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Abstract

We present a case study of our efforts towards building a set of data visualization tools to aid the
understanding of airflow structures involved in the flight of bats. We use two visualization schemes that
involve off-line computation of “interesting” pathlines and streamlines respectively, and an immersive
virtual reality facility, CAVE, for their visualization.
Hussain’s et at vortex region detection technique, λ2 [1] is employed in our line sampling methods to
emphasize vortices in the flow.
Interactive control over emphasis parameters allows users to explore a continuum between localized
and contextual representations of vortices.
Our results, composed by two visualizations applied to a common dataset, lead to a subjective
comparison between the effectiveness of pathlines and streamlines in the representation of vortices.
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streamlines 

1. Introduction
Dr. Sharon Swartz and her group in the Evolutionary
Biology Department at Brown University have been
studying,  for  several  years  now,  the  mechanics
involved in the flight of bats. One of their goals is to
understand and model the flight  of  the only flying
mammal.  Their  approach  involves  collecting
mechanical  data  of  bat  wings  such  as  bone
compositions,  membrane  mechanical  properties,
strain and stress forces and aerodynamics involved
in their flight. 
This  paper  presents  a  case  study  of  our
interdisciplinary  collaboration  efforts  towards
building  a  set  of  tools  for  visualizing  simulated
airflow and its application to the understanding of
the aerodynamics of bat flight. 

Sharon  and  her  team  captured  video  of  over  40
individuals  of  8  different  species  flying  in  a  wind
tunnel of the Department of Civil Engineering at The
University  of  Queensland,  Brisbane,  Australia.
These videos were used to extract the motion data
of  wing  joints.  A  motion  capture  session  was
selected; in this case a Pteropus Policephalus was

chosen for its large size and slower motion. We, the
computer  science  collaborators,  constructed  an
animated 3D model of the bat’s wings. This model
is  handed to Prof.  George Karniadakis’s  group in
the applied math department  who fed it  into their
computational  fluid  dynamics  (CFD)  simulator,
Nektar.  The  output  of  the  simulation,  scalar  and
vector fields describing the airflow around the bat
wings returned to us.
In  our  efforts  to  visualize  significant  structures,
particularly vortices present in the simulated fields,
we developed a visualization system based on pre-
computed  flow  lines  among  which  pathlines  and
streamlines are discussed in this paper.
Interactive  control  over  emphasis  parameters
during  visualization  allows  users  to  explore  the
continuum between a contextual representation of
the flow where the whole volume is shown with an
unbiased  distribution  of  flow-lines and  a  localized
representation where more flow-lines are displayed
in vortex regions.
An  immersive  virtual  reality  facility,  CAVE  [2],
composed  of  4  back  projected  walls  in  a  cubic
layout, with head tracking and stereo display is used
as the primary interface for our visualizations. 



2. Motivation
We  believe  that  bats  employ  unique,  extremely
energy  efficient  aerodynamic  mechanisms,  unlike
those  of  any  other  animals  or  any  human-
engineered  craft.  Exploring  these  fluid  dynamic
phenomena  presents  enormous  technical
challenges.  But, as we solve these problems, we
not only gain insights into the evolution of the only
flying mammals,  we  may discover  novel  ways  to
think about aircraft design.
Vortices,  swirling  motion  of  flow  around  a  core,
have  been  known  and  studied  by fluid  dynamics
specialists  as  a  means  to  understand  important
characteristics  of  flow. Specifically,  vortices  are  a
manifestation of energy and can be related to the
generation  of  lift  and  drag.  Additionally,
understanding  the  vortical  structures  that  exist
around bat wings during flight could help categorize
and  compare  different  flying  strategies  of  bats
under  different  conditions  and  among  different
species. 
The accurate and systematic detection of vortices in
complex flow remains a hard problem. Visualization
techniques  allow  leveraging  the  complexity  of
human’s vision system to find interesting and even
unexpected flow features like  vortices,  as  well  as
discovering the relation between them.

3. Related Work

Vortex region and core detection
Hussain et al [1]. Introduces λ2, a flow descriptor that
takes  negative  values  inside  vortex  regions.  We
used this  measure  to  selectively emphasize flow-
lines that pass through vortices. 
Ming Jiang [3] et al. presents a geometric method
for  verifying  the  existence  of  vortices  by seeding
streamlines in the vortex  core and analyzing their
swirl. Our streamlines method for showing vortices
is inspired in this idea. 

