

Automatic Design Pattern Detection

Dirk Heuzeroth Thomas Holl Gustav Högström Welf Löwe

University of Karlsruhe,Germany
IPD, Program Structures Group

University of Växjö, Sweden
MSI, Software Technology Group

{heuzer|holl}@ipd.info.uni-karlsruhe.de Welf.Lowe@msi.vxu.se

Abstract

We detect design patterns in legacy code combining
static and dynamic analyses. The analyses do not depend
on coding or naming conventions. We classify potential
pattern instances according to the evidence our analyses
provide. We discuss our approach for the Observer,
Composite, Mediator, Chain of Responsibility and Visitor
Patterns. Our Java analysis tool analyzes Java programs.
We evaluate our approach by applying the tool on itself
and on the Java SwingSetExample using the Swing
library.

1. Introduction

A major task in software comprehension is the
understanding of its design and architecture. As software
can get large, this task should be supported by tools
performing automatic analyses.

Design, however, is hard to detect automatically, as it
is not tangible. Fortunately, standard solutions to solve
certain design problems have been established. These
design patterns are described together with the design
problem(s) they intend to solve [1]. Many of them have
been formalized, for example to introduce them automa-
tically into software [2]. If it were possible to detect these
patterns in software systems, one would be able to deduce
the intended design.

Components and their ports, connectors between ports,
and the containment relation of components in larger
components define a system’s architecture [3]. Compo-
nents are coherent classes or coherent smaller compo-
nents (our notion of components is recursive). Connectors
and ports are implemented using basic communication
constructs like calls, RPCs, RMIs, input output routines
etc. provided by the implementation language or the
component system. In contrast to such an implementation,
the ports and connectors themselves abstract from details.
A port defines points in a component that provide data to

its environment and require data from its environment,
respectively. A connector defines out-port and in-port to
be connected and specifies whether data is transported
synchronously or asynchronously [4].

In order to understand architecture, we would prefer to
view a system consisting of components, abstract ports
and connectors. However, legacy (source) code only con-
tains classes, with port and connector implementations
scattered throughout their code.

Fortunately, connectors are often implemented with
design patterns, e.g. the Observer Pattern. Other patterns
indicate a high coherence of classes, e.g., the Composite
Pattern. If it were possible to detect these special patterns
in software systems, it would be easier to deduce the
system’s architecture.

Design patterns usually have static and dynamic
aspects. A pattern specifies structural connections among
the classes via call, delegation or inheritance relations
(static information). Additionally, it requires some
specific sequences of actions and interactions of the
objects of these classes (dynamic information).

Hence, we propose to analyze the structure and the
behavior of the system with respect to the patterns
indicating the instance of a certain design pattern. This is
necessary, since there are situations, where neither static
nor dynamic analyses alone are sufficient (or not with
acceptable expenses). For example it is statically not
computable, which method or attribute is actually called
or accessed at run time and how often. Even data flow
analyses cannot predict all branches and loops, especially
when the program to be analyzed requires user inter-
actions. As objects are created at run time, relations
among objects are dynamic by nature.

We organize the paper in the following way: Section 2
describes our approach in general. Section 3 describes the
design pattern detection with the Observer Patterns as a
running example in detail. Section 4 discusses similar
approaches for the other patterns. Section 5 evaluates our
results in practical experiments. Section 6 sketches an
approach of a general generator of pattern analyses based
on our experiences with the patterns discussed so far.

Section 7 compares our result to related works. Finally,
Section 8 concludes the results and points to directions of
future work.

2. General Approach

A design pattern instance is defined by a tuple of
program elements such as classes, methods or attributes
conforming to the restrictions or rules of a certain design
pattern. An example of such a tuple for an instance of an
Observer Pattern is:
(Subject.addListener, Subject.removeListener,
Subject.notify, Listener.update)

We distinguish the role of a class in a pattern from the
program element itself. Observer and Observable, e.g.,
are roles of classes in the Observer Pattern.
SomeObserverClass and AnObservableClass can be
two concrete classes in the two roles. Moreover, we even
distinguish an object instance from a design pattern
instance, if the latter contains class program elements. As
an example consider, that we could have different object
instances of SomeObserverClass each with several
object instances of AnObservableClass, or, e.g.
AnotherObservable attached to it.

Our analyses distinguish between static and dynamic
pattern restrictions or rules. The former restrict the code
structure the latter the runtime behavior. Analyzing with
the static restrictions results in a set of candidate occur-
rences in the code. In practice this set is large and pro-
grammers hardly want to screen all of them to detect the
actual instances. Therefore, we execute the program
under investigation and monitor the executions of the
candidate instances found by the static analysis with
respect to the dynamic restrictions. Figure 1 illustrates our
approach.

Figure 1. Static and Dynamic Analyses of Patterns.

The results of dynamic analyses depend on an exe-
cution of the candidate instances. Methods not executed
at run time cannot be evaluated with respect to the
dynamic pattern thus providing no information. However,
testing techniques and environments could guarantee that
each reachable program part is executed while testing (of
course not every program sequence). Using these tech-
niques, we may consider dynamic information available
for each candidate occurrence. Moreover, we argue that

parts that are less frequently executed are also less critical
for understanding.

