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Introduction 

T he fascination with dimensionality predates 
Aristotle and Ptolemy who argued that space 

had only three dimensions. By the nineteenth 
century the new mathematics of Riemann, 
Lobachevsky and Gauss unshackled the imagina- 
tion and higher-dimensional geometries came into 
their own. This together with the abundance of 
multivariate problems has motivated the desire to 
augment our perception, limited as it is by the 
experience of our three-dimensional habitation, 
and spawned several visualization methodologies. 
The list of references is by no means exhaustive 
but indicative of the interest in this field. There 
is a short literature survey in [29], a beautiful 
historical review by Tufte in [30], and a more 
recent one in [ 3 l] emphasizing multi-dimensional 
(or equivalently multivariate) visualization. There 
are other surveys in [9] and [13]. The taxonomy 
of the methodologies, though important in its 
own right, is not our primary concern. Rather, 
since multidimensionality is not “natural” as a 
percept& experience, we are interested in visual- 
ization methodologies which are: 

stage for the &bate. We approach them by fo- 
cusing on the foundations, concepts before tools 
rather than ad hoc methods or flashy demos. 
Starting with a review of the field, we consider 
visualization as a collection of transformations 
from “pralblem domains” to a perceptual domain, 
usually visual. This general and somewhat vague 
notion is given specific interpretations below. A 
variety rather than a single transformation is con- 
sidered since various applications may require 
specialized notions of visualization. Though com- 
puter graphics is still it’s underpinning, visualiza- 
tion is no longer simply another application but 
includes, as supporting disciplines, databases, real- 
time interaction, networking, supercomputing, 
multimedia, visual programming, systems theory, 
and human perception. 

l perceptually satisfying, 
l preserve multidimensional information, and 
l are intuitive. 

Are any of these goals attainable? Are these criteria 
mutually exclusive or can we “have it all”? If not, 
what is attainable and how? These issues set the 

Extending Visualization from the 
Pixel to Icons 

Position Statement: Georges Grinstein 

W  e will be describing the various approaches 
taken by researchers over the last five years 

in extending the presentation of data from a pixel- 
driven toI an icon-driven approach. Chemoff, 
Ellson aud Cox, Beddow, Grinstein, Pickett, 
Smith, Levkowitz, Ward, Ribarski, all used a two 
or three dimensional iconographic perception- 
driven approach when representing multi- 
dimensional data. We will briefly discuss geomet- 
ric and color icons and their generation of 2D 

1070-2385/95$4.0001995IEEE 

(See color plates, page CP-Li4) 

405 

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95) 
1070-2385/95 $10.00 © 1995 IEEE 



textures, area and volume icons and their gener- 
ations of symbolic objects that then produce rich 
displays, and further generalizations of this 
iconographic approach. The iconographic ap- 
proach has been applied successfully in several 
areas such as medical imaging and computational 
fluid dynamics. It extends the concept of mapping 
data to a pixel to that of mapping data to an 
object, or icon, whose attributes - such as color, 
geometry, reflectivity, opacity, and sound - are 
under the control of the various fields of the data 
record. This technique allows the information 
content of the objects represented to have high 
dimensionality and allows for the fusion of mul- 
tiple data sets, usually images, into a single inte- 
grated multi-modal display. This extension is 
novel when the selected object is symbolic in 
nature and when these icons are presented en 
masse on the screen to produce a texture that can 
harness human visual perceptual capabilities. 

Ellson and Cox used an icon whose displayed 
values are individually interpretable with attentive 
focus. Pickett, Grinstein, and Levkowitz initially 
produced integrated displays harnessing 
preattentive vision using an icon that was an ex- 
tension of the linear icons or glyphs often used 
in psychophysical studies and in plots of scientific 
data. Variations of this icon have been used to 
display vector fields, flow fields, and numerous 
other forms of application information. This 
icon in its many forms strikes at our ability to 
perceive, line orientation #pre-attentively”. 
Preattentive processing of visual elements is the 
ability to sense differences in shapes or patterns 
without having to focus attention on the specific 
characteristics that make them different. These 
iconographic displays translate possibly non- 
visible and undiscovered statistical structures in 
the data into potentially evident visual structures 
such as islands, streaks, or gradients. As humans 
discriminate textures very effectively and use vari- 
ations in texture as important sources of informa- 
tion including the detection and recognition of 
objects, the observer sees these statistical proper- 
ties in the data as qualities of the displayed texture. 
Work by Beck, Treisman and Gormican, and 

Enns documents the kinds of differences among 
elements that are discriminable preattentively. 

