
Visualizing Vortices in Simulated Air Flow around Bat Wings
during Flight

by

Eduardo Hueso

B.S., Universidad Simon Bolivar
Caracas, Venezuela, 2000

Project

Submitted in partial fulfillment of the requirements for the Degree of Master of Science in the
Department of Computer Science at Brown University

December 2003

Visualizing Vortices in Simulated Air Flow around Bat Wings
during Flight

Eduardo Hueso
Master’s Thesis

Department of Computer Science
Brown University

Providence, RI, 02912

Abstract

We present a case study of our efforts towards building a set of data visualization tools to aid the
understanding of airflow structures involved in the flight of bats. We use two visualization schemes that
involve off-line computation of “interesting” pathlines and streamlines respectively, and an immersive
virtual reality facility, CAVE, for their visualization.
Hussain’s et at vortex region detection technique, λ2 [1] is employed in our line sampling methods to
emphasize vortices in the flow.
Interactive control over emphasis parameters allows users to explore a continuum between localized
and contextual representations of vortices.
Our results, composed by two visualizations applied to a common dataset, lead to a subjective
comparison between the effectiveness of pathlines and streamlines in the representation of vortices.

Keywords: scientific visualization, simulation, bat flight, evolutionary biology, CFD, pathlines,
streamlines

1. Introduction
Dr. Sharon Swartz and her group in the Evolutionary
Biology Department at Brown University have been
studying, for several years now, the mechanics
involved in the flight of bats. One of their goals is to
understand and model the flight of the only flying
mammal. Their approach involves collecting
mechanical data of bat wings such as bone
compositions, membrane mechanical properties,
strain and stress forces and aerodynamics involved
in their flight.
This paper presents a case study of our
interdisciplinary collaboration efforts towards
building a set of tools for visualizing simulated
airflow and its application to the understanding of
the aerodynamics of bat flight.

Sharon and her team captured video of over 40
individuals of 8 different species flying in a wind
tunnel of the Department of Civil Engineering at The
University of Queensland, Brisbane, Australia.
These videos were used to extract the motion data
of wing joints. A motion capture session was
selected; in this case a Pteropus Policephalus was

chosen for its large size and slower motion. We, the
computer science collaborators, constructed an
animated 3D model of the bat’s wings. This model
is handed to Prof. George Karniadakis’s group in
the applied math department who fed it into their
computational fluid dynamics (CFD) simulator,
Nektar. The output of the simulation, scalar and
vector fields describing the airflow around the bat
wings returned to us.
In our efforts to visualize significant structures,
particularly vortices present in the simulated fields,
we developed a visualization system based on pre-
computed flow lines among which pathlines and
streamlines are discussed in this paper.
Interactive control over emphasis parameters
during visualization allows users to explore the
continuum between a contextual representation of
the flow where the whole volume is shown with an
unbiased distribution of flow-lines and a localized
representation where more flow-lines are displayed
in vortex regions.
An immersive virtual reality facility, CAVE [2],
composed of 4 back projected walls in a cubic
layout, with head tracking and stereo display is used
as the primary interface for our visualizations.

2. Motivation
We believe that bats employ unique, extremely
energy efficient aerodynamic mechanisms, unlike
those of any other animals or any human-
engineered craft. Exploring these fluid dynamic
phenomena presents enormous technical
challenges. But, as we solve these problems, we
not only gain insights into the evolution of the only
flying mammals, we may discover novel ways to
think about aircraft design.
Vortices, swirling motion of flow around a core,
have been known and studied by fluid dynamics
specialists as a means to understand important
characteristics of flow. Specifically, vortices are a
manifestation of energy and can be related to the
generation of lift and drag. Additionally,
understanding the vortical structures that exist
around bat wings during flight could help categorize
and compare different flying strategies of bats
under different conditions and among different
species.
The accurate and systematic detection of vortices in
complex flow remains a hard problem. Visualization
techniques allow leveraging the complexity of
human’s vision system to find interesting and even
unexpected flow features like vortices, as well as
discovering the relation between them.

3. Related Work

Vortex region and core detection
Hussain et al [1]. Introduces λ2, a flow descriptor that
takes negative values inside vortex regions. We
used this measure to selectively emphasize flow-
lines that pass through vortices.
Ming Jiang [3] et al. presents a geometric method
for verifying the existence of vortices by seeding
streamlines in the vortex core and analyzing their
swirl. Our streamlines method for showing vortices
is inspired in this idea.

