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Abstract 
 

We detect design patterns in legacy code combining 
static and dynamic analyses. The analyses do not depend 
on coding or naming conventions. We classify potential 
pattern instances according to the evidence our analyses 
provide.  We discuss our approach for the Observer, 
Composite, Mediator, Chain of Responsibility and Visitor 
Patterns. Our Java analysis tool analyzes Java programs. 
We evaluate our approach by applying the tool on itself 
and on the Java SwingSetExample using the Swing 
library. 
 
 

1. Introduction 
 

A major task in software comprehension is the 
understanding of its design and architecture. As software 
can get large, this task should be supported by tools 
performing automatic analyses. 

Design, however, is hard to detect automatically, as it 
is not tangible. Fortunately, standard solutions to solve 
certain design problems have been established. These 
design patterns are described together with the design 
problem(s) they intend to solve [1]. Many of them have 
been formalized, for example to introduce them automa-
tically into software [2]. If it were possible to detect these 
patterns in software systems, one would be able to deduce 
the intended design.   

Components and their ports, connectors between ports, 
and the containment relation of components in larger 
components define a system’s architecture [3]. Compo-
nents are coherent classes or coherent smaller compo-
nents (our notion of components is recursive). Connectors 
and ports are implemented using basic communication 
constructs like calls, RPCs, RMIs, input output routines 
etc. provided by the implementation language or the 
component system. In contrast to such an implementation, 
the ports and connectors themselves abstract from details. 
A port defines points in a component that provide data to 

its environment and require data from its environment, 
respectively. A connector defines out-port and in-port to 
be connected and specifies whether data is transported 
synchronously or asynchronously [4]. 

In order to understand architecture, we would prefer to 
view a system consisting of components, abstract ports 
and connectors. However, legacy (source) code only con-
tains classes, with port and connector implementations 
scattered throughout their code.  

Fortunately, connectors are often implemented with 
design patterns, e.g. the Observer Pattern. Other patterns 
indicate a high coherence of classes, e.g., the Composite 
Pattern. If it were possible to detect these special patterns 
in software systems, it would be easier to deduce the 
system’s architecture.   

Design patterns usually have static and dynamic 
aspects. A pattern specifies structural connections among 
the classes via call, delegation or inheritance relations 
(static information). Additionally, it requires some 
specific sequences of actions and interactions of the 
objects of these classes (dynamic information).  

Hence, we propose to analyze the structure and the 
behavior of the system with respect to the patterns 
indicating the instance of a certain design pattern. This is 
necessary, since there are situations, where neither static 
nor dynamic analyses alone are sufficient (or not with 
acceptable expenses).  For example it is statically not 
computable, which method or attribute is actually called 
or accessed at run time and how often. Even data flow 
analyses cannot predict all branches and loops, especially 
when the program to be analyzed requires user inter-
actions.  As objects are created at run time, relations 
among objects are dynamic by nature. 

We organize the paper in the following way: Section 2 
describes our approach in general. Section 3 describes the 
design pattern detection with the Observer Patterns as a 
running example in detail. Section 4 discusses similar 
approaches for the other patterns. Section 5 evaluates our 
results in practical experiments. Section 6 sketches an 
approach of a general generator of pattern analyses based 
on our experiences with the patterns discussed so far.  



Section 7 compares our result to related works. Finally, 
Section 8 concludes the results and points to directions of 
future work.  
 

2. General Approach 
 

A design pattern instance is defined by a tuple of 
program elements such as classes, methods or attributes 
conforming to the restrictions or rules of a certain design 
pattern. An example of such a tuple for an instance of  an 
Observer Pattern is:  
(Subject.addListener, Subject.removeListener, 
Subject.notify,  Listener.update) 

We distinguish the role of a class in a pattern from the 
program element itself. Observer and Observable, e.g., 
are roles of classes in the Observer Pattern. 
SomeObserverClass and AnObservableClass can be 
two concrete classes in the two roles. Moreover, we even 
distinguish an object instance from a design pattern 
instance, if the latter contains class program elements. As 
an example consider, that we could have different object 
instances of SomeObserverClass each with several 
object instances of AnObservableClass, or, e.g. 
AnotherObservable attached to it. 

Our analyses distinguish between static and dynamic 
pattern restrictions or rules. The former restrict the code 
structure the latter the runtime behavior. Analyzing with 
the static restrictions results in a set of candidate occur-
rences in the code. In practice this set is large and pro-
grammers hardly want to screen all of them to detect the 
actual instances.  Therefore, we execute the program 
under investigation and monitor the executions of the 
candidate instances found by the static analysis with 
respect to the dynamic restrictions. Figure 1 illustrates our 
approach. 

 

 

Figure 1. Static and Dynamic Analyses of Patterns. 
 

The results of dynamic analyses depend on an exe-
cution of the candidate instances. Methods not executed 
at run time cannot be evaluated with respect to the 
dynamic pattern thus providing no information. However, 
testing techniques and environments could guarantee that 
each reachable program part is executed while testing (of 
course not every program sequence). Using these tech-
niques, we may consider dynamic information available 
for each candidate occurrence. Moreover, we argue that 

parts that are less frequently executed are also less critical 
for understanding. 