Other texture generating icons have been devel- 
oped. The area-based icons are similar to the 
“acoustic icon” of Stettner and Greenberg and are 
capable of generating many rich structural tex- 
tures. This famiIy of icons is derived from an 
ecologically oriented view of the nature of per- 
ception which holds that the primary function of 
both the visual and auditory systems is to identify 
the sources of stimuli and their behavior. This 
view suggests that we should strive to create data 
displays which engage the automatic perceptual 
processes underlying the systems which identify 
the sources of visual and auditory stimuli. Such 
displays would relieve the user of much of the 
burden of deliberate, consciously steered analysis. 
Two recent articles support this point of view, 
one by Enns on an encoding that makes elements 
look like real shaded objects in depth, the other 
by Ramachandran on the use of shadowing in 
controlling the appearance of displays ([ 1 l] and 
WI)* 

“Zoology”, Interaction and seam 
for Gestalt 

Position Statement: Andreas Baja 

D ata visualization is almost always part of a 
larger context of data analysis and problem 

solving. Data vis can play a role in data cleaning, 
data browsing, data reduction, statistical modeling, 
statistical testing, and in the presentation of data 
analytic results. With the exception of presenta- 
tion, all these contexts are exploratory in nature 
and may require searching through vast numbers 
of views. The visual search space in data analysis 
is therefore not one individual view, but the to- 
tality of ah possible views of the data. The task 
faced by the data analyst is to find his/her way 
to the meaningful and informative views in this 
search space. 
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What does this mean for research in data visual- 
ization? It may mean that devising methods for 
searching the space of views may be as important 
as devising intricate rendering methods for mdi- 
vidual views. Views are most useful when they 
are responsive objects that can be easily generated 
and manipulated. Manipulations on views should 
support the following three tasks that are part of 
most data analyses: 

1. Searching for Gestalt in data 
2. Posing queries about data 
3. Comparing views of data 

Each of these tasks can be approached in different 
ways, but there are some approaches that are 
more natural than others: 

1. Searching for Gestalt is achieved by manip 
ulating the focus of individual views, for ex- 
ample by animating projections, as in 3-D 
data rotations and grand tours. 

2. Posing queries can be done graphically, for 
example, by painting multiple linked views. 
Painting is a graphical form of posing a 
query. Linked views are a mechanism for 
delivering graphical responses to queries. 

3. Comparing views..requires that many views 
are arranged in the visual field, for example, 
side by side, or in matrix layouts. 

Existing interactive visualization systems typically 
provide two out of the three categories of manip 
ulations, but few provide all. We note that the 
three manipulation categories 

- focusing, finking, arranging views - 

are useful independently of the rendering category: 
They are suitable for interactive computer imple- 
mentations of scatterplots, parallel coordinates, 
Andrews curves, glyph presentations, to name a 
few rendering types that apply to multivariate 
data. ([ill, WI, [131 and, [14]). As a polemic 
summary, we propose: 

“Never mind how we draw pictures, how can we 
operate on them?’ 

The Gkand Tour : Animating and 
Interacting with Projections of the 
Data 

Positioln Statement: Daniel Asimov 

The grand tour is a perhaps under-utilized 
l methodology for visualization of multivariate 

data which is based on the following paradigm: 
Project the data to a 2dimensional subspace and 
display it on the computer screen. Now quickly 
repeat fbis process by picking another nearby 
2dimen,sional subspace, and then another, ad in- 
finitum ((or at least as long as someone is willing 
to view the results). The sequence of subspaces 
should be chosen so that, eventually, it passes 
arbitrarily near to every possible subspace. 

The result of this is an animation of 2dimensional 
projections of the original data. A patient data 
analyst can watch this animation and often find 
patterns in the data that would have been 
undiscoverable by other methods. By recording 
which projection was used to obtain an “interest- 
ing” pro:jection, the data analyst may be able to 
extract the reason for the interesting projection, 
and thereby learn something new, and possibly 
important, about the data. 

This methodology has many variants which enable 
the grand tour to be used efficiently in different 
contexts with various goals. For example, the 
image space can be 3dimensional rather than 
2dimenional. Whenever the 3D image appears 
to be worthy of further inspection, the tour can 
be frozen at that stage, and the interesting 3D 
image can be rotated around in order to under- 
stand it lbetter. This offers the possibility of de- 
tecting patterns more complex than could be 
found using only 2D projections. 

