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Abstract. We visualize gene co-regulation patterns by creating 2D em-
beddings from microarray data corresponding to complete gene sets from
the mouse genome, across large numbers of cell types. We use google
maps and client-side graphics to dissiminate pre-rendered such visual-
izations with a small but intuitive set of interactions. We conduct an
anecdotal evaluation with domain specialists and demonstrate that biol-
ogists appreciate this approach because it facilitates low-overhead access
to readily analyzable perspectives of unfamiliar datasets and because it
offers a convenient way of disseminating large datasets in visual form.

1 Introduction

Visualization of biological data ranges from websites that provide sparse, key-
hole representations of database stored data, to complex stand-alone visualiza-
tion systems with many options and analysis features. Both approaches have
merit and are widely used, yet both have task-specific limitations. In terms of
usability, the former have low visual expressivity, avoid complex computations
and do not show large data volumes at once, while the latter have significant
overhead associated with setting up and learning to control the environments.
A drawback shared by both approaches is in disseminating data and results:
biologists producing data lack the expertise required to set up and maintain a
database-driven website; publishing raw data requires interested researchers to
learn and operate specialized analysis software, increasing the overall invested
effort.

In this context we introduce gene co-expression maps which are pre-rendered
2D embeddings of genomic multidimensional data. We show complete gene sets
of around twenty-three thousand genes with expression measurements across tens
of cell types (e.g. all members of a cell family). These images are served through
the Google Maps API, and have a simple and intuitive set of interactions that can
be learned with minimal overhead. An example of such a visualization is shown
in Figure 1. We run an anecdotal user study and show that this approach is a
viable solution for understanding genomic co-regulation patterns especially in
large unfamiliar datasets, as well as for disseminating large micro-array datasets
by data-intensive labs.

The motivation behind our work is to let labs publish data and results in
visual form along with raw textual data so that users can access readily analyz-
able perspectives on the data without additional overhead. Specifically, we are
involved in the PROJECT (removed for anonymity, referred to as PROJECT
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Fig. 1. Co-expression map of 23k genes over 24 cell types of the B-cell family exemplifies
map concept. The top view illustrates how maps are combined with client-side graphics:
the map is at the center of the display while selecting genes by drawing an enclosing
rectangle generates a heatmap on the right. Maps have multiple levels of zooming
(bottom 2 rows), each with a potentially different representation. For example, genes
are drawn as heatmap glyphs at the high zoom (lower right), and as dots at low zoom.
Expression profiles of collocated genes are aggregated and displayed as yellow glyphs
over the map. As zoom increases, expression profiles are computed for increasingly
smaller regions. Interactions are not limited to zooming and panning; pop-up boxes
link out to extra data sources, and selections of genes bring up a heat map (top panel)
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throughout the paper), a collaborative effort aimed at generating a complete
microarray dissection of gene expression in the immunological system of the
mouse. The data-map concept lets us disseminate the project’s microarray data
as precomputed visualizations that can be accessed on the project website.

The key differences between traditional approaches and our maps are as fol-
lows. Instead of the data-query-specification/recompute paradigm, co-regulation
maps contain all accessible data, with data query and specification being done
through zooming and panning during visualization. Traditionally, it is the end
user’s job to construct a visualization (query specification and parameter defi-
nition), while our visualizations are built by bioinformatics staff in larger labs.
Finally, the goal of complex visualization systems is to give users complex func-
tionality that answers a large array of questions. Co-regulation maps, on the
other hand, aim to provide fast intuitive access to visual data; their function-
ality is therefore balanced with a sparse set of interactions, close to what is
available in regular Google Maps. For users, including scientists browsing and
analyzing data as well as those producing data, visualizations become easy to
access, learning time is significantly reduced, users worry only about the data,
and disseminating visual results is simplified.

Contributions We introduce co-regulation maps served through the Google
Maps API for visually disseminating large microarray datasets. We present de-
sign elements, challenges and opportunities that became apparent in our project,
and an evaluation demonstrating the usefulness of the approach as well as sug-
gesting design guidelines.

