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Figure 1: Geometric verification algorithm applied to the test tornado dataset from LLNL [3].

ABSTRACT

In this paper, we present a verification algorithm for swirling fea-
tures in flow fields, based on the geometry of streamlines. The fea-
tures of interest in this case are vortices. Without a formal defi-
nition, existing detection algorithms lack the ability to accurately
identify these features, and the current method for verifying the
accuracy of their results is by human visual inspection. Our ver-
ification algorithm addresses this issue by automating the visual in-
spection process. It is based on identifying the swirling streamlines
that surround the candidate vortex cores. We apply our algorithm
to both numerically simulated and procedurally generated datasets
to illustrate the efficacy of our approach.

Keywords: feature verification, vortex detection, flow field visu-
alization

1 INTRODUCTION

Large-scale computational fluid dynamics simulations of physical
phenomena produce data of unprecedented size. Unfortunately, de-
velopment of appropriate data management and visualization tech-
niques has not kept pace with the growth in size and complex-
ity of such datasets. One paradigm for large-scale visualization
is to browse regions containing significant features of the dataset
while accessing only the data needed to reconstruct these regions.
The cornerstone of this visualization paradigm is a representational

∗{jiang, raghu}@cis.ohio-state.edu
†dst@erc.msstate.edu

scheme that facilitates progressive access to macroscopic features
in the dataset [10]. In this approach, an automatic feature detec-
tion algorithm is used to accurately identify and rank contextually
significant features.

In general, a feature can be defined as a pattern occurring in a
dataset that is the manifestation of correlations among various com-
ponents of the dataset. The swirling features in flow fields, which
are the central subject of this paper, are commonly called vortices.
By most accounts [9, 12, 13], a vortex is characterized by swirling
motion of fluid around a central region. From the morning coffee to
the evening bath, it is perhaps one of the most common and natural
phenomena occurring in everyday life. Yet, it’s very definition still
eludes those who are active in its pursuit.

Despite this lack of formalism, various detection algorithms ex-
ist that can identify, to a certain degree, these swirling features. The
main deficiency common to these algorithms is not the false posi-
tives which they may produce, but rather their inability to distin-
guish the false positives from the true swirling features. For many,
this is due to their heavy reliance on the velocity gradient tensor
as a local tool for identifying global features, such as vortices [4].
As noted by Thompson et al. [19], these local techniques are in-
herently problematic because they do not incorporate the necessary
information into their detection process for a global feature.

The ability to verify the correctness of a candidate feature is es-
sential for any feature-based visualization paradigm. Feature verifi-
cation can not only improve the quality of the identification process,
but also improve its overall performance by obviating the need to
apply computationally expensive detection algorithms at all points
in the field. Inexpensive and less accurate techniques can be used
to identify candidate features which are then subjected to the ver-
ification process. By operating only on the candidate features, the
more expensive verification process is made computationally effi-
cient. This modus operandi is indispensible in the context of large-
scale datasets. Further, for features such as vortices, aggregate ver-



ification techniques can be developed that capture the global nature
of the feature [19].

In this paper, we present an automatic verification algorithm for
3D swirling features in flow fields. This work is an extension from
our previous work [7] on efficiently detecting vortex core regions.
We present a geometric approach to verifying vortices that is most
consistent with the notion of a swirling flow. In the absence of a
formal definition, this is the most logical approach to take for such
a visually recognizable feature. Given a candidate vortex core, we
measure certain differential geometry properties of the surround-
ing streamlines to determine whether or not these streamlines are
swirling around the core region. If the streamlines satisfy our 2π
swirling criterion for 3D vortices, then from a geometric perspec-
tive, the candidate vortex core is an actual vortex core.

Our paper is structured as follows. We first provide a brief review
of existing vortex detection algorithms and discuss some of the is-
sues involved in vortex definition. We then describe the vortex core
region detection algorithm that we use to identify candidate vortex
cores. Then, we provide the implementation details behind our ver-
ification algorithm and the results that demonstrate the efficacy of
our approach. Finally, we draw conclusions as to the relative merits
of our feature verification algorithm.

2 PREVIOUS WORK

To our knowledge, no attempts have been made to address the issue
of feature verification as a post-processing step of feature detection
in computational datasets. Although Peikert and Roth [11, 14] have
suggested using their parallel vectors operator to corroborate the
results from another detection operator, their suggested approach
lacks the ability to exploit the initial detected results for computa-
tional efficiency. More importantly, their suggested approach offers
little to address the issue of dealing with false positives.