Visualization of time varying flow
data
David Lane [4][5], presents NASA’s approach to
their unsteady flow analysis toolkit (UFAT), he
describes the pre-computation of pathlines,
streamlines and streaklines and recommends
streaklines for the better understanding of unsteady
flow. He also describes the parallelization of a
particle tracer for flow visualization of large datasets
[6]. Inspired in his results we chose to represent
flow data with pre-computed flow-lines.
Jason Sobel et at. [7] Presents a method for
synoptic visualization of pulsatile flow based of the

pre-computation of pathlines in a Poisson disk
time/space distribution, he applied his technique to
the visualization of blood flow in a coronary artery.
Rachel Weinstein [8] presents a case study of
unsteady airflow visualization around still bat wings
during flight. She modeled a still bat and visualized
simulated airflow around it, Rachel’s work was the
first prove of concept in simulation and visualization
of air around bat wings and exposed the main
difficulties of simulating time varying flow on
deforming geometry.

4. Methods

Simulation Data
The data acquisition process that yields the data
used in our visualizations involved several steps
that are worth mentioning. First, a pair of
synchronized, high frequency videos of life bats
flying in a wind tunnel with reflective markers stuck
on to their joints is taken. The Peak [9] motion
capture system is used to extract 3D motion data
from the videos. A full wing beat of data is extracted
and made perfectly cyclic. In order to make the
motion cyclic, the difference between the last and
first frames of the motion is divided by the number
of frames in the cycle and added accumulatively to
every frame of the cycle. Some considerations were
taken to make the seam second order continuous.
After some cleanup and smoothing, the motion data
is used to animate a simple 3D polygonal model of
the surface of the bat’s wings. This model is
constructed by connecting the motion markers with
triangles. The animated polygonal model is the
base for generating a sequence of tetrahedral
meshes of the volume around the wings. A single
tetrahedral mesh can be deformed to fit a number
of frames, typically between 2 and 10 depending of
the rate of deformation. When the deformation of
the mesh becomes too extreme, elements
degenerate and a new tetrahedral mesh needs to
be created. Mesh generator Gridgen [10] with
scripting capabilities was used to generate up to 60
tetrahedral meshes for one wing beat.
These meshes are the input to Nektar [11], Brown’s
proprietary numerical simulator that solves Navier
Stokes equations to obtain unsteady vector and
scalar fields that describe the motion of air around
the animated bat wings. The simulation we used in
our experiments produced 40 time steps of periodic
data that describe a whole wing beat cycle.
Velocity and pressure fields are obtained from the
simulation. Additional data fields, which we call
derived fields, can be computed from them and
stored in Nektar’s mesh structure to take advantage
of its spatial interpolation by polynomial spectral

elements. Some of the derived fields we compute
and use for visualization are vorticity, shear stress,
and λ2 [1].

Datalines
The size and complexity of the raw simulation data
makes it impractical for real-time inspection. Our
approach implements an offline pre-visualization
step where interesting structures get computed
from the flow data.
One of the most common and basic ways of visually
representing fluid flow is through curves. We
developed a general abstraction of a line as a
sequence of points in space or space-time where
each point can hold a number of flow
measurements (e.g., velocity, vorticity, pressure,
lamnda2) of the flow at its location. Sets of data-
lines can be computed and stored in files and then
loaded by the visualization program for real-time
display and interaction.
By varying the time relationship between points on
the lines and the way they are integrated over the
different vector fields we were able to compute
some of the most commonly used flow lines.
For line integration we used the Adams method with
an adaptable dt and a fairly low tolerance for high
accuracy. However, for storage purposes, a
significantly larger dt was used to sample more
coarsely the finely integrated lines.
The computation of datalines is spatially limited to a
user-defined box around the bat. Lines are culled
outside of this box, i.e. no seeds are considered
outside of the box and the integration of a line stops
when it falls out of the box.
For practical reasons, the integration of a line is
also stopped when a user-defined maximum
number of sample points is reached or when the
magnitudes of the vector field drops bellow a given
threshold.