For the understanding of a system's architecture, intra-
component communications patterns are less important. 
We thus have the option to perform component pattern 
analysis first and filter the candidates for communication 
patterns inside components, leading to a tremendous 
reduction of communication pattern candidates. However, 
as our analyses are fast enough, we do not do so. Instead, 
we use the information on high-level connectors in the 
code as an additional indication for the correct partitio-
ning of the legacy system into its components. The 
hypothesis behind this is that components have an 
elaborated interaction interface to other components while 
intra-component interactions are often implemented ad 
hoc. Hence, we expect many sources and targets of com-
munication patterns to reside in different components 
when choosing the right partitioning into components 
while many of the essential communications become 
intra-component for a partitioning not intended. 

Unfortunately, the analyses are not unique. Hence, the 
process of pattern and architecture detection is an 
iterative, interactive process where analyses and visuali-
zations complement on another.  However, visualizations 
are not focused in this paper, we have discussed them in 
more detail in another paper [5]. 

The static analyses are done with Recoder [6], a tool 
to read, analyze and manipulate Java programs. In 
principle, Recoder is a compiler front end. It reads the 
source code and constructs the abstract syntax tree (AST). 
Then it performs the static semantic analyses where it 
resolves names and types. In addition to the semantic 
analyses required by the programming language, it can 
compute additional relations over the syntactical and 
semantic elements, e.g. define-use-relations. It has a 
programmer interface to add new, user-defined analyses 
for the computation of arbitrary relations. In contrast to 
standard compilers, Recoder provides all these entities 
and relations as an API. In order to analyze the structure 
of a program, we simply write a program accessing this 
interface. The elements of candidates of pattern instances 
retrieved by the static analysis are nodes in the AST 
accessible via Recoder. Examples of such elements are 
classes and methods that potentially play different roles in 
a pattern. 

These program parts are then instrumented using the 
code manipulation interface of Recoder. We simply add 
appropriate event generators tracing the dynamic execu-
tion of the candidates and providing runtime information. 
Dynamic analyses are the corresponding event handlers, 
checking that the protocol of the candidate execution 
conforms to the expected dynamic pattern restrictions. 

Although, currently Recoder investigates Java sour-
ces only, the approach and the architecture can be applied 
to sources written in any typed language. 



3. Pattern Detection 
 

In this section, we present our approach to detect 
design patterns by combining static and dynamic analyses 
[7]. The static analysis computes potential program parts 
playing a certain role in a design pattern.  The dynamic 
analysis further examines those candidates. We can thus 
consider static and dynamic analyses as filters that narrow 
the set of candidates in two steps. Subsection 3.1 dis-
cusses the static, Subsection 3.2 the dynamic analysis. 

In the subsequent subsections, we use the Observer 
Pattern (event notification) [1] as a running example for a 
special architectural pattern.  

According to its static rules, we consider every setting 
where an object allows registering and optionally de-
registering other objects, and potentially notifies all 
registered objects by calling their update method as an 
instance of the Observer Pattern. Static analyses compute 
a set of classes that fulfill the necessary properties for 
subject and corresponding listener classes. Dynamic 
analyses then monitor objects of these classes during 
execution and check whether the interaction among them 
satisfies the dynamic Observer rules. 

The following naming conventions refer to roles of 
certain methods of the Observer Pattern. Note, that this 
naming convention is only used for explanations – the 
static analysis does not refer to these names. 
addListener: a method responsible for adding listener 
objects to a subject object. 
removeListener: a method responsible for removing 
listener objects from a subject object. 
notify: a method responsible for notifying the listeners 
of a state change in the subject. 
update: a method implemented by the listener objects, 
called by the notify method. 

We assume that addListener, removeListener 
as well as notify are contained in a single class and are 
not distributed among different hierarchies.  This is not an 
unnatural restriction, but reflects object-oriented design 
principles. 

 
3.1. Static Analysis 
 

The program source code is the basis for the static 
analysis. It is represented by an attributed abstract syntax 
tree (AST) as computed by common compilers. A static 
pattern is a relation over AST node objects. It is defined 
by a predicate P using the information in the attributed 
AST as axioms. Names of variables, methods and classes 
nodes may be compared with each other but not with 
constants, thus making the pattern definitions independent 
on naming conventions. 

The static analysis reads the sources of the program in 
question and constructs an attributed AST. Then, it 

computes the pattern relation P on the AST nodes and 
provides the result as a set of Candidates, i.e., a set of 
tuples of AST nodes with the appropriate static structure.  
This set is a conservative approximation to the actual 
patterns in the code.   

An Observer Pattern candidate is a tuple of method 
declarations of the form: (S.addListener, S.remove-
Listener, S.notify,  L.update) where S is the class 
declaration of the subject of observation and L the class 
or interface declaration of the corresponding listeners. 

In practice, the candidate set conforming to the static 
rules is large. Brute force methods, as Prolog-like 
resolution, are therefore not appropriate for use in 
practical tools. The search should be more directed. 