For completeness, we briefly review several detection algorithms
in the literature. Though these reviews are not meant to be exhaus-
tive, they provide a fairly good overview of the state of the art in
detecting vortices in flow fields. The detection algorithm chosen for
verification is based on our previous work [7] on efficiently detect-
ing vortex core regions. We defer its discussion to a later section. It
should be noted that each of these algorithms described below may
generate false positives and miss otherwise obvious vortices.

The first group of methods is based on isosurfaces of a scalar
field. Levy et al. [8] developed a method on the assumption that
a vortex core is located in a region where the normalized helicity
V·(∇V)
|V||∇V| approaches ±1. In Berdahl and Thompson’s [2] method,
the assumption is that two of the eigenvalues of the velocity gradi-
ent tensor are a complex conjugate pair in regions of swirling flow.
A parameter termed the “swirl” is defined at each point in the do-
main using the magnitude of the imaginary part of the conjugate
pair and the velocity in the plane perpendicular to the eigenvector.
According to [2], the swirl is nonzero in regions containing vortices
and attains a local maximum in the core region.

Jeong and Hussian [6] defined a vortex based on the symmetric
deformation tensor S and the antisymmetric spin tensor Ω. Accord-
ing to [6], if the second largest eigenvalue of S2 + Ω2 is negative at
a point, that point is contained within a vortex. Additionally, if the
second invariant of the velocity gradient tensor 1
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positive at a point, the point is contained within a vortex. The main
disadvantage with these methods is their difficulty in automatically
distinguishing the individual vortices.

The second group of methods is based on the extraction of vor-
tex core lines. Banks and Singer [1] developed a predictor-corrector
algorithm based on the assumptions that the vortex core is a vortic-
ity line (a streamline in the vorticity field) and that pressure should
be minimum in the core. Sujudi and Haimes [18] described a line-

based method that extracts the vortex core by locating points that
satisfy the following two conditions: 1) the velocity gradient tensor
has a pair of complex eigenvalues and 2) the velocity in the plane
perpendicular to the real eigenvector is zero. By connecting these
points, a line segment representing the vortex core is constructed,
though it is not always possible to form a contiguous line. To ad-
dress this problem, Haimes and Kenwright [4] recast the algorithm
to be face-based rather than cell-based.

Roth and Peikert [15] proposed a different approach for detecting
core lines using the parallel vector operator. Rather than perform-
ing an eigen-analysis on the velocity gradient tensor, their algorithm
detects for parallel alignment between the velocity vector and the
acceleration vector. Their approach was especially designed for tur-
bomachinery datasets, which often contain weakly rotating vortices
with nonnegligible curvature. Whereas Sujudi and Haimes’ [18]
method has difficulty with curved vortices, theirs’ performs a cor-
rection for the curvature by taking second-order derivatives into ac-
count. The main disadvantages with these methods are their com-
putational complexity and inability to produce contiguous lines.

The third group of methods is based on the geometric properties
of streamlines. Portela [12] developed a collection of mathemati-
cally rigorous definitions for a vortex, using set theory and differen-
tial geometry. Essentially, his definitions are based on the idea that a
vortex is comprised of a central core region surrounded by swirling
streamlines. His 2D method detects vortices by verifying whether
or not the winding angle of streamlines around a grid point is a
scalar multiple of 2π . Sadarjoen et al. [16, 17] proposed a simpli-
fication to the 2D winding-angle method, by using the summation
of signed angles along a streamline instead. The main disadvantage
with these methods is that they lack a viable 3D counterpart to their
2D approach – winding angles are only meaningful in 2D.

3 SWIRLING FEATURES

Without a formal definition, it is not unreasonable to consider a vor-
tex as a swirling feature. Among the existing definitions, the asso-
ciation of swirling motion with the presence of a vortex is the most
common thread. This association stems from our visual perception
of the swirling phenomena that are pervasive throughout the natu-
ral world. However, translating that perceptual understanding of a
vortex into a formal definition has been quite a challenge. The dif-
ficulty lies in the generality of such definitions. Lugt [9] proposed
the following definition for the presence of a vortex.

A vortex is the rotating motion of a multitude of material
particles around a common center.

