�
ij

rj;s(s) (7:15)

Note that the argument of J is the path location in R3
body, P(s) and that we have a known initial

condition at Pi(s0).
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Chapter 8

Conclusions and Future Work

This chapter summarizes our work and presents conclusions in the first section and then discusses

some future research directions that our work suggests may be fruitful.

8.1 Conclusions

We have addressed the problem of creating geometric models of real-world objects. This is a major

problem in computer graphics, and our results have applications in scientific research, education, and

entertainment. We have chosen to use MRI as our measurement modality because it is relatively

non-invasive, measures chemical properties of living subjects very well, and provides us with

measurements of internal structure.

We have presented a computational framework for creating geometric models and images from

MRI data. The framework consists of three main steps. The first is data collection; the second, tissue

classification; and the third, model-building and visualization. Within the stages of the framework

we have implemented a number of new algorithms that help to make models and images. We outline
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the results of our new algorithms and the interactions between them in this section.

8.1.1 Goal-based Data Collection

The novel contributions of our new paradigm for choosing MRI collection parameters are in its

goal-based framework, in the choice of goals for the optimization procedure, and in the use of the

optimization step to steer the acquisition process during acquisitions. Our framework provides a

methodology for adding goals and new protocols to the set that we have implemented. The goals we

implement are motivated by our desire to distinguish adjacent materials sufficiently well to be able

to produce geometric models from the data. Many of the objectives are also generally applicable

to applications such as medical or biological imaging. These goals differ from other work in that

they do not find parameters yielding the most contrast or highest contrast-to-noise ratio, but rather

find parameters yielding sufficient contrast in the least amount of time. Any number of materials

can be specified by a user from low-resolution test datasets, and optimal collection parameters

are generated taking into account inherent machine limitations and fixed parameters such as field

of view and resolution. Finally, because values of the function we optimize are consistent from

protocol to protocol, we can compare them and choose the most appropriate protocol or combination,

independent of whether it produces scalar or vector-valued data.

8.1.2 Bayesian Classification

In the second stage of our computational framework we have developed a new methodology for

creating Bayesian classification algorithms from assumptions about the data-collection process.

Using the methodology we have created three new algorithms for classifying scalar and vector-

valued volume data. Our algorithms use a continuous reconstruction of the dataset and calculate

a continuous histogram of the data over regions representing each voxel. We derive intensity

probability density basis functions for both pure materials and mixtures of materials due to the

band-limiting effects of the data-collection process. Our classification process models histograms

over voxel regions using the material and mixture basis functions and uses a probabilistic approach
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to fit the parameterized models to a histogram over each voxel.

In the partial volume mixtures approach, we modeled each voxel as a linear combination of pure

materials and mixtures of two materials. In the two boundary distance approaches we formulated

a more accurate model of voxels near boundaries between pure materials. The boundary distance

approaches classify voxels near boundaries more accurately, but at a larger computational cost.

We demonstrated the success of our techniques on simulated and real data by classifying datasets

of a human hand, human brains, and a bee, among others.

8.1.3 Model-Building and Visualization

Through a sequence of examples we have shown that classified MRI volume data can be used to

create both static and dynamic models. The level of detail in the models is somewhat less than

can be produced with surface scanning techniques, but the inclusion of internal structure adds

significantly more information to volume models and makes dynamic simulations more accurate.

With the internal structure, the behavior of different internal materials such as bone, muscle, and fat

can be taken into account.

We have also presented a new algorithm for directly rendering deformed volume data. This is

particularly useful for creating images of flexible-body simulations because it avoids the storage cost

and resampling difficulties inherent in creating a new sampled dataset for each step in a time-varying

deformation of volumetric data.

8.1.4 Interaction of Framework Stages

Throughout our investigations we have discovered that each stage of the framework mandates certain

conditions on the results of earlier stages. Starting with the model-extraction and visualization stage

of our pipeline, requirements feed back and influence earlier stages. This stage requires that its

input volume data identify different materials and the boundaries between them.

We infer from this requirement a need to classify the data that we collect, and to use an algorithm

that works well at boundaries between materials. Our new algorithms address this problem with
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more accuracy than previous methods.

The classification algorithms also place requirements on the data that we collect. The materials

and boundaries between them must be distinguishable in the data. We translate this into a contrast-

to-noise ratio goal within our goal-based data-collection process.

The model extraction and classification algorithms also require that we reconstruct a continuous

function from datasets, and so we require that the data we collect satisfy the Nyquist sampling

theorem.

The feedback of these requirements to the earlier stages of the framework helps tailor results

to the geometric modeling problem, providing us with tools that create more accurate geometric

models.

8.2 Extensions

Our work suggests a number of directions to consider for future research. We organize them here

in the context of our model-building framework.

8.2.1 Goal-based Data Collection

Within the goal-directed data-collection domain, we would like to extend the repertoire of collection

protocols and goals. Extending the protocols includes incorporating more collection parameters,

such as tip angle and sweep width (see Table 2.1), into the optimization process, as well as adding

to the list of protocols that can be supported. Using the technique on a wider variety of examples

will give us more feedback on its efficacy in providing us with data that will be useful for studying

anatomy and development.