For the understanding of a system's architecture, intra-
component communications patterns are less important.
We thus have the option to perform component pattern
analysis first and filter the candidates for communication
patterns inside components, leading to a tremendous
reduction of communication pattern candidates. However,
as our analyses are fast enough, we do not do so. Instead,
we use the information on high-level connectors in the
code as an additional indication for the correct partitio-
ning of the legacy system into its components. The
hypothesis behind this is that components have an
elaborated interaction interface to other components while
intra-component interactions are often implemented ad
hoc. Hence, we expect many sources and targets of com-
munication patterns to reside in different components
when choosing the right partitioning into components
while many of the essential communications become
intra-component for a partitioning not intended.

Unfortunately, the analyses are not unique. Hence, the
process of pattern and architecture detection is an
iterative, interactive process where analyses and visuali-
zations complement on another. However, visualizations
are not focused in this paper, we have discussed them in
more detail in another paper [5].

The static analyses are done with Recoder [6], a tool
to read, analyze and manipulate Java programs. In
principle, Recoder is a compiler front end. It reads the
source code and constructs the abstract syntax tree (AST).
Then it performs the static semantic analyses where it
resolves names and types. In addition to the semantic
analyses required by the programming language, it can
compute additional relations over the syntactical and
semantic elements, e.g. define-use-relations. It has a
programmer interface to add new, user-defined analyses
for the computation of arbitrary relations. In contrast to
standard compilers, Recoder provides all these entities
and relations as an API. In order to analyze the structure
of a program, we simply write a program accessing this
interface. The elements of candidates of pattern instances
retrieved by the static analysis are nodes in the AST
accessible via Recoder. Examples of such elements are
classes and methods that potentially play different roles in
a pattern.

These program parts are then instrumented using the
code manipulation interface of Recoder. We simply add
appropriate event generators tracing the dynamic execu-
tion of the candidates and providing runtime information.
Dynamic analyses are the corresponding event handlers,
checking that the protocol of the candidate execution
conforms to the expected dynamic pattern restrictions.

Although, currently Recoder investigates Java sour-
ces only, the approach and the architecture can be applied
to sources written in any typed language.

3. Pattern Detection

In this section, we present our approach to detect
design patterns by combining static and dynamic analyses
[7]. The static analysis computes potential program parts
playing a certain role in a design pattern. The dynamic
analysis further examines those candidates. We can thus
consider static and dynamic analyses as filters that narrow
the set of candidates in two steps. Subsection 3.1 dis-
cusses the static, Subsection 3.2 the dynamic analysis.

In the subsequent subsections, we use the Observer
Pattern (event notification) [1] as a running example for a
special architectural pattern.

According to its static rules, we consider every setting
where an object allows registering and optionally de-
registering other objects, and potentially notifies all
registered objects by calling their update method as an
instance of the Observer Pattern. Static analyses compute
a set of classes that fulfill the necessary properties for
subject and corresponding listener classes. Dynamic
analyses then monitor objects of these classes during
execution and check whether the interaction among them
satisfies the dynamic Observer rules.

The following naming conventions refer to roles of
certain methods of the Observer Pattern. Note, that this
naming convention is only used for explanations – the
static analysis does not refer to these names.
addListener: a method responsible for adding listener
objects to a subject object.
removeListener: a method responsible for removing
listener objects from a subject object.
notify: a method responsible for notifying the listeners
of a state change in the subject.
update: a method implemented by the listener objects,
called by the notify method.

We assume that addListener, removeListener
as well as notify are contained in a single class and are
not distributed among different hierarchies. This is not an
unnatural restriction, but reflects object-oriented design
principles.

3.1. Static Analysis

The program source code is the basis for the static
analysis. It is represented by an attributed abstract syntax
tree (AST) as computed by common compilers. A static
pattern is a relation over AST node objects. It is defined
by a predicate P using the information in the attributed
AST as axioms. Names of variables, methods and classes
nodes may be compared with each other but not with
constants, thus making the pattern definitions independent
on naming conventions.

The static analysis reads the sources of the program in
question and constructs an attributed AST. Then, it

computes the pattern relation P on the AST nodes and
provides the result as a set of Candidates, i.e., a set of
tuples of AST nodes with the appropriate static structure.
This set is a conservative approximation to the actual
patterns in the code.

An Observer Pattern candidate is a tuple of method
declarations of the form: (S.addListener, S.remove-
Listener, S.notify, L.update) where S is the class
declaration of the subject of observation and L the class
or interface declaration of the corresponding listeners.

In practice, the candidate set conforming to the static
rules is large. Brute force methods, as Prolog-like
resolution, are therefore not appropriate for use in
practical tools. The search should be more directed.