The problem with this definition is that it is too vague. Although
it is consistent with visual observations, it does not lend itself read-
ily to designs for a detection algorithm. Terms such as rotating mo-
tion and material particles are easy to conceptualize, but difficult to
implement. In light of this, Robinson [13] attempted to provide a
more concrete definition of a vortex, by specifying the conditions
for detecting rotating motion in 3D.

A vortex exists when instantaneous streamlines mapped
onto a plane normal to the vortex core exhibit a roughly
circular or spiral pattern, when viewed from a reference
frame moving with the center of the vortex core.

The primary shortcoming of this definition is that it is self-
referential: the existence of a vortex requires knowing the direc-
tion of its core. Additionally, no one has been able to utilize it for
the development of an effective detection algorithm [1]. In general,
it is difficult to detect the correct reference frames for all types of
vortical flows.



More recently, Portela [12] developed a collection of mathemat-
ically rigorous definitions for a vortex, using elementary tools from
set theory and differential geometry. Although his 2D definitions
are replete with pedantries and subtleties, his 3D definitions ap-
pear less novel and ultimately resemble those of Robinson’s [13].
However, the intuition behind his definitions is quite simple and
general: a vortex is comprised of a central core region surrounded
by swirling streamlines. He appealed to the Jordan Curve Theorem
to distinguish the central core region of a vortex and the winding
angle concept to measure the swirling of streamlines. The winding
angle of a streamline measures the rotation of that streamline with
respect to a given point. Satisfying the swirling criterion means
the streamline must have a winding angle of at least 2π . Note that
this approach is inherently limited to 2D. Whereas in 2D, curvature
alone dictates the rotation of a planar curve, in 3D, both curvature
and torison dictate the bending and twisting of the space curve.

4 DETECTION ALGORITHM

As a pre-processing step to the verification algorithm, most of the
existing detection algorithms would suffice. The only requirement
is that the output of the detection algorithm must be vortex cores,
in the form of either lines or regions. In the case of vortex core
lines, the collection of grid cells intersected by the core line is used
as input to the verification algorithm. The necessity of this con-
version will become clear in the next section when we discuss the
verification algorithm in detail.

The detection algorithm we chose in this case is from our pre-
vious work [7] on efficiently detecting vortex core regions. In this
approach, a combinatorial labeling scheme is employed to identify
all the grid points that belong to vortex cores and aggregate them
into individual regions. Unlike most of the existing detection meth-
ods, this labeling scheme is extremely efficient, and its efficacy has
been demonstrated in [7]. What makes this approach so effective at
detecting vortex core regions is its close resemblence to Sperner’s
lemma from Fixed Point Theory in combinatorial topology.
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Figure 2: 3D vortex core region detection algorithm.

The connection between vortices and fixed points (i.e. critical
points) are well known [18]. Whereas the Sperner’s lemma labels
the vertices of a simplex and identifies the fixed points of a labeled
subdivision [5], the detection algorithm labels the velocity vectors
of the grid points and identifies grid cells that are most likely to

contain critical points. Each velocity vector is labeled according to
the direction in which it points. Since velocity vectors around core
regions exhibit certain flow patterns that are unique to vortices, it
is sufficient to examine the immediate neighborhood of a grid point
for the existence of those flow patterns. This procedure is sufficient
for detecting 2D vortex core regions.

In 3D, it is necessary to approximate the core direction vector
first, and then project the neighboring velocity vectors onto the
plane normal to it, before applying the above procedure to the pro-
jected velocity vectors. We refer to this plane as the swirl plane
because instantaneous streamlines projected onto this plane exhibit
a swirling pattern that is commonly associated with 2D vortices.
Figure 2 illustrates the 3D algorithm, along with the swirl plane
and the combinatorial labeling scheme. Potential candidates for
the core direction vector include the vorticity vector [1], which is
one of the least computationally intensive methods, and the real
eigenvector [18], which is one of the most computationally inten-
sive methods. What makes the 3D algorithm unique is its relative
insensitivity to core direction approximations. In the detection pro-
cess, using the vorticity vector to approximate the core direction
vector can be just as effective as using the real eigenvector.

The advantage of this approach over other vortex core region
detection algorithms is its ability to segment the core regions in-
dividually. This would allow the verification algorithm to proceed
directly without any extra processing. Its advantage over vortex
core line detection algorithms is its computational efficiency, due
to the combinatorial nature of the detection algorithm. Although
a vortex core line can more precisely represent a vortex core, this
does not imply its detection process is more accurate. This increase
in the precision of representation can effect an increase in the com-
plexity of the detection process, a tradeoff that is unnecessary in the
context of the verification algorithm.