To produce the candidate set for our example, the 
static analysis iterates over all program classes and their 
methods. For each method m of a class c, we first assume 
it plays the addListener or removeListener role. 
Therefore, we consider each parameter type p of m a 
potential listener, provided p is neither identical to nor a 
super or a subclass of c (p ⊄ c ∧ c ⊄ p ∧ c ≠ p). 
Such a relation would contradict the decoupling of 
subject and listeners as required in the Observer Pattern 
rules. We then determine all method calls issued from 
inside methods of class c to some method u defined in 
the potential listener class p. The methods of class c 
containing the calls to p.u are considered potential 
notify methods and the method p.u as update 
method. To test whether method c.n might be a notify 
method, we use the predicate isNotifyListener(c.n, p.u), 
which is satisfied iff c.n calls p.u and p is not a 
parameter of c.n. The result of the iteration is a set Y of 
tuples: (S.addListener|removeListener, S.notify, 
 L.update). To compute the final set of candidates, we 
iterate over the tuples of Y.  

We combine corresponding addListener and 
removeListener methods into one pattern candidate. If 
the S.addListener|removeListener entry of Y 
satisfies the addListener predicate defined below, we 
combine it with all other tuples in Y that have the same 
notify and update entries to associate it with the 
corresponding removeListener candidates. We also 
consider the case that a removeListener method need 
not be implemented and thus always construct tuples with 
the removeListener entry set to null. The 
addListener role is defined by the predicate 
isAddListener(a), which tests, whether the method a 
potentially stores the passed argument for future use, i.e., 
checks whether the argument 
• is used on the right hand side of an assignment statement, 

i.e., storing the argument locally in the object, or 
• is passed as an argument to another method, i.e., potential 

call of a store method. 



This results in the following static analysis algorithm that 
computes the static candidates C: 
 
C := ∅ 
for each class c do 

Y := ∅ // intermediate result 
for each method m in c do 

for each parameter type p in m  
where p ⊄ c ∧ c ⊄ p ∧ c ≠ p do 

for each call from c.n to p.u do 
if isNotifyListener(c.n, p.u) 

Y  := Y  ∪ {(c.m, c.n, p.u)} 
 
for each (c.a1,c.n1,p1.u1) ∈ Y do 
 for each (c.a2,c.n2,p2.u2) ∈ Y,  
 where c.n1 = c.n2 ∧ p1.u1 = p2.u2) do 

  if (isAddListener(c.a1)) 
if (c.a1 = c.a2)   

C := C ∪ (c.a1, null, c.n1, p1.u1) 
else 

    C := C ∪ (c.a1, c.a2, c.n1, p1.u1) 
 
Although the candidate set is computed quite 

efficiently by the directed search algorithm, we still face 
the problem of being too conservative with our approxi-
mation: the candidate set is large compared to the set of 
actual pattern instances and not appropriate for providing 
it to the system designer as it is.  

There are three possible solutions: expert knowledge 
like coding and naming conventions, dynamic analysis, or 
static data flow analysis. We choose dynamic analyses. 

 
3.2. Dynamic Analysis 
 

The static analysis provided tuples of AST nodes in 
the candidate set C. The dynamic analysis takes this set C 
as its input. It monitors the execution of the nodes of 
every tuple. It further tracks the effects of the executed 
nodes to check whether the candidate satisfies the 
dynamic pattern rules. In case of a rule violation, the 
candidate is rejected. 

Each element of a candidate tuple is contained in a 
class definition or is a class definition itself. At runtime 
we might have many object instances of these classes and 
each should conform to the dynamic pattern. 
Additionally, patterns require n:m, 1:n, or 1:1 relations 
among objects of the implementing classes. For each 
individual candidate tuple, the number of instance objects 
of their classes could be restricted. The Observer Pattern, 
e.g., requires a 1:n relation of the subject instances and 
their listener instances. 

Moreover, we might have more than one instance of 
the Observer Pattern defined by the different subject and 
listener classes. 

Altogether, we trace a set of instances for each 
candidate tuple of a pattern. Each may contain several 

objects per position in the tuple. Considering our 
Observer Pattern, we thus assign to every candidate tuple 
(S.addListener, S.removeListener, S.notify, 
 L.update), cf. Section 3.1, a set of instance tuples 
(s.addListener, s.removeListener, s.notify,   
 {l1.update … ln.update}) where s is an instance 
(object) of class S and l1 … ln are instances of L. It is 
not necessary to store the subject s three times. Further-
more, the addListener, removeListener, notify, 
and update methods are always the same and already 
captured in the candidate tuple. To avoid redundancies, 
we only associate a set of tuples  (s, { l1 … ln } ) . 

We monitor each node in a tuple of the candidates. 
Whenever we dynamically execute such a monitored 
node, we retrieve the entire candidate tuples in which the 
node is contained. Depending on the node's unique role in 
each single tuple, we execute dynamic test actions on the 
object sets associated to the corresponding candidate 
tuples. 