Computing a pathline
A pathline describes the path of a weightless
particle in the flow.
Given a 4D seed point in space-time (x,y,z,t) a line
is integrated backward and forward in time over the
unsteady velocity field. At every step of the
integration the updated velocity field is used. The
forward and backward lines are sampled at a
constant dt and concatenated to make a single one.
The time of the last point computed on the
backward line is stored as the start time of the line.

Computing a streamline
A streamline is a line tangent to the velocity vector
field at a fixed instant in time.

Given a seed point in space-time, a streamline is
computed by integrating forwards over the
instantaneous velocity vector field at the seed’s
time.
Because time remains still we will refer to s as the
parameter along the curve used for integration.
In our algorithm the ds used for sampling
streamlines adapts to make the spatial steps, dx, be
close to a user defined feature size. This way the
spatial sample frequency of streamlines is not
sensitive to magnitude variations on the vector field.

Visualization based on particle
paths
At a high-level, we pre-compute a set of pathlines
that will be used to represent the flow during
visualization. We find this set by choosing a finite
set of 4D seeds, i.e. points in space-time. For some
of these seeds, we’ll discuss which later; pathlines
are computed using the method described in
section 4.2. At run-time, we draw particles at the
start of pathlines (not the seed position) and
animate them until they reach the end of their
pathlines.
A key issue is determining which particle paths
should be pre-computed. Ideally we would want to
find a set such that all flow features are represented
by particles flowing downstream.
The goal that all features be represented requires
that some particle pass through each feature that
could exist. Due to the discretization of the flow
required by computer simulation, a distance, D,
exists below which no further significant features
can exist. In simulations computed using Nektar
[11], D is a function of the polynomial order of
Nektar’s spectral elements and the local density of
mesh elements. In the case of our bat flight flow
dataset the density of elements is higher near the
bat wings and tapers down towards the edges of the
volume. Our ideal goal of capturing all flow features
will be met if a set of pathlines can be computed
such that every point p in space is no further than D
(p) from a point on some pathline. This condition
can always be met by adding additional pathlines to
fill gaps, often at the cost of redundancy in particle
path coverage in other regions.
In time varying flow we need to consider the time
extension of the features we’d like to capture, i.e.
for every point in space-time we want to have at
least one particle closer than D in space at a time
closer than T. The notion of the distance D can be
extended to include time as a fourth dimension.

For simplicity we assume D to be constant within
the whole simulation volume and period.

In order to generate pathline sets of manageable
size for visualization, i.e. pathline sets that fit in
main memory of the visualization system, a limit
needs to be imposed on the number of pathlines in
the set. This means that either the resolution or the
coverage of pathlines might need to be
compromised. Not all regions in the flow contain the
same amount and size of features, giving priority to
certain “interesting” regions allows for a more
efficient use of the pathline budget within the
volume.
In our system, a list of potential seed points is
collected and a subset containing the ones in
“interesting” regions is used to compute pathlines.
We identify vortical regions in the flow by measuring
λ2 [1], a flow descriptor that takes negative values
inside vortex regions.

Generating seeds for pathlines
A descriptor of the flow, s, is sampled at fixed
intervals of x, y, z and time at a relatively high
resolution. A list with the sampled 5D points (x, y, z,
t, s) is held in memory and sorted by s.

Computing particle paths from a list
of seeds
A 4D grid is used to segment space-time. The
resolution for each dimension of the grid is specified
independently by the user and responds to the
desired value of D. Grid cells can be marked as
visited. Initially all cells are unmarked. When a
pathline is computed all the grid cells it passes
through get marked as visited.
The list of sorted seeds is traversed and for each
seed the grid cell it falls in is determined. If the grid
cell is not already marked as visited a pathline is
computed from that seed, otherwise, the seed is
skipped. The algorithm finishes when all grid cells
are marked as visited, when the seeds are all
consumed or when the maximum number of
pathlines allowed is reached.

Data interface
Note that our algorithm for computing pathline sets
uses the previously computed pathlines to decide if
a seed is used or skipped. Because pathlines
typically traverse the whole simulation period,
generating them in sequential order requires
random access in the temporal dimension of the
data, i.e. all time-steps of data need to be available.
Our data interface handles this even in cases where
the data is larger than the 2GB addressing
capability of a 32-bit process. The way this is done
is by loading each time step in a separate process.

These processes can potentially be in different
machines. A main process receives the data
requests and uses a socket to communicate with
the appropriate child process to obtain the data.
Even when distributed through different machines,
this scheme for data access is faster than having to
load and unload full time-steps of data from disk
repeated times.