5 GEOMETRIC VERIFICATION

With the existing detection algorithms, one of the most effective
means to ascertain the accuracy of the detected results is through
visual inspection. By seeding streamlines near the detected vortex
cores, one can visualize the swirling patterns that are generally as-
sociated with vortices. Both [15] and [18] utilized this strategy to
build a convincing argument for the validity of their results. The
problem with visual inspection is that it requires human interven-
tion, a process that is contrary to the automatic nature of the de-
tection algorithm. And in the context of large-scale datasets, the
inspection process becomes highly infeasible.

The geometric verification algorithm we propose addresses the
above issue by automating the visual inspection process. Since for-
mal verification is not possible without a formal definition, geomet-
ric verification is the logical alternative. By identifying the swirling
patterns surrounding a candidate vortex core, our verification algo-
rithm can arbitrate the presence or absence of a vortex most con-
sistently with visual scrutiny. Although there are limitations to the
visual inspection process, it is more practical to formalize that pro-
cess, as a way to address the false positive issue, than to propose
yet another vortex definition.

Given a candidate vortex core, the underlying goal of our geo-
metric verification algorithm is to identify the swirling streamlines
surrounding it, by using elementary differential geometry proper-
ties of the streamlines. For the 2D case, both [12] and [17] have
presented methods that are sufficent for identifying planar swirling
streamlines. As described previously, these methods involve mea-
suring the winding angle of a planar streamline and checking if
the winding angle is at least 2π , which is a clear indication that
the streamline is swirling. However, both approaches cannot be di-
rectly extended into 3D, because the winding angle measurement
they use is inherently 2D.



To remedy this problem, Portela [12] proposed reducing the
problem from 3D to 2D by projecting the local velocity vectors onto
the plane normal to the vortex core direction, the swirl plane. Note
that this is similiar to what Robinson [13] proposed as the definition
of a vortex. The problem with this approach is deciding which lo-
cal velocity vectors to project onto the swirl plane. Not only would
there be an issue with the size of the projected neighborhood, so
that enough velocity vectors are projected onto the swirl plane to
apply the 2D algorithm, but also with the distortion caused by the
projected grid structure. To our knowledge, no viable algorithm
based on Portela’s [12] proposed idea exists.

Similarly, projecting streamlines onto a swirl plane, as Robin-
son [13] has proposed, is also problematic because the core direc-
tion along a vortex core can vary depending on the curvature of
the vortex core. Like tangents along a space curve, the direction
vector at a particular point along a vortex core only approximates
the core direction within a small neighborhood. Therefore, as soon
as the streamline is traced outside of that neighborhood, the valid-
ity of the projected streamline on the swirl plane becomes suspect.
The situation is exacerbated by slowly rotating streamlines around
curved vortex cores, such as those in turbomachinary flow fields de-
scribed by [15]. As Banks and Singer [1] correctly pointed out, this
approach does not lend itself conveniently to a viable algorithm.

Measuring the swirling of a 3D streamline is a nontrivial prob-
lem. The difficulty arises from streamlines that swirl around curved
vortex cores. As the deficiency in Robinson’s [13] proposal illus-
trates, the measurement process for 3D swirling has to take into
account the curvature of the vortex core. To address this issue, we
introduce probe vectors, which can be computed along a stream-
line at each point. As its name suggests, a probe vector probes the
vortex core for the direction vector at that particular point. Since a
direction vector approximates the local behavior of a vortex core,
it provides the necessary curvature information to the measurement
process.

We also introduce a local alignment process, based on the probed
direction vectors, to accommodate vortex cores with nontrivial cur-
vatures. The process individually rotates the direction vectors to
align with the z-axis, and then applies the same transformation to
the streamline. From a streamline’s perspective, this transformation
would locally straighten any curved vortex cores. Consequently,
the transformed streamline can be projected onto the (x,y)-plane
for the 2D winding angle computation. However, locally trans-
forming the streamline can result in irregular geometry, because the
alignment transformation is nonuniform for curved vortex cores. To
avoid this problem, we transform the tangent vectors of a stream-
line instead. In tangent space, the transformed tangent vectors are
projected onto the (x,y)-plane to create a tangent profile. Rather
than computing the winding angle of the projected streamline, we
compute the angle spanned by the tangent profile to determine if it
satisfies the 2π swirling criterion.