In the Observer Pattern, we use the subject object as a 
key to retrieve the affected object set of each candidate 
tuple. To determine the proper object set, we distinguish 
two cases: If the method complies with the 
addListener, removeListener or notify roles, then 
the key subject object is the object the method is called 
on.  If the method complies with the update role, then 
the key subject object is the object the corresponding 
notify method is called on. The dynamic test actions for 
the Observer Pattern depend on the role of the method:  
addListener: We add the passed argument to the 
subject's list of listener objects. No protocol mismatch can 
be detected here. 
removeListener: We remove the passed argument from 
the subject's list of listener objects. A protocol mismatch 
occurs, if the listener to be removed has not been added 
before. This can also be caused by a programming error. 
We therefore allow turning off this criterion. 
notify: We do not change the set of subject or listener 
objects. A correct protocol updates all or no listener 
objects (atomic update). To check this protocol, we have 
to distinguish between the method entry and the method 
exit. At the method entry, we mark all attached listener 
objects as not updated. At the method exit we check 
whether all or no listener objects have been marked as 
updated. In this case, the protocol is satisfied. The other 
case indicates a protocol violation. To accept the case of 
not updating any listener objects as a protocol match 
makes sense, because notify may be called, although the 
subject's state did not change. Then there is no need to 
notify the attached listeners. 
update: We do not change the set of subject or listener 
objects. If the update method has been called by the 
notify method of the same candidate tuple, we mark the 
listener object as updated. To recognize this, we need to 



detect the source of the method call, a functionality to be 
provided by the dynamic framework. A call of update 
by the corresponding notify method is a protocol 
mismatch if the listener object has not been attached 
previously. 
 
4. Further Patterns  
 

So far, we only discussed the detection of just one 
pattern, the Observer Pattern. In the same way, as we 
detected this pattern, we also implemented static and 
dynamic analyses to detect the Composite, Mediator, 
Chain of Responsibility and Visitor Patterns [1]. 

 
4.1. Composite Pattern 
 
4.1.1 The Static Analysis algorithm is given below: 
 
C := ∅ 
for each class c do  
 Y := ∅ // intermediate result 
 for each method m in c do 
  for each parameter type p in m  
  where c ⊂ p do 
   for each call from c.o to p.o do 
    if isCompositeOperation(c.o, p.o) 
     Y  := Y  ∪ {(c.m, c.o, p.o)} 
 
for each (c1.a,c1.o,p1.o) ∈ Y do 
 for each (c2.a,c.o,p2.o) ∈ Y do  
  if (isAddComponent(c1.a)) 
   if (c1.o = c2.o ∧ p1.o = p2.o)  
    if (c.a1 = c.a2)   
     C := C ∪ (c.a1,null,c.n1,p1.u1) 
    else 
     C := C ∪ (c.a1,c.a2,c.n1,p1.u1) 
 

The predicate isAddComponent exactly corresponds to 
the isAddListener predicate and the isComposite-
Operation predicate exactly corresponds to the isNotify-
Listeners predicate. The main difference between the two 
patterns is the intended decoupling of classes: The 
Observer Pattern requires the Observers and Observable 
to be unrelated; the Composite Pattern requires 
Component and Composite to satify a subtype relation. 

It is obvious, that this algorithm is similar to the static 
analysis for the Observer Pattern and was therefore easy 
to encode.  

 
4.1.2 The Dynamic Analysis was even easier to port, 
since both patterns do not differ in their protocol. Hence, 
we applied the dynamic analysis algorithm of the 
Observer Pattern detection unmodified.  

 

4.2. Mediator Pattern 
 
A Mediator pattern consists of at least two classes both 

with a reference to each other. In general, a central 
Mediator has arbitrary many users. The Mediator refers to 
every User. Users in turn are connected back to their 
Mediator. Usually, the User is attached to the Mediator at 
construction. Later attachment by a method call is 
possible, as well. 

 
4.2.1 The Static Analysis checks for every class 
(potential Mediator) if it has variables pointing to a User 
knowing that Users have a variable of the Mediator’s 
class or its superclass. The User must have the Mediator 
class as an argument in its constructor or in at least one 
other method. It is not possible that the Mediator and its 
Users are of same type. As it does not make sense to 
implement a Mediator pattern with only one User, we 
reject candidates with only one possible user variable in 
the Mediator: 

 
C := ∅ 
for each class c do 
 Y := ∅ // intermediate result 
 for each variable v in c do 
  for each class u := class(v) do 
   for each variable v’ in u do 
    if c=class(v’) ∨ c ⊂ class(v’)  
     Y  := Y  ∪ {(c,v,u,v’)} 
       
for each (c,v,u,v’) ∈ Y do 
 for each method m in u do  
  if “v’:= …” in body(m) 
   for each parameter p in m do  
    if c=class(p) ∨ c ⊂ class(p) 
     C := C ∪ {(c,v,u,v’,m)} 
 

To avoid redundant storing, {(c,v1,u1,v’1,m1), 
(c,v2,u2,v’2,m2),…} is reduced to {(c, {v1,v2,…},  
{u1,u2,…}, {v’1,v’2,…},  {m1,m2,…} ),   … }. 
 