2 Related Work

Many advanced systems for biological data analysis have been developed over
the past decade. Examples targeting microarray expression data include free
software packages such as Clusterview [1], TimeSearcher [2], and Hierarchical
Clustering Explorer (HCE) [3] or commercial systems such as Spotfire [4] and
GeneSpring [5]. GenePattern [6] is a broad effort aiming to facilitate the integra-
tion of heterogeneous modules and data into a unitary, web-managed framework
for microarray data analysis. Our goal is to offer no-overhead visualizations that
will be used primarily for casual data exploration by users unable to spend time
learning advanced systems. In that regard, our work comes closer to applications
providing primarily look-up functionality such as tools provided on the NCBI
website or the genome browser at USCS [7]. In contrast to these efforts, we aim
to provide visualizations that include more computation and visual cues and less
complicated query specifications.

In terms of web-accessible visualization ManyEyes [8, 9] paved the way for
everyday data visualization and demonstrates the usefulness of the web as a dis-
semination and collaboration medium. Unfortunately, while web-development
toolkits such as Protovis [10] greatly aid web development, large scale web
visualization is hampered by inherent browser capabilities [11]. Alternatively,
stand-alone systems have been made available as applets or to be run as client
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applications directly from websites [6, 12]. However, users still have to control
the parameters involved in producing visualizations, specify their data queries
and learn system features. This often constitutes an undesired overhead. Yet an-
other approach, more similar to our work from an implementation standpoint,
is to use Ajax (asynchronous JavaScript and XML) technology to do the render-
ing on the server side and serve images asynchronously to the client browser. A
specific call for Ajax-based application in bioinformatics is made in [13] and [14]
and [15] exemplify this approach. There is however only one essential element
that differentiates this approach from traditional offline visualization systems:
control and display happens in a separate place from rendering and computa-
tion. Our research differs by attempting to limit regular users’ effort in creating
visualizations and assigning this task to experienced personnel, by introducing
visualizations that contain most of the data associated with a problem, and by
using the Google Maps API, a readily available Ajax implementation of pre-
rendered images. Closest to our work are X:MAP [16] and Genome Projector
[17] which present implementations of genome browsers using the Google Maps
API. We extend this idea to 2D embeddings and provide an evaluation that
suggests design guidelines.

In our work we use multidimensional scaling (MDS), the process by which
multi-dimensional data points are projected in a space with lower dimensionality.
We use MDS to represent gene expression similarity over multiple biological con-
ditions. Keim [18] provides a good overview of multidimensional visualization.
Non-linear MDS methods, as in our work, use the similarity distance between
data points to define an error measure that quantifies the amount of distance
information lost during the embedding. Gradient descent or force simulation is
then used to position the points in the low-dimensional space so as to minimize
the error measure. A good example of such an approach is force directed place-
ment (FDP) [19] which simulates a system of masses connected by springs of
lengths equal to the distances to be embedded. Because an iteration of the orig-
inal FDP model is O(n3), acceleration techniques have been proposed [20–22].
We use the last approach, an algorithm with linear iteration time proposed by
Chalmers. Finally, relevant to our work is HiPP [23], an algorithm using a hier-
archical clustering to drive a 2D embedding. In our work we use a combination
of the original FDP, Chalmlers’ acceleration technique and HiPP.

3 Methods

Given genes with expression measurements over multiple biological conditions,
we construct a 2D map where genes are placed so that their proximity is propor-
tional to the similarity of their expression profiles. Scientists can use the B-cell
co-regulation map in Figure 1 to find other genes that co-regulate with genes of
interest and to understand how their genes of interest co-regulate given the set of
conditions described by the map. Immunologists can browse co-regulation maps
to understand expression patterns in the featured conditions. Finally, scientists
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interested in downloading unfamiliar data can perform a preliminary investiga-
tion using maps hosted on the project website.

Our embedding algorithm was inspired by HiPP [23] but employs a different
layout technique. As in HiPP, we use bisecting k-means to create a hierarchical
clustering of the data. We then compute the clustering distance of two genes as
the length of the path between their nodes in the clustering tree. We multiply this
distance by the Euclidian distance between genes in the high-dimensional space
described by the biological conditions. Finally, we use Chalmer’s embedding [22]
to project this combined distance in 2D. The discrete component introduced
by the clustering tree is responsible for the clear demarcations between clusters
observable in Figure 1. We initially used a standard projection but user feed-
back indicated that the lack of visible clusters detracted from analysis. Users
considered the modified version preferable even when made aware that cluster
boundaries were introduced artificially.