Extending the goals includes formulating more goals for disparate uses of MRI data. The

imaging goal of achieving a particular contrast-to-noise ratio serves our classification algorithms

well, but might not be the best goal for other applications.

Our framework should also prove useful in choosing concentrations of MRI contrast agents to
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enhance particular materials. By modeling the effect of various concentrations of a contrast agent

on materials and incorporating that model into our goal-based framework, we can tailor the contrast

agent concentration to achieve better-quality data in less time.

The model of the MRI process we used is somewhat limited. It does not take into account the

mixing of multiple materials within a single voxel measurement, and would be somewhat difficult

to derive for a new protocol. Extending the model to include multiple materials might be a useful

project. The implementation of this should be straightforward,using the same Levenburg-Marquardt

non-linear parameter estimation technique.

We could also model the MRI process by numerically solving the Bloch equations [Bloch, 1948]

to predict data values as a function of protocol parameters. This would have the advantage of

working for an arbitrary protocol, as long as we can define the protocol in terms of a pulse-program

whose behavior is modeled well by the Bloch equations.

Through the numerical solution of the Bloch equations, it might be possible to generate new

pulse-programs via a genetic algorithm that evolved pulse programs and evaluated their effectiveness

via our objective function.

8.2.2 Artifacts in MRI Data

While we have addressed some of the artifacts that occur in MRI data, there are a number that

we have chosen to ignore. Different materials have different magnetic properties and boundaries

between them that cause susceptibility artifacts in MRI images. These artifacts occur primarily at

boundaries between materials or near accidental air bubbles, which tend to stick to these boundaries.

The artifacts are bright and dark patterns with a characteristic appearance within the data.

We could compensate for effects near boundaries with an extension to our boundary distance

classification algorithm, since information about the boundary is calculated as part of the algorithm.

The characteristic appearance of the artifacts caused by bubbles could be mitigated as a pre-

processing step or as part of the classification process.

Nonlinearities in the gradient coils used to encode spatial information in MRI data can lead to
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datasets with geometric distortions. We have not addressed geometric distortion in this work, except

to avoid its manifestations through judicious size and placement of the objects that we measure. In

principle, however, we should be able to compensate for these distortions through calibration of a

particular MRI machine. By understanding the errors in the underlying static magnetic field and

the gradients superimposed on it, we can model the geometric distortion created by those errors and

compensate for it.

8.2.3 Classification

Our classification algorithms have proven useful on the examples that we have applied them to, but

we would like to try them on more types of data in order to learn more about their characteristics and

breadth of applicability. Classifying data in an atlas of MRI datasets of a particular animal could

provide interesting results, both in the classified data itself and in feedback about the algorithms.

Our algorithms also should prove accurate at estimating volumes, especially for small regions where

errors near boundaries are significant compared to the entire volume.

There are a number of extensions to the classification algorithms we would like to suggest.

We have interpolated neighboring samples in classifying voxels, but would like to take further

advantage of this local geometric information. Incorporating the geometric information into the

prior probabilities for each voxel should help to avoid single misclassified voxels without losing

detail information that post-classification filtering processes destroy.

Another possible method for incorporating more geometric information into the classification

process would be to define a new type of voxel-info with that information and to derive a classification

algorithm based on that data. Combining the histogram voxel-info that we have implemented with

new voxel-info should produce better results than either alone.

Deriving new histogram basis functions would enable the algorithms to better classify data by

explicitly handling more situations. We would like to relax the assumption that objects consist of

regions of uniform materials. We can parameterize the histogram basis functions by the relative

content of each material, and anticipate a more continuous classification that would introduce fewer
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artifacts. We would also like to derive basis functions for geometries other than the pure and surface-

boundary cases that we have implemented. While these are the two most common geometries, edges

where three materials come together, points where four materials meet, and features like membranes

that are thinner than our sampling rate also occur and are important within the context of geometric

models.

Finally, two future directions for research include implementation of the boundary distance algo-

rithm to incorporate non-uniform response of materials within the sampled volume and acceleration

of our classification algorithms.

8.2.4 Model Building and Simulation

Our model-building and simulation work also implies a number of directions for augmentation. One

particularly interesting direction is in modeling and simulating the behavior of complicated flexible

bodies. This goal has inspired much of the work in this thesis, particularly the use of MRI data to

measure the internal structure of objects in addition to their external structure.

Future research could include a testbed for flexible-body simulations that incorporates new types

of constraints for sliding flexible bodies over one another without interpenetration and for making

structural connections between both flexible and rigid bodies. This type of simulation environment

would provide a predictive tool with medical, and scientific applications, and could be used for

entertainment purposes as well.

8.2.5 Volume Rendering

Volume rendering is a relatively new technique and holds a lot of promise for generating images

with visual information and cues that can improve understanding of the objects being rendered.

New techniques that generate different types of images through new, more general models of light

propagation through materials have solid research potential. Textures and translucency within

volumes of materials hold promise in generating these new looks.
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8.3 Summary

Our work on a computational framework for creating geometric models from MRI volume data has

demonstrated the utility of the framework, led to a number of algorithmic results, and indicated

many avenues for future research.
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