4.2.2 The Dynamic Analysis distinguishes different 
Mediator objects for a Mediator candidate class M and 
different objects for all its User classes U1 … Un. Again, 
the variables pointing to the User and the method 
receiving the Mediator reference are stored in the 
candidate and need not to be captured in the dynamic 
tuple of objects  (mObject,  { u1 … un } ). 

Whenever the method m handing over the Mediator 
object to the User object is invoked, it is checked whether 
it send a self-reference to the mediator object. Whenever, 
the body of that method is executed, it is checked whether 
this object reference is actually stored in the Mediator 
typed variable v’ in the User. 

  



4.3. Chain of Responsibility Pattern 
 

A Chain of Responsibility consists of a list of classes, 
each delegating to the next in the list and inheriting from 
a same base class. All classes in the chain implement and 
(potentially) invoke a Handler method defined in the 
superclass. A call to the Handler method is (potentially) 
delegated along the chain. 

 
4.3.1 The Static Analysis looks for any (potential 
Handler) class delegating to itself or one of its 
superclasses. Moreover, it checks if that superclass 
implements the potential Handler method invoked in the 
Handler, as well: 

 
C := ∅ 
for each class c do 
 Y := ∅ // intermediate result 
 for each variable v in c do 
  for each class u := class(v) do 
   if c=u ∨ c ⊂ u 
    Y  := Y  ∪ {(c,v,u)} 
 
for each (c,v,u) ∈ Y do 
 for each method m in u do  
  if “… v.m …” in body(m) in c 
   C :=  C ∪ {(c,v,u,m)} 
 

To avoid redundant storing, {(c1,v1,u1,m), 
(c2,v2,u2,m),…} is reduced to {({c1,c2,…}, 
{v1,v2,…},  {u1,u2,…}, m ),   … }. 
 
4.3.2 The Dynamic Analysis checks how the chain is 
built up. An implementation of this pattern usually 
declares the variables that constitute the chain of a 
supertype of the actual chain classes. The dynamic 
analysis detects the actual classes that are linked. 
Afterwards one can decide by screening the classes, 
which links constitute a Chain of Responsibility.  

Note, that the Handler methods need not to be called 
completely. While a sequence of calls to the Handler 
methods would support the candidate being a Chain of 
Responsibility instance, it is hard to define a protocol 
violation.   
 
4.4. Visitor Pattern 

 
Visitors of an object structure of some Element classes 

are invoked via some Visit method defined in Visitor 
classes. They call back some operations of the Elements 
to visit their state. Visitors inherit from a common 
superclass. A concrete Visitor is attached to an Element 
by an Accept method triggering the Visit method.  

 
4.4.1 The Static Analysis starts to look for Elements 
first. In such a class, we expect an Accept method with a 

visitor class as a parameter. That parameter will be called 
(visited) with the Element class as an argument, which 
calls back the Element. In general the parameter of the 
Accept method is declared of the Visitor’s superclass.  
 
C := ∅ 
for each class c do //element? 
 Y := ∅ // intermediate result 
 for each method a in c do //accept? 
  for each parameter p in a do 
   for each c’=class(p) do  //visitor? 
    for each method v in c’ do //visit? 
     if (“… x.v(y) …” in body(a) ∧ 
           c’=class(x) ∧ c=class(y) ) 
      Y  := Y  ∪ {(c,a,c’,v)} 
       
for each (c,a,c’,v) ∈ Y do 
 for each method o in c do //call back?  
  if “… z.o() …” in body(v) ∧ c=class(z) 
    C := C ∪ {(c,a,c’,v)} 
 

To avoid redundant storing, {(c,a,c’1,v), (c,a, 
c’2,v),…} is stored as {(c,a,{c’1,c’2,…}, v), … }.  
 
4.4.2 The Dynamic Analysis basically tests for object 
identities. It checks if the (potential) Visitor object given 
with a (potential) Accept method is actually the same 
object the (potential) Visit method is invoked on. 
Moreover, it checks if the parameter given with this Visit 
method is actually the (potential) Element object. Finally, 
it checks whether this element object is actually called 
back from the Visitor object. 
 
5. Evaluation 
 

A problem that automatically occurs in this type of 
analyses is how to verify the results experimentally. 
Ideally, one would compare the analysis results with 
pattern documentation of the analyzed software. 
Unfortunately, no real world software is that well 
documented. We cannot assume that patterns are 
documented (otherwise we would have easier ways to 
understand software systems). The analyzer can detect 
patterns and by-hand checking we can assure them as 
correct, but it is hard to estimate the number of 
undiscovered patterns, i.e. the true negatives. 

Therefore one has to start the validation in systems 
that are known. 

The GOF-book [1] gives example implementations for 
the described patterns. These implementations are 
implemented in C++, but it was easy to translate them to 
Java. Moreover, to make the evaluation more credible, we 
insertet some fault patterns similar to the correct patterns. 
The analysis tool did not detect any false positive patterns 
and it did detect all real patterns.              



To continue the verifying process, we applied our tool 
to the source code of our tool itself including the 
Recoder packages. In this code the Observers were well 
documented. Hence we were able to count false positives 
and true negatives. 