To produce the candidate set for our example, the
static analysis iterates over all program classes and their
methods. For each method m of a class c, we first assume
it plays the addListener or removeListener role.
Therefore, we consider each parameter type p of m a
potential listener, provided p is neither identical to nor a
super or a subclass of c (p ⊄ c ∧ c ⊄ p ∧ c ≠ p).
Such a relation would contradict the decoupling of
subject and listeners as required in the Observer Pattern
rules. We then determine all method calls issued from
inside methods of class c to some method u defined in
the potential listener class p. The methods of class c
containing the calls to p.u are considered potential
notify methods and the method p.u as update
method. To test whether method c.n might be a notify
method, we use the predicate isNotifyListener(c.n, p.u),
which is satisfied iff c.n calls p.u and p is not a
parameter of c.n. The result of the iteration is a set Y of
tuples: (S.addListener|removeListener, S.notify,
 L.update). To compute the final set of candidates, we
iterate over the tuples of Y.

We combine corresponding addListener and
removeListener methods into one pattern candidate. If
the S.addListener|removeListener entry of Y
satisfies the addListener predicate defined below, we
combine it with all other tuples in Y that have the same
notify and update entries to associate it with the
corresponding removeListener candidates. We also
consider the case that a removeListener method need
not be implemented and thus always construct tuples with
the removeListener entry set to null. The
addListener role is defined by the predicate
isAddListener(a), which tests, whether the method a
potentially stores the passed argument for future use, i.e.,
checks whether the argument
• is used on the right hand side of an assignment statement,

i.e., storing the argument locally in the object, or
• is passed as an argument to another method, i.e., potential

call of a store method.

This results in the following static analysis algorithm that
computes the static candidates C:

C := ∅
for each class c do

Y := ∅ // intermediate result
for each method m in c do

for each parameter type p in m
where p ⊄ c ∧ c ⊄ p ∧ c ≠ p do

for each call from c.n to p.u do
if isNotifyListener(c.n, p.u)

Y := Y ∪ {(c.m, c.n, p.u)}

for each (c.a1,c.n1,p1.u1) ∈ Y do
 for each (c.a2,c.n2,p2.u2) ∈ Y,
 where c.n1 = c.n2 ∧ p1.u1 = p2.u2) do

 if (isAddListener(c.a1))
if (c.a1 = c.a2)

C := C ∪ (c.a1, null, c.n1, p1.u1)
else

 C := C ∪ (c.a1, c.a2, c.n1, p1.u1)

Although the candidate set is computed quite

efficiently by the directed search algorithm, we still face
the problem of being too conservative with our approxi-
mation: the candidate set is large compared to the set of
actual pattern instances and not appropriate for providing
it to the system designer as it is.

There are three possible solutions: expert knowledge
like coding and naming conventions, dynamic analysis, or
static data flow analysis. We choose dynamic analyses.

3.2. Dynamic Analysis

The static analysis provided tuples of AST nodes in
the candidate set C. The dynamic analysis takes this set C
as its input. It monitors the execution of the nodes of
every tuple. It further tracks the effects of the executed
nodes to check whether the candidate satisfies the
dynamic pattern rules. In case of a rule violation, the
candidate is rejected.

Each element of a candidate tuple is contained in a
class definition or is a class definition itself. At runtime
we might have many object instances of these classes and
each should conform to the dynamic pattern.
Additionally, patterns require n:m, 1:n, or 1:1 relations
among objects of the implementing classes. For each
individual candidate tuple, the number of instance objects
of their classes could be restricted. The Observer Pattern,
e.g., requires a 1:n relation of the subject instances and
their listener instances.

Moreover, we might have more than one instance of
the Observer Pattern defined by the different subject and
listener classes.

Altogether, we trace a set of instances for each
candidate tuple of a pattern. Each may contain several

objects per position in the tuple. Considering our
Observer Pattern, we thus assign to every candidate tuple
(S.addListener, S.removeListener, S.notify,
 L.update), cf. Section 3.1, a set of instance tuples
(s.addListener, s.removeListener, s.notify,
 {l1.update … ln.update}) where s is an instance
(object) of class S and l1 … ln are instances of L. It is
not necessary to store the subject s three times. Further-
more, the addListener, removeListener, notify,
and update methods are always the same and already
captured in the candidate tuple. To avoid redundancies,
we only associate a set of tuples (s, { l1 … ln }) .

We monitor each node in a tuple of the candidates.
Whenever we dynamically execute such a monitored
node, we retrieve the entire candidate tuples in which the
node is contained. Depending on the node's unique role in
each single tuple, we execute dynamic test actions on the
object sets associated to the corresponding candidate
tuples.