Visualization of time varying flow
data
David  Lane  [4][5],  presents  NASA’s  approach  to
their  unsteady  flow  analysis  toolkit  (UFAT),  he
describes  the  pre-computation  of  pathlines,
streamlines  and  streaklines  and  recommends
streaklines for the better understanding of unsteady
flow.  He  also  describes  the  parallelization  of  a
particle tracer for flow visualization of large datasets
[6].  Inspired  in  his  results  we chose  to  represent
flow data with pre-computed flow-lines.
Jason  Sobel  et  at.  [7]  Presents  a  method  for
synoptic visualization of pulsatile flow based of the

pre-computation  of  pathlines  in  a  Poisson  disk
time/space distribution, he applied his technique to
the visualization of blood flow in a coronary artery.
Rachel  Weinstein  [8]  presents  a  case  study  of
unsteady airflow visualization around still bat wings
during flight. She modeled a still bat and visualized
simulated airflow around it, Rachel’s work was the
first prove of concept in simulation and visualization
of  air  around  bat  wings  and  exposed  the  main
difficulties  of  simulating  time  varying  flow  on
deforming geometry. 

4. Methods

Simulation Data
The  data  acquisition  process  that  yields  the  data
used  in  our  visualizations  involved  several  steps
that  are  worth  mentioning.  First,  a  pair  of
synchronized,  high  frequency  videos  of  life  bats
flying in a wind tunnel with reflective markers stuck
on  to  their  joints  is  taken.  The  Peak  [9]  motion
capture system is used to extract 3D motion data
from the videos. A full wing beat of data is extracted
and  made  perfectly  cyclic.  In  order  to  make  the
motion cyclic,  the difference between the last and
first frames of the motion is divided by the number
of frames in the cycle and added accumulatively to
every frame of the cycle. Some considerations were
taken to make the seam second order continuous.
After some cleanup and smoothing, the motion data
is used to animate a simple 3D polygonal model of
the  surface  of  the  bat’s  wings.  This  model  is
constructed by connecting the motion markers with
triangles.  The  animated  polygonal  model  is  the
base  for  generating  a  sequence  of  tetrahedral
meshes of the volume around the wings. A single
tetrahedral mesh can be deformed to fit a number
of frames, typically between 2 and 10 depending of
the rate of  deformation.  When the deformation of
the  mesh  becomes  too  extreme,  elements
degenerate and a new tetrahedral mesh needs to
be  created.  Mesh  generator  Gridgen  [10]  with
scripting capabilities was used to generate up to 60
tetrahedral meshes for one wing beat. 
These meshes are the input to Nektar [11], Brown’s
proprietary numerical  simulator  that  solves Navier
Stokes  equations  to  obtain  unsteady  vector  and
scalar fields that describe the motion of air around
the animated bat wings. The simulation we used in
our experiments produced 40 time steps of periodic
data that describe a whole wing beat cycle.
Velocity and pressure fields are obtained from the
simulation.  Additional  data  fields,  which  we  call
derived  fields,  can  be  computed  from  them  and
stored in Nektar’s mesh structure to take advantage
of  its  spatial  interpolation  by  polynomial  spectral



elements. Some of the derived fields we compute
and use for visualization are vorticity, shear stress,
and λ2 [1]. 

Datalines 
The size and complexity of the raw simulation data
makes  it  impractical  for  real-time  inspection.  Our
approach  implements  an  offline  pre-visualization
step  where  interesting  structures  get  computed
from the flow data. 
One of the most common and basic ways of visually
representing  fluid  flow  is  through  curves.  We
developed  a  general  abstraction  of  a  line  as  a
sequence of points in space or space-time where
each  point  can  hold  a  number  of  flow
measurements  (e.g.,  velocity,  vorticity,  pressure,
lamnda2) of  the flow at  its location.  Sets of  data-
lines can be computed and stored in files and then
loaded  by  the  visualization  program  for  real-time
display and interaction.
By varying the time relationship between points on
the lines and the way they are integrated over the
different  vector  fields  we  were  able  to  compute
some of the most commonly used flow lines. 
For line integration we used the Adams method with
an adaptable  dt and a fairly low tolerance for high
accuracy.  However,  for  storage  purposes,  a
significantly  larger  dt was  used  to  sample  more
coarsely the finely integrated lines. 
The computation of datalines is spatially limited to a
user-defined box around the bat.  Lines are culled
outside of  this  box,  i.e.  no seeds  are  considered
outside of the box and the integration of a line stops
when it falls out of the box.
For  practical  reasons,  the  integration  of  a  line  is
also  stopped  when  a  user-defined  maximum
number  of  sample points  is  reached or when the
magnitudes of the vector field drops bellow a given
threshold.

