
Using CavePainting to Create Scientific Visualizations

David B. Karelitz Daniel F. Keefe David H. Laidlaw

Brown University�

Figure 1: We extended CavePainting, a system for drawing in VR,
to aid design tasks in the scientific visualization domain by allowing
designers to easily preview designs in an immersive environment.
This figure contains one prototype of a particle designed to show
pressure as the width of the head, and velocity as the position of the
tentacles with faster particles having more streamlined tentacles.
The legend used to generate this image is shown in Figure 2

Abstract

We present an application of a virtual reality (VR) tool to the prob-
lem of creating scientific visualizations in VR. Our tool allows a
designer to prototype a visualization prior to implementation. The
system evolved from CavePainting [Keefe et al. 2001], which al-
lows artists to draw in VR. We introduce the concept of using an
interactive legend to link a visualization design to the visualization
data. As opposed to existing methods of visualization design, our
method enables the researcher to quickly experiment with multiple
visualization designs - without having to code each one. We applied
this system to the visualization of coronary artery flow data.

1 Introduction

According to Senay and Ingnatius, “The primary objective in data
visualization is to gain insight into an information space by map-
ping data onto graphical primitives” [Senay and Ignatius 1994].
The first step in this process is often a quick sketch of the elements
of the visualization. When designing visualizations for VR, sketch-
ing on paper does not capture the immersive nature of VR. Further-
more, implementing each design often takes hours or even days as
visualization styles are coded, examined, and evaluated. The goal
of our system is to reduce the iteration time for designing a visual-
ization to a few minutes. We accomplish this by allowing an artist
to sketch a visualization in VR, and then apply that to the actual
visualization data. The end result is a hastened research cycle; each
design can be implemented and evaluated in a matter of minutes.

�Department of Computer Science, Brown University, Providence, RI
02912,fdbk,dfk,dhlg@cs.brown.edu

Figure 2: Legends are used to link drawn icons to data. Velocity
Magnitude, the datatype represented by this legend is shown just
below the green line. User drawn icons are added above the line,
and a preview of the final icons or particles is shown below it.

The CavePainting system allows users to directly draw 3D forms
in virtual reality using a six degree-of-freedom tracker. The user
manipulates a brush to generate a stroke of color and texture. These
strokes can be edited and combined into compound strokes.

1.1 Motivation

The existing artery application visualizes complex fluid flow using
particles. The particles showed only the path the particle would take
through the flow; however, simply looking at the path of a particle
was not enough to give a comprehensive image of the flow. The
flow is characterized by multiple values at each point within the
flow. The main problem then became how to show multiple values
in a single particle. [Sobel et al. 2002]

The traditional method of designing particles is to sketch some
designs on paper, implement them, and then evaluate them. The
main problem with designing VR images on paper is that paper de-
sign does not fully characterize what the resulting visualization will
look like in a VR environment. For example, choosing colors for
VR is difficult to do on paper since the projected colors are often
dim and unsaturated. Furthermore, any design on paper is still a 2D
design, and 3D designs on a 2D medium may have problems when
viewed in immersive 3D. Our system operates between the paper
design and the actual implementation, and provides a medium in
which to easily test a design. Paper designs are still useful as a start-
ing point, but refining a base design can proceed much faster with
our system than with the design and implementation cycle normally
employed. Using our system, a researcher can take a paper design,
sketch the design in 3D, and view the final result.



Figure 3: A CavePainting stroke comprises a path and a style. There
are two paths and two styles in this example, the blue base and the
green wing. Parts of the style, such as width, texture, color, and
alpha, as depicted above, can be selected and modified using this
view.

1.2 Our Approach

Legends were used to combine CavePainting strokes with the data
being visualized. CavePainting strokes added to the legend indicate
how the final visualization element changes in response to a par-
ticular data type. The lower portion of the legend shows miniature
versions of the final visualization element. There is one legend per
data attribute visualized.

The previous system used for visualizing artery flow data re-
quires each different visual style to be explicitly coded, and as a
result, adding new styles or more information to the visualization
often takes days or weeks. With our system, the researcher is able
to sketch the legend for a visualization and see the result almost
instantly.

2 Methods

The system is based on three critical components. The first compo-
nent, the stroke, is the drawing primitive for generated icons. The
second component is the legend, which links icons to actual data.
The third component is the interpolated particles generated by the
system.