In the Observer Pattern, we use the subject object as a
key to retrieve the affected object set of each candidate
tuple. To determine the proper object set, we distinguish
two cases: If the method complies with the
addListener, removeListener or notify roles, then
the key subject object is the object the method is called
on. If the method complies with the update role, then
the key subject object is the object the corresponding
notify method is called on. The dynamic test actions for
the Observer Pattern depend on the role of the method:
addListener: We add the passed argument to the
subject's list of listener objects. No protocol mismatch can
be detected here.
removeListener: We remove the passed argument from
the subject's list of listener objects. A protocol mismatch
occurs, if the listener to be removed has not been added
before. This can also be caused by a programming error.
We therefore allow turning off this criterion.
notify: We do not change the set of subject or listener
objects. A correct protocol updates all or no listener
objects (atomic update). To check this protocol, we have
to distinguish between the method entry and the method
exit. At the method entry, we mark all attached listener
objects as not updated. At the method exit we check
whether all or no listener objects have been marked as
updated. In this case, the protocol is satisfied. The other
case indicates a protocol violation. To accept the case of
not updating any listener objects as a protocol match
makes sense, because notify may be called, although the
subject's state did not change. Then there is no need to
notify the attached listeners.
update: We do not change the set of subject or listener
objects. If the update method has been called by the
notify method of the same candidate tuple, we mark the
listener object as updated. To recognize this, we need to

detect the source of the method call, a functionality to be
provided by the dynamic framework. A call of update
by the corresponding notify method is a protocol
mismatch if the listener object has not been attached
previously.

4. Further Patterns

So far, we only discussed the detection of just one
pattern, the Observer Pattern. In the same way, as we
detected this pattern, we also implemented static and
dynamic analyses to detect the Composite, Mediator,
Chain of Responsibility and Visitor Patterns [1].

4.1. Composite Pattern

4.1.1 The Static Analysis algorithm is given below:

C := ∅
for each class c do
 Y := ∅ // intermediate result
 for each method m in c do
 for each parameter type p in m
 where c ⊂ p do
 for each call from c.o to p.o do
 if isCompositeOperation(c.o, p.o)
 Y := Y ∪ {(c.m, c.o, p.o)}

for each (c1.a,c1.o,p1.o) ∈ Y do
 for each (c2.a,c.o,p2.o) ∈ Y do
 if (isAddComponent(c1.a))
 if (c1.o = c2.o ∧ p1.o = p2.o)
 if (c.a1 = c.a2)
 C := C ∪ (c.a1,null,c.n1,p1.u1)
 else
 C := C ∪ (c.a1,c.a2,c.n1,p1.u1)

The predicate isAddComponent exactly corresponds to
the isAddListener predicate and the isComposite-
Operation predicate exactly corresponds to the isNotify-
Listeners predicate. The main difference between the two
patterns is the intended decoupling of classes: The
Observer Pattern requires the Observers and Observable
to be unrelated; the Composite Pattern requires
Component and Composite to satify a subtype relation.

It is obvious, that this algorithm is similar to the static
analysis for the Observer Pattern and was therefore easy
to encode.

4.1.2 The Dynamic Analysis was even easier to port,
since both patterns do not differ in their protocol. Hence,
we applied the dynamic analysis algorithm of the
Observer Pattern detection unmodified.

4.2. Mediator Pattern

A Mediator pattern consists of at least two classes both

with a reference to each other. In general, a central
Mediator has arbitrary many users. The Mediator refers to
every User. Users in turn are connected back to their
Mediator. Usually, the User is attached to the Mediator at
construction. Later attachment by a method call is
possible, as well.

4.2.1 The Static Analysis checks for every class
(potential Mediator) if it has variables pointing to a User
knowing that Users have a variable of the Mediator’s
class or its superclass. The User must have the Mediator
class as an argument in its constructor or in at least one
other method. It is not possible that the Mediator and its
Users are of same type. As it does not make sense to
implement a Mediator pattern with only one User, we
reject candidates with only one possible user variable in
the Mediator:

C := ∅
for each class c do
 Y := ∅ // intermediate result
 for each variable v in c do
 for each class u := class(v) do
 for each variable v’ in u do
 if c=class(v’) ∨ c ⊂ class(v’)
 Y := Y ∪ {(c,v,u,v’)}

for each (c,v,u,v’) ∈ Y do
 for each method m in u do
 if “v’:= …” in body(m)
 for each parameter p in m do
 if c=class(p) ∨ c ⊂ class(p)
 C := C ∪ {(c,v,u,v’,m)}

To avoid redundant storing, {(c,v1,u1,v’1,m1),
(c,v2,u2,v’2,m2),…} is reduced to {(c, {v1,v2,…},
{u1,u2,…}, {v’1,v’2,…}, {m1,m2,…}), … }.

4.2.2 The Dynamic Analysis distinguishes different
Mediator objects for a Mediator candidate class M and
different objects for all its User classes U1 … Un. Again,
the variables pointing to the User and the method
receiving the Mediator reference are stored in the
candidate and need not to be captured in the dynamic
tuple of objects (mObject, { u1 … un }).

Whenever the method m handing over the Mediator
object to the User object is invoked, it is checked whether
it send a self-reference to the mediator object. Whenever,
the body of that method is executed, it is checked whether
this object reference is actually stored in the Mediator
typed variable v’ in the User.

4.3. Chain of Responsibility Pattern

A Chain of Responsibility consists of a list of classes,
each delegating to the next in the list and inheriting from
a same base class. All classes in the chain implement and
(potentially) invoke a Handler method defined in the
superclass. A call to the Handler method is (potentially)
delegated along the chain.