Computing a pathline
A  pathline  describes  the  path  of  a  weightless
particle in the flow.
Given a 4D seed point in space-time (x,y,z,t ) a line
is integrated backward and forward in time over the
unsteady  velocity  field.  At  every  step  of  the
integration the updated velocity field is used.  The
forward  and  backward  lines  are  sampled  at  a
constant dt and concatenated to make a single one.
The  time  of  the  last  point  computed  on  the
backward line is stored as the start time of the line.

Computing a streamline
A streamline is a line tangent to the velocity vector
field at a fixed instant in time.

Given a seed point in space-time, a streamline is
computed  by  integrating  forwards  over  the
instantaneous  velocity  vector  field  at  the  seed’s
time. 
Because time remains still we will refer to s as the
parameter along the curve used for integration. 
In  our  algorithm  the  ds used  for  sampling
streamlines adapts to make the spatial steps, dx, be
close to a user defined feature size. This way the
spatial  sample  frequency  of  streamlines  is  not
sensitive to magnitude variations on the vector field.

Visualization  based  on  particle
paths
At a high-level, we pre-compute a set of pathlines
that  will  be  used  to  represent  the  flow  during
visualization. We  find this set by choosing a finite
set of 4D seeds, i.e. points in space-time. For some
of these seeds, we’ll discuss which later; pathlines
are  computed  using  the  method  described  in
section 4.2.  At  run-time,  we draw particles  at  the
start  of  pathlines  (not  the  seed  position)  and
animate  them  until  they  reach  the  end  of  their
pathlines.
A  key  issue  is  determining  which  particle  paths
should be pre-computed. Ideally we would want to
find a set such that all flow features are represented
by particles flowing downstream. 
The goal that all features be represented requires
that  some particle pass through each feature that
could  exist.  Due  to  the  discretization  of  the  flow
required  by  computer  simulation,  a  distance,  D,
exists  below which  no  further  significant  features
can  exist.  In  simulations  computed  using  Nektar
[11],  D  is  a  function  of  the  polynomial  order  of
Nektar’s spectral elements and the local density of
mesh elements.  In the case of  our bat  flight  flow
dataset the density of elements is higher near the
bat wings and tapers down towards the edges of the
volume. Our ideal goal of capturing all flow features
will be met if  a set of  pathlines can be computed
such that every point p in space is no further than D
(p)  from a point  on some pathline.  This  condition
can always be met by adding additional pathlines to
fill gaps, often at the cost of redundancy in particle
path coverage in other regions. 
In time varying flow we need to consider the time
extension of the features we’d like to capture, i.e.
for  every point  in  space-time we want to have at
least one particle closer than  D in space at a time
closer than T. The notion of the distance D can be
extended to include time as a fourth dimension.  

For simplicity we assume  D  to be constant within
the whole simulation volume and period. 



In order to generate pathline sets of  manageable
size  for  visualization,  i.e.  pathline  sets  that  fit  in
main  memory  of  the  visualization  system,  a  limit
needs to be imposed on the number of pathlines in
the set. This means that either the resolution or the
coverage  of  pathlines  might  need  to  be
compromised. Not all regions in the flow contain the
same amount and size of features, giving priority to
certain  “interesting”  regions  allows  for  a  more
efficient  use  of  the  pathline  budget  within  the
volume. 
In  our  system,  a  list  of  potential  seed  points  is
collected  and  a  subset  containing  the  ones  in
“interesting” regions is used to compute pathlines.
We identify vortical regions in the flow by measuring
λ2 [1], a flow descriptor that takes negative values
inside vortex regions. 

Generating seeds for pathlines
A  descriptor  of  the  flow,  s,  is  sampled  at  fixed
intervals  of  x,  y,  z and  time  at  a  relatively  high
resolution. A list with the sampled 5D points (x, y, z,
t, s) is held in memory and sorted by s.