Then we applied it to the SwingSet2 example of the 
JDK 1.3.1 including the javax.swing.* packages. In order 
to determine the number of Observers in this unkown 
software, we trusted the strict naming conventions of 
SUN's library programmers. We firstly issued a 

 
grep"add\w*Listener\w*{"  
 

and checked the hits manually for correctness. To catch 
Observer Pattern instances violating the naming 
conventions, as well, we also screened the output of our 
tool and added the remaining occurrences. An example of 
an Observer Pattern instance violating the naming 
conventions is the DefaultTableColumnModel in 
the javax.swing.table package with methods 
addColumn in the addListener-role, removeColumn 
in the removeListener-role and recalcWidthCache 
in the notify-role. This procedure yields a fairly good 
approximation of the number of Observer Patterns really 
contained in the code. 

Finally, we analyzed the other patterns. Unfortunately, 
these patterns have not been documented that well and no 
naming conventions applied. Hence, we only excluded 
the detection of false positives by screening the analysis 
results. An estimation of true negatives was not possible. 

 
5.1. Observers in our Analyzer Tool 
 

Statistics about our analysis tool including the 
Recoder package are given in Table 1. 

Table 1. Statistics on our tool including the Recoder. 
 Classes Methods Observers1 
Recoder  555 6734 2 
VizzAnalyzer 43 214 3 
Sum 598 6948 5 

 
The main task of the static algorithm is to reduce the 

amount of candidates. In case of the Observer Pattern 
detection, the amount of possible candidates is equal to 
9.7×1013 calculated by the formula: 
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1 Subjects used neither delegation nor sub-classes of subjects. 

The former term accounts for the 6948 methods in the 
4 possible roles, the latter term models tuples with empty 
removeListener role. Our static analysis applies the 
isAddListener and isNotifyListeners predicates as main 
criteria to reduce this amount of candidates to 28030 
tuples containing all 5 Observer Pattern occurrences. The 
corresponding analysis phase needs about 70 seconds on 
a Pentium III, 500Mhz, 256MB RAM, running Windows 
NT 4 with JDK 1.3.1. 

Table 2 shows the results of the dynamic analysis. The 
“Detected” row lists the numbers of tuples of the corres-
ponding category detected by our tool, whereas the 
“Real” row lists the number of tuples of the correspon-
ding category that represent real Observer occurrences. 

Table 2. Results of dynamic analysis of our analysis tool. 
 Full 

1:n 
match 

Full 
1:1 
match 

May  
match 

No 
decision 

Mis-
match 

Detected 4 5 67 18638 9316 
Real 4 0 0 1 0 

 
The Full 1:n match category shows that our tool 

classified all Observer Pattern occurrences used in that 
program run correctly. The Full 1:1 match column 
reveals that delegation confuses our analyses. The reason 
is, that delegation shows the same static and dynamic 
properties as the Observer Pattern.  The only difference is 
that delegation always constitutes a 1:1 relation. This is 
one of the reasons the static algorithm produces a lot of 
false positives. The following code fragment illustrates 
this effect: 
 
class Delegate { 
 X delegate;  
 
//is detected as addListener 

 void set(X x) { delegate =x;} 
 
 //is detected as notify 
 void internalAction(){delegate. ();} 
} 
 

A 1:1 relation is suspicious, but need not be a 
mismatch, since this may be a valid configuration of the 
Observer Pattern. In case the set method of Delegate 
objects is called many times followed by a call of 
doSomething, our algorithm detects doSomething's 
violations of the notify role. In our case, all 5 tuples in 
the Full 1:1 match class were actually delegations. 

The May match class contains no Observer 
occurrence.  In over 70% of the tuples, either only the 
addListener or only the notify method was called, 
but these methods cannot provoke a protocol mismatch. 

The Observer Pattern tuple in category No decision 
has not been executed, and therefore not been classified. 



If we ensured by employing testing technology that every 
candidate method gets executed, we could classify all 
tuples and thus achieve an empty No decision set. 

All detected mismatches were correct, i.e., these tuples 
did not represent an implementation of the Observer 
Pattern. 

 
5.2. Observer in the SwingSet2 Example 
 

To evaluate the quality of our analyses in this case 
study, we first need to determine the number of Observer 
Pattern occurrences in the example code. Since SUN's 
developers obey naming conventions, we found quite a 
few pattern occurrences. To catch also Observer pattern 
occurrences violating the naming conventions, we 
screened the output of our tool and added the remaining 
occurrences. This procedure yields a fairly good 
approximation of the number of Observer patterns 
actually contained in the code and results in the statistics 
presented in Table 3. 

Table 3. Statistics about the SwingSet2 example including 
javax.swing.* packages. 

 Classes Methods Observers2 
Swing  1357 11478 59 
SwingSet2 124 403 0 
Sum 1481 11881 59 

 
The high number of 59 Observer Pattern occurrences 

in Table 3 results from our way of counting: Since we 
identify the particular method roles, a subject class 
containing several notify methods contributes to 
multiple Observer Pattern occurrences. We count every 
such combination as one separate occurrence. 

