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The effect of articular joint shape and congruence on kinematics,
contact stress, and the natural progression of joint disease
continues to be a topic of interest in the orthopedic biomechanics
literature. Currently, the most widely used metrics of assessing
skeletal joint shape and congruence are based on average princi-
pal curvatures across the articular surfaces. Here we propose a
method for comparing articular joint shape and quantifying
joint congruence based on three-dimensional (3D) histograms of
curvature—shape descriptors that preserve spatial information.
Illustrated by experimental results from the trapeziometacarpal
joint, this method could help unveil the interrelations between
joint shape and function and provide much needed insight for the
high incidence of osteoarthritis (OA)—a mechanically mediated
disease whose onset has been hypothesized to be precipitated by
joint incongruity. [DOI: 10.1115/1.4027938]

1 Introduction

In the skeletal system, form and function are closely related.
Studies in evolutionary biology have continually sought to discern
the morphological differences that have led to functional differen-
ces among taxa [1,2]. Similarly, differences in articular shape and
congruence within species may grant insight into pathological
processes such as OA [3–7]—a progressive disease of articular
cartilage and bone [8–11] whose underlying pathoetiology is
believed to be mediated by altered joint mechanics [12–14].

Quantitative analyses of articular morphology that span beyond
simple morphometric measurements are necessary to identify
subtle differences that may play a significant role in joint biome-
chanics. The most widely used metrics for describing articular

joint shape are the average principal (minimum, kmin, and maxi-
mum, kmax) curvatures, the Gaussian curvature (kgauss), the mean
curvature (kmean), and the average root-mean-square curvature
(krms) (Appendix A) [1,15–17]. While these metrics provide im-
portant information on the overall curvature of a surface, they
may not discriminate between differently shaped surfaces because
they do not preserve spatial information. An alternative method
for describing joint shape is based on fitting circles or ellipsoids to
the articular surfaces [18], but this method is not extendable
to joints with concave and convex portions (e.g., saddle joints).
Statistical shape models (SSMs) have also been used to describe
whole bone shape [19–21] and to identify drastic changes in bony
morphology that occur with severe pathology [21,22]. The feasi-
bility of SSMs and circle- or ellipsoid-fitting methods in identify-
ing subtle anatomical differences in articular geometry, however,
has not been demonstrated.

Joint congruence—described as the agreement between mating
articular surfaces—is related to the ability of a joint to distribute
stresses and is highly depended on joint posture. Based on Hertz-
ian contact theory, joint congruence has been expressed in terms
of the curvature of two opposing surfaces at the point of contact
(Appendix B) [15,23]. Various implementations of this theory
have been proposed, such as the utilization of average principal
curvatures across the whole articular areas, average principal
curvatures from the estimated areas of contact, and principal cur-
vatures from the centroids of the contact areas [15,24]. Average
curvature metrics based on the whole articular surface areas do
not incorporate joint posture information, which is important in
the assessment of congruence. Utilization of the principal curva-
tures from the contact areas is an improved alternative, but the
in vivo determination of contact areas in small joints remains
challenging with current limitations in imaging resolution.

Given that the similarity between two complex geometries
cannot be assessed effectively with scalar metrics, which do not
consider spatial correspondence between the surfaces under com-
parison, we propose to represent the articular surfaces with polar
histograms of curvature—compact 3D shape representations that
preserve spatial information [25]. In addition to using the histo-
grams to compare the articular surface of a given bone across
cohorts of subjects (Sec. 2), we propose a method that integrates
the histogram representations from the two mating surfaces of a
joint into a posture-dependent congruence measure (Sec. 3). To
illustrate the efficacy of the proposed methods, we present results
from the saddle-shaped trapeziometacarpal joint, located at the
base of the thumb (Sec. 4).

2 Articular Shape Analysis

The methods described here are intended for 3D models, such as
nonuniform rational b-spline (NURBS) surfaces, polygon meshes,
or point-clouds of articular joints. The analysis is performed on the
articular facets, after they have been selected from the whole bone
models. In Secs. 2.1 and 2.2, we describe how the articular surface
of a bone is represented by a shape descriptor, which in our case is
a polar histogram of curvature (Sec. 2.1), and how shape descriptors
are compared across subjects to determine group differences in the
articular morphology of a given bone (Sec. 2.2).

2.1 Polar Histograms of Curvature as Articular Shape
Descriptors. Given subject-specific 3D articular surface models,
two key concepts must be considered in order to enable efficient
and meaningful shape comparison: model abstraction and align-
ment. Model abstraction entails defining a structured representa-
tion—a fixed-dimensional feature vector or a shape descriptor of
the anatomy—that contains predefined shape information, e.g.,
local curvature. Alignment of the objects to be compared ensures
that there is anatomically meaningful correspondence among the
shape descriptors of different subjects. In this section, we describe
a shape descriptor for articular joint surfaces, which through a
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series of preprocessing steps is rendered invariant to translation,
rotation, and scaling, thereby facilitating intersubject comparison.