Displaying Particle Paths
Particles are released at the upstream side of the
simulated volume and advected along the pre-
computed pathlines.
Particles are released at a self-adaptable rate that
keeps the total number of particles in the flow
constant. Particles die when they get to the end of
their associated pathlines and that triggers the
creation of new ones. A pathline longer than the
simulation time period can carry more than one
particle separated by the simulation period. When
rendering a frame at time t during the visualization,
the number of new particles that need to be
released is computed as the max number of
particles allowed in the flow minus the number of
existent ones. For every new particle, a pathline
with start time near the current time needs to be
selected from the pathline set. By choosing
pathlines with start time near the current time we
are forcing new particles to start flowing at the
upstream end of the flow.

Selection of pathlines
Pathlines in a set get sorted by their min, max or
average value of some flow measure along them.
For example, we sampled λ2 at every point on every
pathline and stored it with it. During visualization we
find the point with min λ2 on each line and sort the
list of lines in increasing order according to this min
value. A randomness factor is used to determine
how many of the pathlines used to drive particles
during visualization are taken from the head of the
list and how many are taken at random from
anywhere in the list.
A randomness of zero means that particles are
released on pathlines in the order in which they
appear in the sorted list. This technique allows
prioritizing the use of pathlines according to flow
properties. A randomized selection of pathlines
gives a more synoptic view of the pathline set.

Particle eels
In our system particles can be rendered in two
different ways, which we call eels and snow.
Eels are displayed as motion blurred
semitransparent lines. The GL_LINE primitive is
used to draw them. The center of an eel, which

represents the position of the particle at the current
time, is drawn with maximum opacity. The eel fades
to transparent further from the center as it
represents past or future times. The user can
control the extent of the motion blur interactively to
make longer or shorter eels.
Eel color and transparency can be mapped to flow
measures previously sampled and stored with the
pathline set.

Snow
The GL_POINT primitive is used to draw simple
white dots that represent particles as snowflakes.
The graphical simplicity of this representation allows
drawing a lot more snowflakes than eels.

Color mapping
Both color and transparency can be mapped to a
descriptor of the flow along the pathline.
Two extreme colors, min_color and max_color, are
defined in a configuration file. Two data values,
min_map_value and max_map_value are controlled
interactively by the user. The color of a particle is
computed as a linear interpolation between
min_color and max_color that depends on the data
value.

Transparency is mapped independently and can be
mapped to a different flow descriptor. The mapping
equation is the same as in color mapping. In this
case, the values of min and max transparency are
fixed to 0.0 and 1.0 respectively.
The user has interactive control over the size of the
mapping window, max_map_val – min_map_val,
and the center of the window, min_map_val +
(max_map_val – min_map_val / 2.0)

Visualization based on streamline
sequences
A streamline in unsteady flow exists for an instant in
time only. When used in a time varying
visualization, a coherent sequence of lines should
be displayed such that the user gets the impression
of a single line that is deforming with the flow. We’ll
refer to such a sequence as a streamline sequence.
To prevent lines from appearing and disappearing
in an erratic way during visualization, for a given
seed in space we compute a streamline sequence
that covers the whole simulation period. In pro of
temporal coherence the number of streamlines
computed to produce the sequence is normally
greater than the number of time-steps in the data.
Linear interpolation is used to compute intermediate
vector fields. In general, we try to display a
minimum of 15 lines per second. Based on the
assumption that the speed of the visualization is

never set to less than a quarter of the original
simulation speed we pre-compute up to 60
streamlines per second of simulation.
A 4D seed in space-time is used for each
streamline in a streamline sequence, we’ll refer to
this set of seeds as a seed sequence.

Generating seeds for streamlines
A descriptor of the flow, s, is sampled at fixed
intervals of x, y, z and time at a relatively high
resolution. The best value in time is recorded for
every point in space creating a 4D spatial seed of
the form (x,y,z,s) where s is the best value found in
time at point [x,y,z]. After covering the whole
volume the seeds are sorted by s.

Computing streamlines from a list of
seeds
Analogous to pathlines, each streamline marks
volume cells in a 4D grid. A whole sequence of
streamlines is computed if at least one cell in the
time dimension of the spatial seed is not marked as
visited.