2.1 CavePainting Strokes

Again, the basic element in our system is the stroke. A stroke con-
sists of two main parts, the path of the stroke, which is defined by
the path of a 3D tracker through space, and the style of a stroke. The
stroke style consists of a form and style properties. A stroke’s form
is a cross section of the final stroke. In our program, we support
a flat cross section, which results in a ribbon, and a circular cross
section, which results in a tube. Style properties are contained in
forms, and are organized into layers, with each layer having tex-
ture, color, and transparency. Color and transparency are defined
along the length of a stroke, so different parts of a stroke can have
different colors. Strokes can also be combined to form compound
strokes or icons. In this case the system stores an offset path in
each form, and applies that offset to the path of the stroke to obtain
the final shape and position of that part of the compound stroke.
In Figure 3 two forms are visible, the straight base, and the curved
wing. Each form has width, texture, color, and alpha styles, though

Figure 4: The width of a stroke is first modified by selecting the
width attribute. This causes the stroke to become transparent, and
the path, the yellow line along the length of the stroke, to be drawn.
The new width of the stroke at the yellow ring is the distance be-
tween the path and the paintbrush.

texture and alpha are at their default values of no texture and no
transparency respectively.

Strokes are edited by first selecting the property to be modified
using the exploded view of a stroke as seen in Figure 3. There are
two types of interaction when modifying a stroke. When modifying
the width of a stroke, the stroke becomes transparent and the path
is shown. Then the system chooses the point closest to the brush,
and makes the width of the stroke at that point the distance between
the path and the brush, as seen in Figure 4. Color is modified by
shooting a ray out of the brush and modifying the closest point on
the path to that ray, as seen in Figure 5.

2.2 Data

The data we are using approximates a bifurcated coronary artery
using a large slightly curved arterial pipe with a smaller pipe joined
at an angle. The data is the result of a numerical simulation using
this model. The complete dataset is time varying and simulates a
single pulse of fluid from the heart. It contains multiple datatypes
at each point, such as pressure, velocity, and vorticity.

2.3 Linking Strokes to Data

Legends were chosen to link example icons to the data being visu-
alized. There is one legend for each datatype in the dataset. The
legend, as seen in Figure 7, consists of three parts. The first part is
the icon for the legend which contains the data type associated with
the legend and the direction of increasing data value. In this case
pressure is increasing to the right. The user draws example icons
above the legend, e.g. the two large birds. Once an icon is added to
the legend, a preview of example particles appears, e.g. the smaller
birds below the line. The preview shows how the icon changes for
the datatype of the legend, and assumes all other datatypes are at
half value.

In order to generate a final particle, there are three steps. First,
each legend examines the example icons it contains to determine
which attributes of the icon should change in response to this data
type. Second, each legend generates a sparse placeholder icon that
contains only those attributes that change in response to its partic-
ular data type. Finally, the sparse placeholder icons are combined
with an initial icon to generate the final icon. In cases where more



Figure 5: The color of a stroke is modified by selecting the color
attribute of a stroke, then spraying the stroke with the new color.
The yellow ring indicates the current position on the stroke. The
same interaction is used for editing the transparency of a stroke,
with white being opaque and black transparent.

Figure 6: This legend was used to map speed to wingspan. The
user-drawn icons appear above the line; below it are some samples
of the final particles.

than one datatype submits a change to the final icon, the changes
are interpolated. In the bird example, The pressure legend gener-
ates sparse strokes containing only the color of the bird base. The
velocity legend generates a sparse stroke containing a path for the
bird wing. These two elements are merged with a copy of one of
the example strokes to form the final particle.

3 Results

We used the system to design particles for the visualization of the
artery data. The CavePainting system excels at creating organic
forms, so we chose some organic creatures – fish and birds – as a
basis for the particle design. Both particles were created to simul-
taneously show two data types: velocity and pressure. Overall, it
took about half an hour to generate each visualization.

The first particles were squid with some trailing tentacles, as seen
in Figure 10. Speed was mapped to the shape of the tentacles; con-
tracted tentacles signify a slower velocity and streamlined tentacles

Figure 7: This legend maps the color of the birds to pressure.
Again, the user-drawn strokes are above the line, and the final icons
are below.

Figure 8: This example visualization shows bird icons that change
wingspan in response to velocity, and color in response to pressure.
This snapshot was taken at a low pressure point.

signify a faster velocity; pressure was mapped to the size of the
squid’s head.

The second set of particles created were modeled after birds, as
seen in Figures 8 and 9. The birds show velocity as the shape of the
wings, outstretched for fast, and folded in for slow; they show pres-
sure as color, with red as high pressure and blue as low pressure.
The legends used to create bird icons are also shown in Figures 6
and 7.

Some other particle designs were tried, such as leaves and rain-
drops. There were two main problems with these designs. First, the
icons were much too complex, and only a few could be shown at
reasonable frame rates. The second problem was that the example
strokes were not sufficiently different, hence it was near impossible
to determine the actual data values represented by the icon.



Figure 9: This is another snapshot of the bird icons, this time at a
high pressure point.

Figure 10: This icon shows squids moving through the flow. Veloc-
ity is mapped to the shape of the tentacles - slow yields compacted
tentacles and fast yields streamlined tentacled. Pressure is mapped
to the width of the squid’s head.