Computing particle paths from a list
of seeds
A  4D  grid  is  used  to  segment  space-time.  The
resolution for each dimension of the grid is specified
independently  by  the  user  and  responds  to  the
desired value of  D.  Grid  cells  can be marked  as
visited.  Initially  all  cells  are  unmarked.  When  a
pathline  is  computed  all  the  grid  cells  it  passes
through get marked as visited.
The list of sorted seeds is traversed and for each
seed the grid cell it falls in is determined. If the grid
cell  is  not  already marked as visited a pathline is
computed  from  that  seed,  otherwise,  the  seed  is
skipped. The algorithm finishes when all grid cells
are  marked  as  visited,  when  the  seeds  are  all
consumed  or  when  the  maximum  number  of
pathlines allowed is reached.

Data interface
Note that our algorithm for computing pathline sets
uses the previously computed pathlines to decide if
a  seed  is  used  or  skipped.  Because  pathlines
typically  traverse  the  whole  simulation  period,
generating  them  in  sequential  order  requires
random access  in  the  temporal  dimension of  the
data, i.e. all time-steps of data need to be available.
Our data interface handles this even in cases where
the  data  is  larger  than  the  2GB  addressing
capability of a 32-bit process. The way this is done
is by loading each time step in a separate process.

These  processes  can  potentially  be  in  different
machines.  A  main  process  receives  the  data
requests  and uses a socket  to communicate with
the  appropriate  child  process  to  obtain  the  data.
Even when distributed through different machines,
this scheme for data access is faster than having to
load and unload full  time-steps of  data  from disk
repeated times. 

Displaying Particle Paths
Particles are released at the upstream side of the
simulated  volume  and  advected  along  the  pre-
computed pathlines. 
Particles are released at a self-adaptable rate that
keeps  the  total  number  of  particles  in  the  flow
constant. Particles die when they get to the end of
their  associated  pathlines  and  that  triggers  the
creation  of  new ones.  A pathline  longer  than  the
simulation  time  period  can  carry  more  than  one
particle separated by the simulation period. When
rendering a frame at time t during the visualization,
the  number  of  new  particles  that  need  to  be
released  is  computed  as  the  max  number  of
particles allowed in the flow minus the number of
existent  ones.  For  every  new  particle,  a  pathline
with start  time near  the current  time needs to be
selected  from  the  pathline  set.  By  choosing
pathlines with start  time near the current time we
are  forcing  new  particles  to  start  flowing  at  the
upstream end of the flow. 

Selection of pathlines
Pathlines in a set get sorted by their  min, max or
average value of some flow measure along them.
For example, we sampled λ2 at every point on every
pathline and stored it with it. During visualization we
find the point with min λ2 on each line and sort the
list of lines in increasing order according to this min
value.  A randomness  factor  is  used to  determine
how many of the pathlines used to drive particles
during visualization are taken from the head of the
list  and  how  many  are  taken  at  random  from
anywhere in the list. 
A  randomness  of  zero  means  that  particles  are
released  on  pathlines  in  the  order  in  which  they
appear  in  the  sorted  list.  This  technique  allows
prioritizing  the  use  of  pathlines  according  to  flow
properties.  A  randomized  selection  of  pathlines
gives a more synoptic view of the pathline set.

Particle eels 
In  our  system  particles  can  be  rendered  in  two
different ways, which we call eels and snow.
Eels  are  displayed  as  motion  blurred
semitransparent  lines.  The  GL_LINE  primitive  is
used  to  draw them.  The  center  of  an  eel,  which



represents the position of the particle at the current
time, is drawn with maximum opacity. The eel fades
to  transparent  further  from  the  center  as  it
represents  past  or  future  times.  The  user  can
control the extent of the motion blur interactively to
make longer or shorter eels.
Eel color and transparency can be mapped to flow
measures previously sampled and stored with the
pathline set. 

Snow
The  GL_POINT  primitive  is  used  to  draw simple
white dots  that  represent  particles  as snowflakes.
The graphical simplicity of this representation allows
drawing a lot more snowflakes than eels. 

Color mapping
Both color and transparency can be mapped to a
descriptor of the flow along the pathline. 
Two extreme colors, min_color and max_color, are
defined in a configuration file. Two data values,
min_map_value and max_map_value are controlled
interactively by the user. The color of a particle is
computed as a linear interpolation between
min_color and max_color that depends on the data
value.