4.3.1 The Static Analysis looks for any (potential
Handler) class delegating to itself or one of its
superclasses. Moreover, it checks if that superclass
implements the potential Handler method invoked in the
Handler, as well:

C := ∅
for each class c do
 Y := ∅ // intermediate result
 for each variable v in c do
 for each class u := class(v) do
 if c=u ∨ c ⊂ u
 Y := Y ∪ {(c,v,u)}

for each (c,v,u) ∈ Y do
 for each method m in u do
 if “… v.m …” in body(m) in c
 C := C ∪ {(c,v,u,m)}

To avoid redundant storing, {(c1,v1,u1,m),
(c2,v2,u2,m),…} is reduced to {({c1,c2,…},
{v1,v2,…}, {u1,u2,…}, m), … }.

4.3.2 The Dynamic Analysis checks how the chain is
built up. An implementation of this pattern usually
declares the variables that constitute the chain of a
supertype of the actual chain classes. The dynamic
analysis detects the actual classes that are linked.
Afterwards one can decide by screening the classes,
which links constitute a Chain of Responsibility.

Note, that the Handler methods need not to be called
completely. While a sequence of calls to the Handler
methods would support the candidate being a Chain of
Responsibility instance, it is hard to define a protocol
violation.

4.4. Visitor Pattern

Visitors of an object structure of some Element classes

are invoked via some Visit method defined in Visitor
classes. They call back some operations of the Elements
to visit their state. Visitors inherit from a common
superclass. A concrete Visitor is attached to an Element
by an Accept method triggering the Visit method.

4.4.1 The Static Analysis starts to look for Elements
first. In such a class, we expect an Accept method with a

visitor class as a parameter. That parameter will be called
(visited) with the Element class as an argument, which
calls back the Element. In general the parameter of the
Accept method is declared of the Visitor’s superclass.

C := ∅
for each class c do //element?
 Y := ∅ // intermediate result
 for each method a in c do //accept?
 for each parameter p in a do
 for each c’=class(p) do //visitor?
 for each method v in c’ do //visit?
 if (“… x.v(y) …” in body(a) ∧
 c’=class(x) ∧ c=class(y))
 Y := Y ∪ {(c,a,c’,v)}

for each (c,a,c’,v) ∈ Y do
 for each method o in c do //call back?
 if “… z.o() …” in body(v) ∧ c=class(z)
 C := C ∪ {(c,a,c’,v)}

To avoid redundant storing, {(c,a,c’1,v), (c,a,
c’2,v),…} is stored as {(c,a,{c’1,c’2,…}, v), … }.

4.4.2 The Dynamic Analysis basically tests for object
identities. It checks if the (potential) Visitor object given
with a (potential) Accept method is actually the same
object the (potential) Visit method is invoked on.
Moreover, it checks if the parameter given with this Visit
method is actually the (potential) Element object. Finally,
it checks whether this element object is actually called
back from the Visitor object.

5. Evaluation

A problem that automatically occurs in this type of
analyses is how to verify the results experimentally.
Ideally, one would compare the analysis results with
pattern documentation of the analyzed software.
Unfortunately, no real world software is that well
documented. We cannot assume that patterns are
documented (otherwise we would have easier ways to
understand software systems). The analyzer can detect
patterns and by-hand checking we can assure them as
correct, but it is hard to estimate the number of
undiscovered patterns, i.e. the true negatives.

Therefore one has to start the validation in systems
that are known.

The GOF-book [1] gives example implementations for
the described patterns. These implementations are
implemented in C++, but it was easy to translate them to
Java. Moreover, to make the evaluation more credible, we
insertet some fault patterns similar to the correct patterns.
The analysis tool did not detect any false positive patterns
and it did detect all real patterns.

To continue the verifying process, we applied our tool
to the source code of our tool itself including the
Recoder packages. In this code the Observers were well
documented. Hence we were able to count false positives
and true negatives.

Then we applied it to the SwingSet2 example of the
JDK 1.3.1 including the javax.swing.* packages. In order
to determine the number of Observers in this unkown
software, we trusted the strict naming conventions of
SUN's library programmers. We firstly issued a

grep"add\w*Listener\w*{"

and checked the hits manually for correctness. To catch
Observer Pattern instances violating the naming
conventions, as well, we also screened the output of our
tool and added the remaining occurrences. An example of
an Observer Pattern instance violating the naming
conventions is the DefaultTableColumnModel in
the javax.swing.table package with methods
addColumn in the addListener-role, removeColumn
in the removeListener-role and recalcWidthCache
in the notify-role. This procedure yields a fairly good
approximation of the number of Observer Patterns really
contained in the code.

Finally, we analyzed the other patterns. Unfortunately,
these patterns have not been documented that well and no
naming conventions applied. Hence, we only excluded
the detection of false positives by screening the analysis
results. An estimation of true negatives was not possible.

5.1. Observers in our Analyzer Tool

Statistics about our analysis tool including the
Recoder package are given in Table 1.