4 Discussion

4.1 Evaluation of the particles

We postulated that the squid particles would represent velocity well
because the particles exhibit movement well. There was a major
unanticipated problem with the squid’s initial design. When many
squid were in close proximity, the tentacles overlapped and it be-
came extremely difficult to determine which tentacles belonged to
which squid. This problem was alleviated with dynamic lighting,
though that had the consequence of altering the colors. Since color
was not used in this visualization, this was an acceptable solution.
Another viable solution would have been to either apply a texture
to the tentacles or to change the color in the middle of the tentacles.

The second problem with the squids was that it was difficult to
determine the relative size of a single squid’s head, and in turn the
relative pressure at a single point. It was still possible to see general
pressure trends, but it was near impossible to determine a pressure
value at a single point. Overall, the squids were well suited to visu-
alizing velocity, but not pressure. Thus the visualization was not an
improvement over the initial particles.

On the other hand, the birds turned out much better than we
anticipated. It was very easy to tell the position of the wings by
looking at the particle, and since the birds were not very long, the
problem of intersecting particles was minimized. Furthermore, the
color change in response to pressure was extremely easy to see, and
the pressure value could be inferred from examining a single bird.
Compared to the squid, the birds were able to show two values si-
multaneously using a single particle.

4.2 Speed and Flexibility

The relationship between speed and flexibility in our system was
one of our paramount problems. The goal was to allow enough
flexibility in particle design, yet still be able to generate enough
particles so their interaction with each other could be understood.
In informal testing, our system was able to generate about twenty-
five percent as many particles as a hard-coded implementation of a
similar particle design. While this was fewer than we had hoped for,
it was still enough to allow testing of future particle designs. There
is definitely room for improvement in this area, with one possible
approach being to offload the interpolation of the particles to the
graphics card.

4.3 Problems with Implicit Determination of Interpola-
tion Variables

The main problem with this system was that it implicitly tried to de-
termine what properties of a stroke to changed for each data type.
This was necessary since particles would tend to gravitate towards
an average particle if all the particle properties from each data type
were averaged to generate the final particle. Implicitly determin-
ing what to interpolate for each data type was problematic because
the user invested more thought in the particle design than in actu-
ally drawing the picture. One possible solution would be to have
the user draw the particle, then explicitly choose what parts of the
particle to interpolate for each data type. Although both result in
correct interpolation, it is easier and takes less time to explicitly
choose which attributes of a stroke to interpolate than to draw the
icon correctly.

However, a much more difficult challenge exists: ensuring that
particles have the same stroke structure and stroke direction. Un-
fortunately, this imposes limitations on the design process of a par-
ticle. Mainly, the designer must be aware of the implementation of
the system in order to use it effectively. The simplest solution is to
try and correlate the endpoints of the stroke, or the initial direction
of the endpoints of the stroke. Interpolating particles with differ-
ent stroke structure can be accomplished by splitting and merging
strokes. When and how to perform these actions has yet to be ex-
plored.

The consistent theme among all these problems is how much
the user should explicitly instruct the system versus how much the
system can infer from the users actions. This is a very delicate issue,
with the overriding goal being to minimize the amount of time the
designer must spend drawing a particle. If explicitly telling the
system what to do takes less time than doing it in a way that the
system understands, then explicitness is the better solution.

5 Conclusion

Designing visualizations for multi-valued, time-varying data is a
very hard problem requiring many iterations of the design, imple-
mentation, and critique cycle. Furthermore, designs are tradition-
ally done on paper, and not in the target medium. This works for
some types of visualizations, but is much less effective when the
final medium is an immersive display. Paper simply cannot capture



the nuances of an immersive display as well as a design done in the
target medium.

Our system provides the designer with a tool to quickly judge
how well a particular design will work in the target environment.
It is not designed to replace paper designs as it still takes longer to
draw a design in our system than on paper, but it does allow the
designer to preview a design before the costly step of coding it. As
long as implementing a design is the costly step in completing a
visualization, every effort should be made to reduce the number of
times a design is implemented; our system is one step towards the
goal of reducing the number of implementations to just one.

References

KEEFE, D., ACEVEDO, D., MOSCOVICH, T., LAIDLAW , D., AND
LAVIOLA , J. 2001. Cavepainting: A fully immersive 3d artistic
medium and interactive experience. InProceedings of the 2001
Symposium on Interactive 3D Graphics, 85–93.

SENAY, H., AND IGNATIUS, E. 1994. A knowledge-based sys-
tem for visualization design. InIEEE Computer Graphics and
Applications, 36–47.

SOBEL, J., FORSBERG, A., ZELEZNIK, R., LAIDLAW , D. H.,
PIVKIN , I., KARNIADAKIS , G., AND RICHARDSON, P. 2002.
Particle flurries for 3d pulsatile flow visualization. InIEEE Vi-
sualization Conference Poster Session. in review.