Transparency is mapped independently and can be
mapped to a different flow descriptor. The mapping
equation is the same as in color  mapping. In this
case, the values of min and max transparency are
fixed to 0.0 and 1.0 respectively.
The user has interactive control over the size of the
mapping  window,  max_map_val  –  min_map_val,
and  the  center  of  the  window,  min_map_val  +
(max_map_val – min_map_val / 2.0) 

Visualization based on streamline
sequences
A streamline in unsteady flow exists for an instant in
time  only.  When  used  in  a  time  varying
visualization, a coherent sequence of lines should
be displayed such that the user gets the impression
of a single line that is deforming with the flow. We’ll
refer to such a sequence as a streamline sequence.
To prevent lines from appearing and disappearing
in  an  erratic  way during  visualization,  for  a  given
seed in space we compute a  streamline sequence
that  covers the whole simulation period. In pro of
temporal  coherence  the  number  of  streamlines
computed  to  produce  the  sequence  is  normally
greater than the number of time-steps in the data.
Linear interpolation is used to compute intermediate
vector  fields.  In  general,  we  try  to  display  a
minimum  of  15  lines  per  second.  Based  on  the
assumption  that  the  speed  of  the  visualization  is

never  set  to  less  than  a  quarter  of  the  original
simulation  speed  we  pre-compute  up  to  60
streamlines per second of simulation.  
A  4D  seed  in  space-time  is  used  for  each
streamline in a  streamline sequence, we’ll refer to
this set of seeds as a seed sequence. 

Generating seeds for streamlines
A  descriptor  of  the  flow,  s,  is  sampled  at  fixed
intervals  of  x,  y,  z and  time  at  a  relatively  high
resolution.  The best  value in time is  recorded for
every point in space creating a 4D spatial seed of
the form (x,y,z,s) where s is the best value found in
time  at  point  [x,y,z].  After  covering  the  whole
volume the seeds are sorted by s. 

Computing streamlines from a list of
seeds
Analogous  to  pathlines,  each  streamline  marks
volume  cells  in  a  4D  grid.  A  whole  sequence  of
streamlines is computed if  at least one cell  in the
time dimension of the spatial seed is not marked as
visited. 

Displaying Streamlines
Streamlines  are  represented  with  GL_Lines
connecting the sample points. Their color and alpha
can be mapped to any pre-sampled flow measure
that was stored with the line. Line sequences are
displayed throughout the whole simulation period. 

Selection of streamline sequences
Sequences of streamlines are sorted by their min,
max or average value of s at their seed. The same
selection  method  used  for  pathlines  is  used  to
select the streamlines that will be displayed during
visualization. 

Visual properties of streamlines (kelp)
Streamlines are drawn using anti-aliased GLLines.
Their color and transparency can be mapped to any
flow data value.

5. Results and discussion
We  used  our  system  to  generate  two  different
visualizations of the same simulation, one based on
pathlines and the other based of streamlines. 



Simulation
The simulation data used came from solving Navier
Stokes equations on uncompressible fluid using an
unstructured tetrahedral mesh. The flow’s main
velocity is approximately the one used in the wind
tunnel during live capture.
A single periodic wing beat was simulated at
Reynolds number = 10 producing 40 time-steps of
unsteady flow data.

Particles in vortex regions
The number of pre-computed pathlines is such that
the size of the dataset is roughly 400 MB. This is
the  RAM  capacity  of  our  lower  end  visualization
machines. Pathlines are sorted by λ2.

Seed sampling resolution: (30 x 10 x 30 x 40)
Pathline grid resolution: (30 x 10 x 30 x 40)
Line sampling dt: 0.01875
Number of lines: (30 x 10 x 30 x 40)
A reasonable resolution for the temporal dimension
of  the  grid  is  one  that  matches  the  time
discretization of the data. 
In  order  to  create  a  pathline  set  that  covers  the
whole volume, we made the max number of lines
match  the  number  of  grid  cells  used  by  the
algorithm. This guarantees that no grid cells are left
unvisited.
Both color  and alpha are mapped to λ2.  Lower λ2

values are represented with red particles whereas
higher λ2 is represented with blue particles. 

figure 1

figure 2

The visual simplicity of snowflakes makes the time
varying visualization particularly easy to  read  and
pleasant to watch. Small points are fast  to render
and allow a higher density of them at smooth frame
rates giving a better coverage of the volume.

Particle  paths  seeded  at  low  λ2 regions  are
clustered around vortices in space and time. These
recognizable clusters flow downstream and become
the signatures of vortices in the wake.  This wake
structure prevails even after the vortices die. This
effect  is  noticeable  when  displaying  only  those
particles that pass through low λ2 regions.
Random selection of pathlines, on the other hand,
can be used to avoid patterns in the distribution of
particles  introduced  by  periodic  selection  of
pathlines.   