In the same way as in the previous case study, the 
static analysis reduces the number of 8.3×1014 possible 
candidates to 200 738 tuples containing all 59 Observer 
Pattern occurrences. The corresponding analysis phase 
needs about 190 seconds on a Pentium III, 500Mhz, 
256MB RAM, running Windows NT 4 with JDK 1.3.1. 

Table 4. Results of dynamic analysis for the SwingSet2 
example. 

 Full 
1:n 
match 

Full 
1:1 
match 

May  
match 

No 
decision 

Mis-
match 

Detected 13 805 36 85620 114264 
Real 13 20 2 24 0 

 
Table 4 shows the results of the dynamic analysis. The 

“Detected” row lists the numbers of tuples of the corres-
ponding category detected by our tool, whereas the 

                                                 
2 Subjects using neither delegation nor sub-classes of subjects. 

“Real” row lists the number of tuples of the correspon-
ding category that represent real Observer occurrences. 

The results show that all 13 Observer Pattern 
occurrences in the full 1:n match category have been 
classified correctly by our analyses. Besides the 20 real 
Observer Pattern occurrences the Full 1:1 match category 
again contains a lot of Delegation Pattern occurrences as 
in the Recoder example. The same holds for the May 
match category. Note that the Mismatch category again 
does not contain a real Observer Pattern occurrence, i.e., 
all detected mismatches were correct. 

 
5.3. Further Patterns 
 

To validate our analyses algorithms for the Mediator, 
Chain of Responsibility and Visitor Patterns, we applied 
them to our tool itself. We first discuss the results of the 
static analyses and then those of the dynamic analyses. 

The results from the static analyses are each presented 
as a table of the detected candidate tuples.  

The static analysis of the Mediator Pattern detected 
298 possible tuples. The high number of candidates can 
be misleading, but one pattern instance may lead to a set 
of candidate tuples, because we consider all possible 
combinations of roles.  

The static analysis of the Chain of Responsibility 
Pattern provided 349 tuples. The tuples represent 
elements of the chain linked together and not a whole 
chain because a static analysis cannot conclude how the 
instances of the classes are connected together. Only a 
bunch of different elements probably linked together 
somehow are detected statically. In some cases, there 
were just only one possible class that the chain is 
constituted from. However, at runtime a long chain of 
objects of that instance are observed. The high number of 
tuples is somewhat misleading: The highest number of 
different classes that potentially constitute a Chain of 
Responsibility was seventeen; all classes issued a call to 
the same method of a common super class. The analysis 
has not included a detection of these superclass calls. This 
is not a restriction, as they will be detected anyway during 
the analysis of the superclass. 

When used in visualizations, the analyzed Recoder  
application visits all AST nodes and presents them in 
some way. In this setting, we detected the 
PrettyPrinter class as a Visitor. The program has 
implemented a subclass of the PrettyPrinter and the 
analysis detected 1701 different pairs of instances that 
can constitute the whole Visitor pattern. That also 
included some possible subclasses. The high number of 
detected elements can be seen as very misleading, most of 
the detected pairs were connected to the same visitor and 
they had the same Accept methods. This fact can also be 



interpreted as the static analysis detected only a few 
Visitor pattern instances but those patterns are very large. 

Table 5. Result after the static analysis. The numbers 
show the statically detected candidate tuples per pattern. 

Mediator Chain of Responsibility Visitor 
298 349 1701 

 
The dynamic analysis for the Mediator pattern sorted 

out most candidates. After an execution of the test 
program, the set of patterns was reduced; they were either 
mismatches or the actual methods were not executed in 
the program run. The 18 matched tuples did not contain 
any false positives. By manual screening we have 
grouped  them into six pattern instances.  

 
Table 6. Result of the dynamic analysis of Mediator. 

Static 
Candidates 

Match Mis- 
match 

No 
Decision  

298 18 60 219 
 
The dynamic analysis of the Chain of Responsibility 

pattern rejected almost all candidates. An explanation can 
be that all possible static chains were not executed or the 
method calls were connected to a different object that was 
not a part of the potential chain. Manual screening revea-
led that the 24 matched tuples did not contain any false 
positives and are connected to each other in one chain.   

 
Table 7. Result of the dynamic analysis of Chain of 

Responsibility. 
Static 
Candidates 

Match Mis- 
match 

No 
Decision  

349 24 158 167 
 
The dynamic check of the Visitor concluded that 349 

of the static candidates really are parts of actual patterns. 
No candidates visited were rejected. This indicates that 
the static Visitor pattern is already pretty distinctive. By 
manual screening we concluded that these 349 dynamic 
candidates together represent two instances of Visitor 
patterns. No false positives were detected.  

 
Table 8. Result of the dynamic analysis of Visitor. 
Static 
Candidates 

Match Mis- 
match 

No 
Decision  

1701 349 0 1352 
Altogether, we obtained the following results from our 

analysis including the manual screening: 

Table 9. Result after the dynamic check and manual 
screening per pattern. 

Mediator Chain of responsibility Visitor 
6 1 2 

After having performed the above analyses of our 
analysis program, we carried out an expanded analysis 
with other test programs that also used the Recoder 
library. We hoped that they would execute more 
candidates from the Recoder library that had been put in 
the No Decisionc class in the first try. Unfortunately, 
these test programs did not generate more information, 
because there have still been some candidates were not 
executed dynamically. 