Displaying Streamlines
Streamlines are represented with GL_Lines
connecting the sample points. Their color and alpha
can be mapped to any pre-sampled flow measure
that was stored with the line. Line sequences are
displayed throughout the whole simulation period.

Selection of streamline sequences
Sequences of streamlines are sorted by their min,
max or average value of s at their seed. The same
selection method used for pathlines is used to
select the streamlines that will be displayed during
visualization.

Visual properties of streamlines (kelp)
Streamlines are drawn using anti-aliased GLLines.
Their color and transparency can be mapped to any
flow data value.

5. Results and discussion
We used our system to generate two different
visualizations of the same simulation, one based on
pathlines and the other based of streamlines.

Simulation
The simulation data used came from solving Navier
Stokes equations on uncompressible fluid using an
unstructured tetrahedral mesh. The flow’s main
velocity is approximately the one used in the wind
tunnel during live capture.
A single periodic wing beat was simulated at
Reynolds number = 10 producing 40 time-steps of
unsteady flow data.

Particles in vortex regions
The number of pre-computed pathlines is such that
the size of the dataset is roughly 400 MB. This is
the RAM capacity of our lower end visualization
machines. Pathlines are sorted by λ2.

Seed sampling resolution: (30 x 10 x 30 x 40)
Pathline grid resolution: (30 x 10 x 30 x 40)
Line sampling dt: 0.01875
Number of lines: (30 x 10 x 30 x 40)
A reasonable resolution for the temporal dimension
of the grid is one that matches the time
discretization of the data.
In order to create a pathline set that covers the
whole volume, we made the max number of lines
match the number of grid cells used by the
algorithm. This guarantees that no grid cells are left
unvisited.
Both color and alpha are mapped to λ2. Lower λ2

values are represented with red particles whereas
higher λ2 is represented with blue particles.

figure 1

figure 2

The visual simplicity of snowflakes makes the time
varying visualization particularly easy to read and
pleasant to watch. Small points are fast to render
and allow a higher density of them at smooth frame
rates giving a better coverage of the volume.

Particle paths seeded at low λ2 regions are
clustered around vortices in space and time. These
recognizable clusters flow downstream and become
the signatures of vortices in the wake. This wake
structure prevails even after the vortices die. This
effect is noticeable when displaying only those
particles that pass through low λ2 regions.
Random selection of pathlines, on the other hand,
can be used to avoid patterns in the distribution of
particles introduced by periodic selection of
pathlines.

Both visual cluttering and performance of the
graphics subsystem limit the number of particles
that can be displayed simultaneously. Using random
selection of pathlines allows a user to trade space
and frame rate for time. By displaying fewer
particles but waiting longer the user eventually gets
to see all existent paths in an uncluttered and
smooth visualization.
By adjusting the randomness and transparency
interactively and changing the sort criterion for
pathlines the user can shift the focus of the
visualization and find the right balance between
emphatic and synoptic representation of the flow.

Streamlines in vortex regions
We used a localized seeding of streamlines in low
λ2 regions to show vortices.
Streamlines are integrated downstream only
assuming that their seeds are at the beginning of
interesting flow structures that extend downstream.
The main goal in this approach is to capture swirling
motion around a vortex core.
In visualization, both color and transparency get
mapped to λ2 values. Lines are drawn yellow and
opaque in low λ2 regions an turn red and
transparent in higher λ2 regions. The seed points of
streamlines are represented with white dots.

figure 3

Discussion
Particles, when seeded at low λ2 regions, work well
at capturing the signature of vortices in the wake.
Streamlines, on the other hand, show the
instantaneous structure of the vortices but have no
information about their history. In this sense, the
two visualizations complement each other.
Our visualizations combine velocity information,
intrinsic in pathlines and streamlines, with λ2 to
emphasize vortices. We believe that, by combining
these two data attributes in an intuitive way, our
visualizations may be able to tell more about
vortices than iso-surfaces of λ2. Additionally, being
velocity the quantity scientists are more comfortable
with, it provides a link to understanding λ2, which is
a less intuitive measure of flow.
By using transparency and randomness to smoothly
fade out contextual information of the interesting
features we produce soft representations of the
features that can also be related smoothly to their
spatial and temporal context. These characteristics
of our visualizations together with interactive control
over the emphasis parameters, and immersive VR
displays, provide an appropriate and comfortable
environment for free exploration of the data. We
believe that our fuzzy representations of flow data

present certain advantages over sharper feature
representations like isosurfaces and isocurves.
Particularly, they represent more contextual
information and don’t force the user to limit their
understanding to isolated features.
It’s important to keep in mind that the simulation
used to produce the data shown in this paper is of
incompressible flow at Reynolds number of 10 (Re
= 10). We hypothesize that many of the effective
properties of our visualizations will extend to new
datasets at higher Re, however, we do expect some
difficulties in representing fast moving vortices with
sequences of streamlines.