Table 1. Statistics on our tool including the Recoder.
 Classes Methods Observers1
Recoder 555 6734 2
VizzAnalyzer 43 214 3
Sum 598 6948 5

The main task of the static algorithm is to reduce the

amount of candidates. In case of the Observer Pattern
detection, the amount of possible candidates is equal to
9.7×1013 calculated by the formula:

 







+








3

6948
4

6948

1 Subjects used neither delegation nor sub-classes of subjects.

The former term accounts for the 6948 methods in the
4 possible roles, the latter term models tuples with empty
removeListener role. Our static analysis applies the
isAddListener and isNotifyListeners predicates as main
criteria to reduce this amount of candidates to 28030
tuples containing all 5 Observer Pattern occurrences. The
corresponding analysis phase needs about 70 seconds on
a Pentium III, 500Mhz, 256MB RAM, running Windows
NT 4 with JDK 1.3.1.

Table 2 shows the results of the dynamic analysis. The
“Detected” row lists the numbers of tuples of the corres-
ponding category detected by our tool, whereas the
“Real” row lists the number of tuples of the correspon-
ding category that represent real Observer occurrences.

Table 2. Results of dynamic analysis of our analysis tool.
 Full

1:n
match

Full
1:1
match

May
match

No
decision

Mis-
match

Detected 4 5 67 18638 9316
Real 4 0 0 1 0

The Full 1:n match category shows that our tool

classified all Observer Pattern occurrences used in that
program run correctly. The Full 1:1 match column
reveals that delegation confuses our analyses. The reason
is, that delegation shows the same static and dynamic
properties as the Observer Pattern. The only difference is
that delegation always constitutes a 1:1 relation. This is
one of the reasons the static algorithm produces a lot of
false positives. The following code fragment illustrates
this effect:

class Delegate {
 X delegate;

//is detected as addListener

 void set(X x) { delegate =x;}

 //is detected as notify
 void internalAction(){delegate. ();}
}

A 1:1 relation is suspicious, but need not be a
mismatch, since this may be a valid configuration of the
Observer Pattern. In case the set method of Delegate
objects is called many times followed by a call of
doSomething, our algorithm detects doSomething's
violations of the notify role. In our case, all 5 tuples in
the Full 1:1 match class were actually delegations.

The May match class contains no Observer
occurrence. In over 70% of the tuples, either only the
addListener or only the notify method was called,
but these methods cannot provoke a protocol mismatch.

The Observer Pattern tuple in category No decision
has not been executed, and therefore not been classified.

If we ensured by employing testing technology that every
candidate method gets executed, we could classify all
tuples and thus achieve an empty No decision set.

All detected mismatches were correct, i.e., these tuples
did not represent an implementation of the Observer
Pattern.

5.2. Observer in the SwingSet2 Example

To evaluate the quality of our analyses in this case
study, we first need to determine the number of Observer
Pattern occurrences in the example code. Since SUN's
developers obey naming conventions, we found quite a
few pattern occurrences. To catch also Observer pattern
occurrences violating the naming conventions, we
screened the output of our tool and added the remaining
occurrences. This procedure yields a fairly good
approximation of the number of Observer patterns
actually contained in the code and results in the statistics
presented in Table 3.

Table 3. Statistics about the SwingSet2 example including
javax.swing.* packages.

 Classes Methods Observers2
Swing 1357 11478 59
SwingSet2 124 403 0
Sum 1481 11881 59

The high number of 59 Observer Pattern occurrences

in Table 3 results from our way of counting: Since we
identify the particular method roles, a subject class
containing several notify methods contributes to
multiple Observer Pattern occurrences. We count every
such combination as one separate occurrence.

In the same way as in the previous case study, the
static analysis reduces the number of 8.3×1014 possible
candidates to 200 738 tuples containing all 59 Observer
Pattern occurrences. The corresponding analysis phase
needs about 190 seconds on a Pentium III, 500Mhz,
256MB RAM, running Windows NT 4 with JDK 1.3.1.

Table 4. Results of dynamic analysis for the SwingSet2
example.

 Full
1:n
match

Full
1:1
match

May
match

No
decision

Mis-
match

Detected 13 805 36 85620 114264
Real 13 20 2 24 0

Table 4 shows the results of the dynamic analysis. The

“Detected” row lists the numbers of tuples of the corres-
ponding category detected by our tool, whereas the

2 Subjects using neither delegation nor sub-classes of subjects.

“Real” row lists the number of tuples of the correspon-
ding category that represent real Observer occurrences.

The results show that all 13 Observer Pattern
occurrences in the full 1:n match category have been
classified correctly by our analyses. Besides the 20 real
Observer Pattern occurrences the Full 1:1 match category
again contains a lot of Delegation Pattern occurrences as
in the Recoder example. The same holds for the May
match category. Note that the Mismatch category again
does not contain a real Observer Pattern occurrence, i.e.,
all detected mismatches were correct.

5.3. Further Patterns

To validate our analyses algorithms for the Mediator,
Chain of Responsibility and Visitor Patterns, we applied
them to our tool itself. We first discuss the results of the
static analyses and then those of the dynamic analyses.

The results from the static analyses are each presented
as a table of the detected candidate tuples.

The static analysis of the Mediator Pattern detected
298 possible tuples. The high number of candidates can
be misleading, but one pattern instance may lead to a set
of candidate tuples, because we consider all possible
combinations of roles.