However, we have a clear indication that we should to 
improve the dynamic analyses: If a pattern candidate 
occurrence is not executed during a concrete program run, 
our dynamic analyses cannot provide any evidence for its 
conformance to or its violation of the pattern rules. We 
will avoid this problem using results from testing theory. 
These ensure that every point of programs, if reachable at 
all, gets executed at least once.  

However, once a candidate is visited at in the dynamic 
analyses, the dynamic pattern rules are distinctive enough 
to reject false positives. 

 

6. Generation of Analyzers 
 

Hand-coded pattern analyses are the solution for the 
standard patterns. Non-standard patterns that need to be 
detected could be added easily by modifying the pattern 
recognition as demonstrated with the patterns above – to 
see that, compare the different analysis algorithms: they 
are quite similar.  However, in order to be complete and 
general and to avoid such coding, the analyses should be 
generated from a pattern specification. 

Our generator accepts a specification language, which 
is based on predicate calculus for static constraints and 
defines pre- and post-constraints to check the dynamic 
behavior of candidate methods. The language design 
allows specifying arbitrary interaction patterns. 

The generation of the static analysis uses the search 
algorithm already applied in our static analysis algorithms 
for the Observer and the Composite Patterns as template. 
This means, we iterate over the abstract syntax tree of the 
program to be analyzed and check the static constraints 
(predicates) specified for the pattern to be detected. When 
we are looking for a relation between classes, e.g., the 
specification contains a predicate concerning class 
entities. The generator produces a loop over all classes of 
the program to be analyzed and inserts check code to 
check the specified relation. This translates to further 
loops depending on the nesting of the entities contained in 
the specified relation and/or if-commands. To query the 
abstract syntax, we use our Recoder library. 

The generation of the dynamic analysis is much 
harder, since we currently do not know if one generic 
data structure is sufficiently suited to simulate all possible 
protocols. This is why our specification for the dynamic 



part of a pattern requires defining the data structure for 
the simulator and the actions to perform. It thus corres-
ponds exactly to giving an implementation for the dyna-
mic analysis, i.e., to the event handlers. However, events 
are generated automatically. The code is instrumented 
automatically at the statically recognized candidates, usu-
ally method entries and exits and hands over parameters. 
These predefined hooks for the event listeners checking 
the dynamic pattern simplify the task significantly. 

At the moment, we are already able to generate the 
presented analyses to detect the Observer Pattern. To 
validate that our specification language and the generator 
are general enough, we currently try to detect the Media-
tor Pattern as well. The problem is to keep the language 
small and simple enough so that pattern specifications are 
at the right level of abstraction and more appropriate than 
directly coding the analysis algorithms. 

 

7. Related Work 
 

Quite a bit of work has already been done in the field 
of automatic pattern detection.  

Keller et al. [8] describe a static analysis to discover 
design patterns (Template Method, Factory Method and 
Bridge) from C++ systems. The authors identify the 
necessity for human insight into the problem domain of 
the software at hand, at least for detecting the Bridge 
pattern due to the large number of false positives. 

The Pat system [9] detects structural design patterns by 
extracting design information from C++ header files and 
storing them as Prolog facts. Patterns are expressed as 
rules and searching is done by executing Prolog queries. 

Brown [10] uses dynamic information, analyzing the 
flow of messages. His approach is restricted to detecting 
design patterns in Smalltalk, since he only regards flows 
in VisualWorks for Smalltalk. He therefore annotates the 
Smalltalk runtime environment. Another drawback is, that 
he only gathers type information at periodic events. 

Carriere et al. [11] also employ code instrumentation 
to extract dynamic information to analyze and transform 
architectures. The presented approach only identifies 
communication primitives, but no complex protocols. 

The present paper extends our previous results [7] in 
two ways. Firstly, it implements more than the Observer 
Pattern analyzer and extends the experiments to unknown 
code. These extensions show that the results (and 
shortcomings in the dynamic analysis) can be generalized. 
Secondly, it sketches our approach to and first results of 
automatic generation of analyses. 

 

8. Conclusion 
 
We presented an approach to support the 

understanding of software systems by detecting design 

patterns automatically. We use static and dynamic 
analyses. More specifically, we filtered information 
gained by static pattern detection on the code using the 
observations of dynamic code execution. This approach 
improves the quality of the results tremendously as 
protocol conformance of a pattern can be checked. We 
argued that neither static nor dynamic analyses by 
themselves provide an adequate approach to find patterns 
in software systems. The number of false positives is 
small, in most experiments even zero. 

However, if pattern candidates are not executed during 
the dynamic analyses we cannot provide any evidence for 
its conformance to or its violation of the protocol. Hence 
the number of true negatives could be large.  Currently, 
we try to apply results from test theory to ensure that 
every (reachable) candidate gets eventually executed. To 
further reduce the true negatives, we plan to integrate data 
flow analyses and checking of naming conventions into 
our static analyses. 
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