6. Conclusions
We used a volume filling technique that guaranties
distribution of flow lines that covers the whole
simulated volume at a given resolution with low
redundancy.

By randomly selecting sets of flow lines over time
we eventually show all possible features in the flow
without clutter or distracting patterns.
Flow descriptors like λ2 can be used to emphasize
interesting regions. By sorting flow lines and
providing control over the amount of randomness
used in their selection during visualization, we give
the user continuous control over the degree of
emphasis.
Interactive control over emphasis parameters, like
transparency and randomness allow the user to
balance the ratio of contextual to localized
information. Using λ2 in combination with velocity,
implicit in streamlines and pathlines, conveys more
information than iso-surfaces of λ2 on their own.
We believe that immersiveness, stereoscopic
vision, peripheral vision, body centered navigation
and large-scale displays are attributes of our
immersive virtual reality facility, CAVE, which help
significantly in the exploration of time varying flow
data.

Figure 1: Particle eels are used to display pathlines. a, b and c show variations of randomness in the selection of
pathlines, 1.0, 0.15 and 0.0 respectively.

Figure 2: Vortices are shown by streamlines seeded at low λ2 regions. a, b, c show variations of the transparency
mapping window.

Figure 3: White dots, “snow flakes”, are used to represent particles at low λ2, regions. Zero randomness
emphasizes pathlines that pass through vortices.

References
[1] J. Jeong and F. Hussain. "On the Identification of a Vortex", J. Fluid Mechanics, Vol. 285, pp. 69--94, 1995.
[2] Cruz-Neira C., D. J. Sandin and T. A. DeFanti, "Surround Screen Projection-Based Virtual Reality: The Design
and Implementation of the CAVE", Computer Graphics, SIGGRAPH Annual Conference Proceedings, 1993.
[3] M. Jiang, R. Machiraju, and D. Thompson, "Geometric Verification of Swirling Features in Flow Fields,"
Proceedings of IEEE Visualization 2002, Boston, MA, October 2002
[4] M. Nielson, Hans Hagan, and Heinrich Muller, editors, Los Alamitos, CA, 1997, Scientific Visualization -
Overviews, Methodologies and Techniques, Chapter 5, Scientific Visualization of Large-Scale Unsteady Fluid
Flows by David A. Lane, pages 111-133.
[5] D. Lane. Scientific visualization of large scale unsteady fluid flow. In Scientific Visualization Surveys,
Methodologies and Techniques, pages 125--145. IEEE Computer Society Press, 1996.
[6] David A. Lane. Parallelizing a particle tracer for flow visualization. Technical Report RND-94-011, Numerical
Aerospace Simulation Facility (NAS), NASA Ames Research Center, Moffet Field, CA, 1994.
[7] Jason Sobel, Andrew Forsberg, David H. Laidlaw, Robert Zeleznik, Daniel Keefe, Igor Pivkin, George
Karniadakis, and Peter Richardson. Particle flurries: a case study of synoptic 3d pulsatile flow visualization.
unpublished (pdf) (bibtex: Sobel-2002-PFC), November 2002
[8] Rachel Weinstein, Igor Pivkin, Sharon Swartz, David H. Laidlaw, George Karniadakis, and K. Breuer. Simulation
and visualization of air flow around bat wings during flight. unpublished (pdf) (bibtex: Weinstein-2002-SAV), August
2002.
[9] Peak Performance, http://www.peakperform.com/
[10] Gridgen, http://www.pointwise.com/gridgen/
[11] Nektar, http://www.cfm.brown.edu/crunch/projects.html

This project by Eduardo Hueso

is accepted in its present form by the Department of

Computer Science as satisfying the

requirement for the degree of Master of Science

Date_______________ ___________________
 Prof. David Laidlaw