The static analysis of the Chain of Responsibility
Pattern provided 349 tuples. The tuples represent
elements of the chain linked together and not a whole
chain because a static analysis cannot conclude how the
instances of the classes are connected together. Only a
bunch of different elements probably linked together
somehow are detected statically. In some cases, there
were just only one possible class that the chain is
constituted from. However, at runtime a long chain of
objects of that instance are observed. The high number of
tuples is somewhat misleading: The highest number of
different classes that potentially constitute a Chain of
Responsibility was seventeen; all classes issued a call to
the same method of a common super class. The analysis
has not included a detection of these superclass calls. This
is not a restriction, as they will be detected anyway during
the analysis of the superclass.

When used in visualizations, the analyzed Recoder
application visits all AST nodes and presents them in
some way. In this setting, we detected the
PrettyPrinter class as a Visitor. The program has
implemented a subclass of the PrettyPrinter and the
analysis detected 1701 different pairs of instances that
can constitute the whole Visitor pattern. That also
included some possible subclasses. The high number of
detected elements can be seen as very misleading, most of
the detected pairs were connected to the same visitor and
they had the same Accept methods. This fact can also be

interpreted as the static analysis detected only a few
Visitor pattern instances but those patterns are very large.

Table 5. Result after the static analysis. The numbers
show the statically detected candidate tuples per pattern.

Mediator Chain of Responsibility Visitor
298 349 1701

The dynamic analysis for the Mediator pattern sorted

out most candidates. After an execution of the test
program, the set of patterns was reduced; they were either
mismatches or the actual methods were not executed in
the program run. The 18 matched tuples did not contain
any false positives. By manual screening we have
grouped them into six pattern instances.

Table 6. Result of the dynamic analysis of Mediator.

Static
Candidates

Match Mis-
match

No
Decision

298 18 60 219

The dynamic analysis of the Chain of Responsibility

pattern rejected almost all candidates. An explanation can
be that all possible static chains were not executed or the
method calls were connected to a different object that was
not a part of the potential chain. Manual screening revea-
led that the 24 matched tuples did not contain any false
positives and are connected to each other in one chain.

Table 7. Result of the dynamic analysis of Chain of

Responsibility.
Static
Candidates

Match Mis-
match

No
Decision

349 24 158 167

The dynamic check of the Visitor concluded that 349

of the static candidates really are parts of actual patterns.
No candidates visited were rejected. This indicates that
the static Visitor pattern is already pretty distinctive. By
manual screening we concluded that these 349 dynamic
candidates together represent two instances of Visitor
patterns. No false positives were detected.

Table 8. Result of the dynamic analysis of Visitor.
Static
Candidates

Match Mis-
match

No
Decision

1701 349 0 1352
Altogether, we obtained the following results from our

analysis including the manual screening:

Table 9. Result after the dynamic check and manual
screening per pattern.

Mediator Chain of responsibility Visitor
6 1 2

After having performed the above analyses of our
analysis program, we carried out an expanded analysis
with other test programs that also used the Recoder
library. We hoped that they would execute more
candidates from the Recoder library that had been put in
the No Decisionc class in the first try. Unfortunately,
these test programs did not generate more information,
because there have still been some candidates were not
executed dynamically.

However, we have a clear indication that we should to
improve the dynamic analyses: If a pattern candidate
occurrence is not executed during a concrete program run,
our dynamic analyses cannot provide any evidence for its
conformance to or its violation of the pattern rules. We
will avoid this problem using results from testing theory.
These ensure that every point of programs, if reachable at
all, gets executed at least once.

However, once a candidate is visited at in the dynamic
analyses, the dynamic pattern rules are distinctive enough
to reject false positives.

6. Generation of Analyzers

Hand-coded pattern analyses are the solution for the
standard patterns. Non-standard patterns that need to be
detected could be added easily by modifying the pattern
recognition as demonstrated with the patterns above – to
see that, compare the different analysis algorithms: they
are quite similar. However, in order to be complete and
general and to avoid such coding, the analyses should be
generated from a pattern specification.

Our generator accepts a specification language, which
is based on predicate calculus for static constraints and
defines pre- and post-constraints to check the dynamic
behavior of candidate methods. The language design
allows specifying arbitrary interaction patterns.

The generation of the static analysis uses the search
algorithm already applied in our static analysis algorithms
for the Observer and the Composite Patterns as template.
This means, we iterate over the abstract syntax tree of the
program to be analyzed and check the static constraints
(predicates) specified for the pattern to be detected. When
we are looking for a relation between classes, e.g., the
specification contains a predicate concerning class
entities. The generator produces a loop over all classes of
the program to be analyzed and inserts check code to
check the specified relation. This translates to further
loops depending on the nesting of the entities contained in
the specified relation and/or if-commands. To query the
abstract syntax, we use our Recoder library.