In another variant, the “guided tour”, the user 
may interact with the tour as it is running to ask 
it to explore regions of greater interest. In yet 
another variant, the “automatic tour”, it is the 
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computer which makes the judgments about 
which projected views are ‘~mteresting”, according 
to some criterion that the data analyst has provided 
in advance. This method, which requires no 
graphical output, is especially useful for exploring 
particularly high-dimensional data -- say greater 
than 8 dimensions -- because the “curse of dimen- 
sionality” causes the graphical-output methods to 
take an extremely long time to scan the enormous 
number of subspaces necessary to get reasonably 
close to every possible subspace ([4], [q, [6] and 
[71). 

Parallel Coordinates -- Visualization 
of N-Dimensional Geometry 

Position Statement: A&red inselberg 

V isuahzing relations involving 2 (real) vari- 
ables can achieved by mapping the informa- 

tion (data) into two dimensions and identifying 
the relations with the 2dimensional patterns (re- 
gions, curves) obtained. Inductively then, the vi- 
sualization of relations among N variables is equiv- 
alent to the visualization of N-dimensional 
Euclidean space. 

Our premise is that understanding the underlying 
geometry of a multivariate problem can provide 
crucial insights into what is possible and what is 
not. For example, in 1917 the physicist Paul 
Ehrehfest proved the in N-space planetary orbits 
are stable if and only if N = 3, suggesting at least 
one reason why our physical space is 3-dimen- 
sional. In another dimensionality result it was 
shown that a rigid body rotating in N-space has 
an axis of rotation only when N is an odd number. 

In the spirit of Descartes, we propose visualizing 
N-dimensional space by using a coordinate system. 
Since orthogonal axes “use up” the plane very 
fast, we construct a multidimensional system of 
Parallel Coordinates where, in principle, an arbi- 
trary number of axes may appear. In turn, this 
induces a one-to-one mapping between subsets 

of Euclidean N-space and subsets of the plane 
and provides a systematic way for doing analytic 
and synthetic N-dimensional geometry. Relations 
among N variables (corresponding to 
hypemurfaces) are mapped into unique regions of 
the plane whose geometrical properties enable the 
visuakation of the corresponding N-dimensional 
hypersurfaces. For example, linear relations cor- 
respond to finite sets of points, tonics map into 
conks and in general smooth hypersurfaces into 
well dehed planar regions. Further, images of 
an N-dimensional object(relation) under projec- 
tive transformation (translations, rotations, scal- 
ing, perspective) correspond to 2-d projective 
transformations. That is, an N-dimensional object 
can be recognized even when transformed in this 
way. “Pencil and paper” constructions of all sorts 
are possible as well as efficient new geometrical 
algorithms. 

The key “global” properties of Parallel Coordi- 
nates, relevant to the visualization issues at hand, 
are summarized below and contrasted with some 
other methodologies: 

0 There is no loss of N-Dimensional information. 
That is, the representation is unambiguous in 
the sense that no two distinct N-D relations 
have the same 2-D image (see the color plates 
at the end for examples of such 2-D patterns). 
By contrast, projections from N-D to lower 
dimensional subspaces lose information. For 
example, the three 2-D projections of a sphere 
of radius R and the surface which is the inter- 
section of 3 cylinders of radius R, properly cen- 
tered, are identical. Hence the two different sur- 
faces can not be distinguished from their 2-D 
scatterplots which are identical. 

l The representational complexity is O(N). By 
contrast, the scatterplot matrix display has com- 
plexity O(N*) and poses severe limitations [of 
time and space) on the size of N that can be 
handled. 

l Every variable is treated in the same way. A 
display where a different representation is used 
for each variable (e.g. as in the mapping of 
variables on attributes of an icon) requires that 
different “tricks” be learned for each variable. 
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Further, if the order of the variables is changed 
(i.e. nose t + eyes in Chemoff faces) the two 
displays for the Same dataset look different and 
their equivalence may not be recognized. 

l The representation is based on rigorous geo- 
metrical foundations. Hence, with some train- 
ing, one can build intuition and accurately 
transform the search for relations among the 
variables into a 2-D pattern recognition prob- 
lem. 

We conclude with the “anti-polemic”: You can 
operate on the picture anyway you want but you 
are not going to find the information inherent& 
lost by the display methodf ([15], [22], [23], [24] 
anti WI) 
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