Before discussing the implementation details of our geometric
verification algorithm, we illustrate it using two canonical exam-
ples from the literature: the Rankine vortex and the bent helical
vortex. These two vortices are ideal for demonstrating the geomet-
ric verification process, because the geometry of their streamlines
are uniform.

5.1 Rankine Vortex
A fluid motion composed of a solid body rotation with angular ve-
locity Ω within a certain radius R and a potential vortex outside of
this radius is called a Rankine vortex [9]. The Rankine vortex is a
good model for a real vortex because of the concentrated vorticity
in its core region and the decay of the circumferential velocity as
the distance from the core is increased. For the three-dimensional
vortex, we have added a constant velocity U along the axis of the

Figure 3: 3D Rankine vortex

vortex (in this case, the z-axis). The equations describing the veloc-
ity field of the Rankine vortex are given in cylindrical coordinates
(r,θ ,z) by

ur = 0

uθ =





Ω r, r ≤ R

Ω R2

r , r > R

uz = U

(1)

The velocity field defined by Equation 1 satisfies the continuity
equation for incompressible flow and therefore represents a kine-
matically possible velocity field. Figure 3 illustrates a Rankine vor-
tex with R = 0.1 and Ω = 10. The velocity field was generated
on a 1283 cartesian grid. The yellow region is an extracted isosur-
face, representing the vortex core region, and the blue lines are the
swirling streamlines, seeded near the vortex core region.

(a) (b)

(c)

Figure 4: A streamline seeded near a Rankine vortex: (a) Tangent
vectors, (b) probe vectors and (c) tangent profile.

Figure 4 illustrates the tangent vectors, probe vectors and tangent
space computed along a streamline. The dark green arrows along
the streamline in Figure 4(a) are the tangent vectors. The orange
red arrows pointing toward the vortex core in Figure 4(b) are the



Figure 5: Steady progression of the verification process for the
Rankine vortex: (left) one-third and (right) two-third of a complete
spiral.

probe vectors. And Figure 4(c) is the tangent space, in which the
tangent vectors are projected onto the (x,y)-plane to generate the
tangent profile.

To illustrate the geometric verification process, we seeded a
streamline near the vortex core and traced it for one-third of a spiral,
and then for another one-third. This is illustrated in Figure 5. Fig-
ure 5(left) illustrates the first third and Figure 5(right), the second
third. Note the steady progression of the tangent profile around the
(x,y)-plane as the streamline spirals around the vortex core. Each
complete spiral corresponds to a complete revolution in the (x,y)-
plane of the tangent space.

5.2 Bent Helical Vortex
The bent helical vortex is an important model for turbomachinery
flow fields [14]. The model consists of a helical flow field built from
a rigid rotation in the (x,z)-plane, a constant motion in y-direction
and a bent of radius R in the (x,y)-plane. The velocity field for the
bent helical vortex is given in the (x,y,z) coordinate system by

ux = −ω x z R
r2 − γ y

r

uy = −ω y z R
r2 +

γ x
r

uz =

(
R − R2

r

)
ω

(2)

where r =
√

x2 + y2.

R is the radius to which the vortex core is bent, γ is the axial
component along the core, and ω is the rotation component about
the core. This flow field has zero divergence (i.e. it conserves mass
for a incompressible medium), but it is not an exact solution of
the Navier-Stokes equations, and it possesses a singularity on the
z-axis. However, in the vortex core region there are no singulari-
ties or critical points, and similar flow patterns have been found in
numerical solutions from a Navier-Stokes solver [14].

Figure 6: Bent helical vortex [14]

Figure 6 illustrates a bent helical vortex with R = 1, ω = 6 and
γ = 0.5. The velocity field was generated on a 1283 cartesian grid.
The yellow region represents the detected vortex core, and the blue
lines, the swirling streamlines. Clearly, the vortex core is curved
with a nontrivial curvature. To illustrate the efficacy of our local
alignment transformation, we seed a streamline near one end of
the bent vortex core and compute its tangent space both with and
without the transformation. Figure 7(left) illustrates the streamline,
along with its tangent vectors and probe vectors. Figure 7(right)
illustrates both tangent spaces. The difference between the two is
quite clear: without transformation, the tangent vectors can point
in various directions without any particular order, and with trans-
formation, the tangent vectors uniformly revolve around the z-axis,
forming a cone shape with its apex at the origin of the tangent space.