The generation of the dynamic analysis is much
harder, since we currently do not know if one generic
data structure is sufficiently suited to simulate all possible
protocols. This is why our specification for the dynamic

part of a pattern requires defining the data structure for
the simulator and the actions to perform. It thus corres-
ponds exactly to giving an implementation for the dyna-
mic analysis, i.e., to the event handlers. However, events
are generated automatically. The code is instrumented
automatically at the statically recognized candidates, usu-
ally method entries and exits and hands over parameters.
These predefined hooks for the event listeners checking
the dynamic pattern simplify the task significantly.

At the moment, we are already able to generate the
presented analyses to detect the Observer Pattern. To
validate that our specification language and the generator
are general enough, we currently try to detect the Media-
tor Pattern as well. The problem is to keep the language
small and simple enough so that pattern specifications are
at the right level of abstraction and more appropriate than
directly coding the analysis algorithms.

7. Related Work

Quite a bit of work has already been done in the field
of automatic pattern detection.

Keller et al. [8] describe a static analysis to discover
design patterns (Template Method, Factory Method and
Bridge) from C++ systems. The authors identify the
necessity for human insight into the problem domain of
the software at hand, at least for detecting the Bridge
pattern due to the large number of false positives.

The Pat system [9] detects structural design patterns by
extracting design information from C++ header files and
storing them as Prolog facts. Patterns are expressed as
rules and searching is done by executing Prolog queries.

Brown [10] uses dynamic information, analyzing the
flow of messages. His approach is restricted to detecting
design patterns in Smalltalk, since he only regards flows
in VisualWorks for Smalltalk. He therefore annotates the
Smalltalk runtime environment. Another drawback is, that
he only gathers type information at periodic events.

Carriere et al. [11] also employ code instrumentation
to extract dynamic information to analyze and transform
architectures. The presented approach only identifies
communication primitives, but no complex protocols.

The present paper extends our previous results [7] in
two ways. Firstly, it implements more than the Observer
Pattern analyzer and extends the experiments to unknown
code. These extensions show that the results (and
shortcomings in the dynamic analysis) can be generalized.
Secondly, it sketches our approach to and first results of
automatic generation of analyses.

8. Conclusion

We presented an approach to support the

understanding of software systems by detecting design

patterns automatically. We use static and dynamic
analyses. More specifically, we filtered information
gained by static pattern detection on the code using the
observations of dynamic code execution. This approach
improves the quality of the results tremendously as
protocol conformance of a pattern can be checked. We
argued that neither static nor dynamic analyses by
themselves provide an adequate approach to find patterns
in software systems. The number of false positives is
small, in most experiments even zero.

However, if pattern candidates are not executed during
the dynamic analyses we cannot provide any evidence for
its conformance to or its violation of the protocol. Hence
the number of true negatives could be large. Currently,
we try to apply results from test theory to ensure that
every (reachable) candidate gets eventually executed. To
further reduce the true negatives, we plan to integrate data
flow analyses and checking of naming conventions into
our static analyses.

9. References

[1] Gamma, E; R. Helm, R. Johnson, and J. Vlissides (1995),
“Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley Professional Computing Series,
Addison-Wesley Publishing Company, New York, NY.
[2] Genssler, T.; B. Mohr, B. Schulz and W. Zimmer (1998),
“On the Computer Aided Introduction of Design Patterns into
Object-Oriented Systems”. In Proc. 27th TOOLS.
[3] D. Garlan, M. Shaw (1993), “An Introduction to Software
Architecture”, In Advances in Software Engineering and
Knowledge Engineering, vol. 1, World Scientific Publishing
Company, Singapore, pp. 1-40.
[4] Heuzeroth, D., W. Löwe, A. Ludwig, and U. Aßmann
(2001), “Aspect-Oriented Configuration and Adaptation of
Component Communication”, In 3rd Int. Conf. GCSE, Springer,
LNCS 2186, p. 58 ff.
[5] Heuzeroth, D. and W. Löwe (2003), “Understanding
Architecture Through Structure and Behavior Visualization” In:
Kang Zhang (Ed.). “Software Visualization - From Theory to
Practice”, Kluwer Academic Publishers.
[6] Ludwig, A., R. Neumann, U. Aßmann, and D. Heuzeroth
(2001), “RECODER Homepage”, http://recoder.sf.net.
[7] Heuzeroth, D., T. Holl, and W. Löwe (2002), “Combining
Static and Dynamic Analyses to Detect Interaction Patterns”, In
Proc. 6th Int. Conf. IDPT.
[8] Keller, R. K., R. Schauer, S. Robitaille, and P. Page (1999),
“Pattern-Based Reverse-Engineering of Design Components”,
In Proc. ISCE, pp. 226-235.
[9] Prechelt, L. and C. Krämer (1998), “Functionality versus
Practicality: Employing Existing Tools for Recovering
Structural Design Patterns”, J.UCS: 4, 12, 866ff.
[10] Brown, K. (1997), “Design Reverse-Engineering and
Automated Design Pattern Detection in Smalltalk”, Master
Thesis, Univserity of Illinois at Urbana-Champaign
[11] Carriere, S. J., S. G. Woods, and R. Kazman (1999),
“Software Architectural Transformation”, In Proc. 6th WCRE.