In rendering, glyphs are drawn over map regions, showing the aggregated ex-
pression profile of genes in that particular region along with the standard devia-
tion. The size of aggregated regions is zoom-dependent; as zoom level increases
averaging are performed over smaller sets for increased averaging accuracy. This
is achieved by linking zoom to cluster-cutting of a hierarchical clustering of 2D
projected distances. For obtained clusters an iso-contour is drawn around the
members of the cluster by using the method in [24] to achieve a rough enclosing
curve and then refining it using active contours [25].

In low-level zooms, genes are represented by heatmap glyphs that color-
code the expression value of that gene at each condition, giving users access
to individual data values. The color scheme chosen was blue-green-yellow-red
to maximize the perceived expression difference, following our users’ request.
To minimize the chance of overlapping gene-glyphs we apply a repulsive force
between nodes at the end of the embedding stage. The force decays exponentially
with inter-node distance and only affects the layout locally.

We use the Google Maps API, an Ajax framework used to render large maps,
to display our visualizations. It receives as input image data in the form of a set of
small images, called tiles, that when assembled together form the different zoom
levels of the map. Each zoom level consists of a rectangular grid of tiles of size
2zoomX2zoom. The API decodes the zoom level and coordinates of the currently
viewed map region to retrieve and display the visible tiles. The developer can
load a custom set of tiles in the API by implementing a callback function that
translates numerical tile coordinates and zoom level into unique paths to the
custom tiles. The API provides basic functionally such as zooming and panning
and allows programmatic extension or customization with markers and polyline
overlays, information pop-ups and event management. The API can be easily
integrated into any Javascript-powered web-page.

Our 2D embeddings are rendered to tiles, gene positions are exported to
a text file, and gene expressions are coded as one-byte values to limit size and
exported to a text file. These elements are used in the Javascript + Google Maps
+ Protovis map implementation in Figure 1. Users can search for a single gene
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and highlight it via a marker. Alternatively, an entire set of genes can be loaded
as well through copy and paste. Genes can also be selected directly on the map
by drawing a selection rectangle. If the selection is small enough (100 genes in
our implementation), a heatmap representation is rendered using the Protovis
library. The list of selected genes can be exported for further analysis.

4 Results

We conducted an anecdotal evaluation of our co-regulation visualization with
the help of the PROJECT coordinator and four geneticists working on regula-
tion patterns in T-cells, B-cells and NK cells. The four geneticists were selected
so that their computer operating abilities spanned a broad range, from active
involvement in the lab’s bioinformatics efforts to limited familiarity with analysis
software. As part of the evaluation we introduced the approach and explained its
limitations, then demonstrated our prototype while asking questions and invited
users to comment. Two users interacted with the prototypes themselves.

All subjects decided that the co-expression map is useful. The primary work-
flow that our users identified was to project their own genes of interest onto
one or more cell spaces. One subject would also look for global patterns of co-
regulation, possibly over multiple maps and suggested we link multiple maps in
separate browser tabs, such that selections of genes performed on one map are
mirrored onto the others. One subject suggested using this application to cre-
ate customized datasets by selecting subsets of co-regulated genes from explored
datasets and exporting them in a convenient tabular form.

All users rated ease of use as higher than other systems they have worked
or experimented with. They were excited to be able to access visualizations in a
browser and several stated that this makes them more likely to use the visualiza-
tions. One of our subjects thought data maps could be useful for researchers new
to a lab since they could start analyzing data right away. She then extended this
idea to non-PROJECT members and mentioned she would like such visualiza-
tions to be present in other data sources as well. She added that her particular
lab has good technical support, but that since she is close to graduating and
considering doing research on her own, this approach seems very appealing.

Most subjects said the available features are enough for quick data analysis.
Two users explicitly complimented the superposed expression profiles, stating
that they summarize data well and can guide exploration. All users were happy
with the heatmap upon-selection mechanism, with the ability to export selected
sets of genes and highlight personal genes of interest. Several users asked for
more hyperlinking and metadata features.

A majority of our subjects identified the static nature of the maps as a
non-issue. Two of them expressed the desire to customize the cell types over
which genes are projected. However, they agreed that there are relatively few
cell subsets that they would choose from and that multiple maps covering these
possibilities would probably work. We note that these two users were the ones
most comfortable using analysis software in their daily research and were highly
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familiar with the PROJECT data, explaining the desire for increased flexibil-
ity. The PROJECT coordinator commented about the benefits of being able
to accompany raw data with relevant visualizations and the minimal overhead
in deploying and maintaining the map system by simply copying a directory
structure. He has since decided to switch the lab’s database-driven distribution
system to a map oriented one.