Figure 7: Difference between tangent profiles with (bottom) and
without (top) the local alignment transformation.

To demonstrate the effectiveness of our geometric verification
algorithm on slowly rotating, curved vortices, we conducted several
experiments using the bent helical vortex model, with R = 1, γ =
0.5, and ω varying from 6 down to 1. Figure 8(left) illustrates the
results for ω = 4, and Figure 8(right), the results for ω = 2. For
ω < 1, the tangent profiles did not satisfy the 2π swirling criterion
(i.e. they did not complete a revolution in the (x,y)-plane).



Figure 8: Effectiveness of our verification algorithm for slowly ro-
tating, curved vortices: (left) ω = 4 and (right) ω = 2.

6 IMPLEMENTATION DETAILS

6.1 Automatic Verification
The main premise of our geometric verification algorithm is that
it can automatically determine the presence or absence of a vortex
core. To this end, the algorithm must be able to perform verification
without any user interaction. Given a candidate vortex core, the al-
gorithm proceeds to first locate the tip of the core; more specifically,
it locates the upstream extent of the vortex core. Once the starting
point is located, it seeds streamlines around that location and traces
them until either their tangent profiles satisfy the 2π swirling crite-
rion, or they exit the computational grid. If none of the streamlines
satisfy the 2π swirling criterion, then it proceeds downstream, in the
direction of the core, to a nearby point within the core region, (e.g.
one grid cell unit away from the preceding point). The algorithm
repeats the above procedure until either the 2π swirling criterion is
satisfied, or the starting point is located outside the bounding box.

The search downstream for swirling streamlines is necessary be-
cause existing detection algorithms do not produce ideal candidate
vortex cores. Besides the false positives that are generated, an ac-
tual vortex core may be detected as several individual pieces [4], or
it may be aggregated with other grid points into a region that does
not swirl everywhere [7]. It is for the latter reason that we perform
an exhaustive search over the length of the candidate vortex core.
Consequently, deciding that a candidate vortex core is not an actual
vortex core requires the most computation.

6.2 Starting Point
Depending on the segmentation process and the orientation of the
vortex, it is not known a priori where the upstream extent of the
candidate core region is located. Our heuristic for locating the start-
ing point of the verification algorithm involves the bounding box of
the core region. In the process of computing the bounding box, the
six boundary grid cells of the core region, tangent to the six bound-
ing planes, are identified automatically. For each grid cell, compute
the inner product between its core direction vector and the inward-
pointing normal of its tangent bounding plane. If the inner product
is negative, then its core direction vector must be pointing outside
the bounding box; similarly, if it is positive, its core direction vec-
tor must be pointing inside the bounding box. Choose the grid cell
with the largest positive inner product to be the starting point of the
verification algorithm. (It should be noted that this heuristic is un-
necessary for candidate core lines, since one its two ends has to be

the starting point.)

6.3 Seeding Strategy
To further exploit the candidate vortex cores, we present a feature-
guided seeding strategy designed specifically for seeding stream-
lines near a vortex core. Given a point within a core region, com-
pute its direction vector. The seed points are placed on the swirl
plane, normal to the direction vector, equidistant from the core
point. In other words, the seed points are uniformly distributed on a
circle in the swirl plane. For an ideal vortex core, this arrangement
would produce the most number of swirling streamlines, given that
the radius of the circle is within the swirl region. In the experiments
we have conducted, the distance from the core, beyond which most
streamlines stop swirling, varies from fifty grid cells for a high grid
resolution to five grid cells for a low grid resolution.

6.4 Probe Vectors
The probe vectors are computed for every point along a streamline.
Since they probe a vortex core for the direction vectors, it is es-
sential for them to point consistently toward the core region from
the streamline. To accomplish this, we introduce a procedure that
iteratively computes the probe vectors based on the rotations of the
tangent vectors in tangent space. For each streamline, the proce-
dure initializes the first probe vector by subtracting its seed point
from the starting point. Since the seed point lies in the swirl plane
of the starting point, the initial probe vector certainly points toward
the core region.

As a streamline swirls around a vortex core, the probe vectors
must rotate along with it in order to maintain its focus on the vor-
tex core. The rotation between the probe vectors is identical to the
rotation between the tangent vectors. Therefore, after computing
the initial tangent vector and probe vector, compute the next tan-
gent vector, determine the rotation in tangent space between the
two tangent vectors, and apply the rotation to the initial probe vec-
tor to generate the next probe vector. And the procedure iterates by
alternately computing the tangent vector and the probe vector.