Both  visual  cluttering  and  performance  of  the
graphics  subsystem  limit  the  number  of  particles
that can be displayed simultaneously. Using random
selection of pathlines allows a user to trade space
and  frame  rate  for  time.  By  displaying  fewer
particles but waiting longer the user eventually gets
to  see  all  existent  paths  in  an  uncluttered  and
smooth visualization. 
By  adjusting  the  randomness  and  transparency
interactively  and  changing  the  sort  criterion  for
pathlines  the  user  can  shift  the  focus  of  the
visualization  and  find  the  right  balance  between
emphatic and synoptic representation of the flow. 

Streamlines in vortex regions
We used a localized seeding of streamlines in low
λ2 regions to show vortices. 
Streamlines  are  integrated  downstream  only
assuming that their  seeds are at the beginning of
interesting flow structures that extend downstream.
The main goal in this approach is to capture swirling
motion around a vortex core. 
In  visualization,  both  color  and  transparency  get
mapped to λ2 values. Lines are drawn yellow and
opaque  in  low  λ2 regions  an  turn  red  and
transparent in higher λ2 regions. The seed points of
streamlines are represented with white dots.

figure 3 

Discussion 
Particles, when seeded at low λ2 regions, work well
at capturing the signature of vortices in the wake.
Streamlines,  on  the  other  hand,  show  the
instantaneous structure of the vortices but have no
information about their  history.  In this sense, the
two visualizations complement each other.
Our  visualizations  combine  velocity  information,
intrinsic  in  pathlines  and  streamlines,  with  λ2 to
emphasize vortices. We believe that, by combining
these  two  data  attributes  in  an  intuitive  way,  our
visualizations  may  be  able  to  tell  more  about
vortices than iso-surfaces of λ2. Additionally, being
velocity the quantity scientists are more comfortable
with, it provides a link to understanding λ2, which is
a less intuitive measure of flow.
By using transparency and randomness to smoothly
fade  out  contextual  information  of  the  interesting
features  we  produce  soft  representations  of  the
features that can also be related smoothly to their
spatial and temporal context. These characteristics
of our visualizations together with interactive control
over the emphasis parameters, and immersive VR
displays,  provide  an  appropriate  and  comfortable
environment  for  free  exploration  of  the  data.  We
believe that our fuzzy representations of flow data



present  certain  advantages  over  sharper  feature
representations  like  isosurfaces  and  isocurves.
Particularly,  they  represent  more  contextual
information  and  don’t  force  the  user  to  limit  their
understanding to isolated features. 
It’s  important  to  keep in  mind  that  the  simulation
used to produce the data shown in this paper is of
incompressible flow at Reynolds number of 10 (Re
= 10).  We  hypothesize that  many of  the effective
properties  of  our visualizations will  extend to new
datasets at higher Re, however, we do expect some
difficulties in representing fast moving vortices with
sequences of streamlines. 

6. Conclusions
We used a volume filling technique that guaranties
distribution  of  flow  lines  that  covers  the  whole
simulated  volume  at  a  given  resolution  with  low
redundancy. 

By randomly selecting sets of flow lines over time
we eventually show all possible features in the flow
without clutter or distracting patterns.
Flow descriptors like λ2 can be used to emphasize
interesting  regions.  By  sorting  flow  lines  and
providing control  over  the amount  of  randomness
used in their selection during visualization, we give
the  user  continuous  control  over  the  degree  of
emphasis. 
Interactive control  over emphasis  parameters,  like
transparency  and  randomness  allow  the  user  to
balance  the  ratio  of  contextual  to  localized
information.  Using λ2 in  combination with velocity,
implicit in streamlines and pathlines, conveys more
information than iso-surfaces of λ2 on their own. 
We  believe  that  immersiveness,  stereoscopic
vision,  peripheral  vision,  body centered navigation
and  large-scale  displays  are  attributes  of  our
immersive virtual  reality facility, CAVE, which help
significantly in the exploration of time varying flow
data.

Figure 1: Particle eels are used to display pathlines.  a, b and c show variations of randomness in the selection of
pathlines, 1.0, 0.15 and 0.0 respectively. 

Figure 2:  Vortices are shown by streamlines seeded at low λ2 regions. a, b, c show variations of the transparency
mapping window.



Figure  3: White  dots,  “snow  flakes”,  are  used  to  represent  particles  at  low  λ2,  regions.   Zero  randomness
emphasizes pathlines that pass through vortices. 
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