5 Discussion

5.1 Design

Instead of the traditional visualization flow of data specification followed by vi-
sualization recomputation, our co-regulation maps suggest a different approach:
all data is shown at once and data specification/abstraction is done at the time of
visualization through zooming and panning. Zooming can be used to summarize
data at different abstraction levels, such that relevant information is available to
the user at all zoom levels. Since the visual information conveyed is itself spatial,
co-regulation visualization is suited for this approach.

Static maps can be synergistically coupled with interactive web elements
implemented in Protovis. Focus+context visualizations can be created so that
maps offer the context while focus views are implemented in Protovis. We note
that we advocate for simplicity: merely replicating the complexity of stand-alone
systems on the web was not our goal.

5.2 Uses

Co-regulation maps are not intended to compete with advanced micro-array
analysis systems. While biologists often work intensely on specific data-sets for
which the flexibility of an advanced analysis system is warranted, they often
need to browse through related data-sets where the relevance cannot be clearly
assessed. Running a time-consuming visualization on each piece of such data is
an overhead which our maps eliminate. As our evaluation indicated, this might
be especially relevant for researchers lacking access to a strong computational in-
frastructure. Similarly, users often want to relate their own data to existent data
volumes, a task made easy by loading genes of interest on existent co-regulation
maps. Finally, data intensive projects want to distribute readily available visu-
alizations along with raw data so that their users can gain insight into the data
without having to run their own analysis. The fact that our collaborator, a coor-
dinator of a data intensive lab, has decided to replace his database-centric data
distribution with a map setup supports this claim.

5.3 Opportunities

Linking multiple co-regulation maps together (e.g. for different cell families)
could answer questions about conservation of gene function over multiple condi-
tions, a question raised by one of our subjects. In Figure 2 we show an example of
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a preliminary implementation of this function using cookies to pass information
between multiple browser tabs. This functionality was not evaluated yet.

Fig. 2. Linked co-regulation maps of the T-cell (left) and B-cell (right) families. A
selection in the T-cell map is reflected onto the B-cell map. A few groups of genes that
are co-regulated in both cell families are noticeable by inspecting the upper part of the
B-cell map.

During our evaluation, users were excited about the opportunities of col-
laboration offered by maps. Exchanging interactive images rather than static
ones and sending links rather than datasets was positively received. Maps also
support more integrated collaborative work, such as annotations, well since the
static nature of maps ensures that each user has the same view of the data and
that shared comments target the same visualization elements.

Finally, co-regulation maps can be extended to display more complex gene
relationships while Google Maps implementation can be applied to other visu-
alizations as well, such as standard heatmaps. For example, employing machine
learning techniques on gene mircoarray data, a collaborator separated genes into
functional modules and submodules with associated regulators. In Figure 3 we
show a visual representation of this module space. Instead of the bisecting K
means clustering hierarchy described in section 3, we use the two-level mod-
ule/submodule hierarchy to draw genes belonging to the same submodules and
modules closer together. Enclosing rectangles are then drawn over the modules
and submodules. Information about the module, derived from our collaborator’s
analysis is shown on the right together with a complete heatmap of the mod-
ule’s genes and regulators. The analysis was performed on 346 cell types making
dynamically generated heatmaps slow to render using client graphics. However,
since genes in a module are predefined, heatmaps can be computed as brows-
able Google Maps themselves. Protovis implemented axes that are linked to the
heatmap’s panning and zooming and thus stick with the map, are attached on
the sides ensuring that users know what genes and cell types they are focused
on.
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Fig. 3. Google map of gene modules and submodules embedded in 2D on the left.
Information about a selected module, including a browsable heatmap, on the right.

6 Conclusion

We presented a low-overhead approach for browsing through large, unfamiliar
micro-array datasets. We construct pre-computed planar embeddings of genes’
expression values over multiple conditions such as cell types. We then render
them as static images and display them using the Google Maps API along with
an intuitive set of interactions. The contributions of this work include design
elements, uses and opportunities for this type of visualization, and an evaluation
that indicates that such visualizations are desirable for exploring novel data,
casual browsing, disseminating results and data, and relating small data-sets to
existent data volumes.
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