7 RESULTS

Besides the Rankine vortex and the bent helical vortex, we also
tested our geometric verification algorithm on three other datasets.
The first dataset is the test tornado dataset from LLNL [3], illus-
trated in Figure 1. The dataset is defined on a 483 cartesian grid.
The only vortex core detected in this dataset is curved at two places
in the middle and is illustrated, along with its swirling streamlines,
in Figure 1(middle). Our verification algorithm was able to iden-
tify swirling streamlines throughout the extent of the vortex core.
Figure 1(left) illustrates one such streamline, spanning the entire
length of the vortex core, along with its tangent vectors and core di-
rection vectors, colored in purple. To demonstrate the verification
process in more detail, we seeded a streamline near one of the two
curved portions of the core. Figure 1(right) illustrates the tangent
vectors and the probe vectors along this streamline. Due to the high
rotational velocity around the core, the tangent vectors are nearly
coplanar with the (x,y)-plane in tangent space. In this case, the
tangent profile readily satisfies the 2π swirling criterion.

The next dataset we tested is the blunt fin dataset, defined on a
40x32x32 curvilinear grid. There are three vortex cores detected in
this dataset: one along the floor and two along the fin. They are
illustrated Figure 9 along with their swirling streamlines. For the
vortex core along the floor, its rotational velocity is relatively low,
and its swirling streamlines fade quickly downstream from its tip.



Figure 9: Blunt fin dataset

Upon a closer inspection in Figure 10(top left), both the core re-
gion and the streamlines exhibit a flat shape that does not resemble
the cylindrical shape of an ideal vortex. In the flat regions in Fig-
ure 10(top right), the tangent vectors are nearly colinear, creating
two clusters in tangent space that are opposite of each other. Even
in this case, the tangent profile satisfies the 2π swirling criterion.

The last dataset we tested was the delta wing dataset from
NASA, defined on a 67x209x49 curvilinear grid, with an angle of
attack at 30◦. With this dataset, we can demonstrate not only the
verification process for vortex cores but also the elimination pro-
cess for false positives. In total, there are fourteen detected vor-
tex cores in this dataset, of which six exhibit swirling motion and
the other eight do not. We attribute these eight false positives to
be artifacts of the detection algorithm. Figure 11(left) illustrates
the six vortex cores in yellow and the eight false positives in light
green. Figure 11(middle) illustrates the six vortex cores along with
their swirling streamlines. For the two wing-edge vortices, our ver-
ification algorithm did not identify any swirling streamlines until
reaching the middle portion of their vortex cores. Figure 11(right)
illustrates the tangent vectors and probe vectors along a swirling
streamline of the vortex core on the left wing. The tangent profile
clearly satisifies the 2π swirling criterion.

Figure 12 illustrates the difference in tangent profiles between a
vortex core and a false positive. Whereas the top tangent profile
clearly satisfies the 2π swirling criterion, the bottom one does not.
The bottom tangent profile is typical of streamlines from the false
positive: the angle spanned is less than one quadrant of the (x,y)-
plane in tangent space. The slight bent in the streamlines account
for most of the variations in the tangent profile.

8 CONCLUSION

We have presented a geometric verification algorithm for vortical
features in flow fields. This algorithm addresses the need to deal
with false positives that are inevitably generated from existing de-
tection algorithms. It automates the visual inspection process that
has become the defacto method for verifying detected results. With-
out a formal definition, our verification algorithm proceeds to iden-
tify the swirling streamlines that are commonly associated with 3D
vortices. Given a candidate vortex core, our verification algorithm
automatically searches for the swirling streamlines surrounding the
core region, where the measure for swirl is defined in terms of the
differential geometry properties of the streamline. We have suc-
cessfully demonstrated the efficacy of our approach using several

Figure 10: Despite the flatness of the vortex core region and its
swirling streamlines, its tangent profile still satisfies the 2π swirling
criterion.

standard examples and datasets.
One of the limitations of our apporoach is that it does not address

the frame of reference issue that is central to unsteady flows. Our
verification approach may encounter difficulty with vortices in un-
steady flows. In our opinion, this is a difficult problem that has not
been addressed adequately. We plan to address this issue formally
in future work, along with tracking swirling features robustly and
efficiently in unsteady flows.
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