We propose that subject-specific articular geometry be repre-
sented by a 3D polar histogram [25] of curvature. Since curvature
is not invariant to size, we suggest that the articular surface
models be isotropically scaled to remove the effect of size, but to
preserve shape. The articular surfaces of anatomical joints typi-
cally contain a distinct inflection point, which is used as the pole
of the coordinate system. With the exception of ball-and-socket
type joints, where it may be more appropriate to use 2D shell his-
tograms [25], most articular joints, such as condyloid, hinge, and
saddle joints, are also characterized by directions of maximum
and minimum curvature, one of which is used as the polar axis
(Fig. 1). The distance from the pole and the angle from the polar
axis, r and h, respectively, are then two of the dimensions of the
histogram, whereas curvature is the third. In short, while a 1D his-
togram of curvatures across the articular surface requires binning
of the range of curvature values, a 3D polar histogram requires
binning of the r range (0 to rmax)—shells—and the h range
(0–2p)—sectors, as well as the curvature range (0 to kmax). Since
the articular surface is 3D, but the polar coordinate system is 2D,
the coordinate system is projected as orthogonal to the surface
normal of the inflection point. Principal curvatures across the
articular surface may be computed directly on the meshed surface
[26] or on an analytic surface fitted to the vertices [15]. To ensure
that the histogram optimally represents the structure of the under-
lying data, we suggest that the histogram bin size be optimized in
accordance with the data by using previously proposed rules [27].

2.2 Intersubject Comparison With Support Vector
Machines (SVM). To identify group differences in a given
sample, we propose using the SVM learning algorithm, which
has been shown to perform well in the classification of

high-dimensional data [28]. Briefly, the SVM algorithm is a non-
probabilistic classifier which, given n-dimensional data points
from x groups, aims to determine the optimal separation of the
n-dimensional space such that each data point is furthest apart
from the separation boundary. When a linear classifier is chosen,
the separation boundary is a line for 2D data, a plane for 3D data,
and a hyperplane for 4Dþ data. Depending on the complexity of
the data, kernel functions may be used instead of linear classifiers.
Testing for group differences can be achieved with a Student’s t
test of the signed distance between each histogram and the opti-
mal separation hyperplane. The method proposed here differs
from a statistical test of the average principal curvatures in
that the articular shapes are represented and compared in a high-
dimensional space to determine the optimal separation hyper-
plane. The subsequent use of the signed distance from the hyper-
plane is equivalent to data-dimensionality reduction.

3 Joint Congruence

Congruence is determined here by computing a modified Bhat-
tacharyya distance [29] between the polar histograms of the mat-
ing articular surfaces. The Bhattacharyya distance is well-suited
for determining the dissimilarity between two discrete probability
distributions—e.g., two histograms H1 and H2—in a way that
meaningfully represents the dissimilarity of the represented 3D
objects [30]

DB H1;H2ð Þ ¼ � ln
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 xð ÞH2ðx

p
Þ

 !
(1)

This, however, is a metric that is based solely on geometry, while
the congruence of a joint depends on both bone geometry and

Fig. 1 Polar coordinate systems on the mating articular surfaces of a joint, illustrating the
dimensions of the 3D histograms: the radial coordinate or the distance from the pole (r), the
angular coordinate or the angle from the polar axis (h), and curvature (k)
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physiological joint position. Therefore, we propose computing the
histogram of one of the articular surfaces in the coordinate system
of its mating articular surface and calling it a dynamic histogram,
dH2. The dissimilarity between H1 and dH2 is then computed at
each position, and this serves as a position-dependent congruence
measure. We further propose incorporating a linear weighting
factor that is inversely proportional to the bone-to-bone distance
for each bin-to-bin comparison. This weighting factor ensures that
the parts of the mating articular-surface areas that are in closer
physical proximity have a higher weight on the final congruence
metric. First, the minimum bone-to-bone distance is computed for
each point on the articular surfaces, creating a map of interbone
distances. The distance map is simplified to mean distances for
each physical bin (r x h), yielding a height field, h, of b2 elements,
which serves as a look-up table to assist in determining the weight
of each bin-to-bin comparison. The simplification is implemented
because the points within a bin may have different minimum
bone-to-bone distances. In Fig. 1, for example, the bone-to-bone
distance for the highlighted physical bins is represented by one
mean value, h30, because in each of the seven bins in H1(5,6,k),
there are points with different bone-to-bone distances. The surface
points are classified into each curvature range independently of
their physical location within the highlighted physical bin. The
weight, wx, of each bin, with a mean bone-to-bone distance of hx,
is then

wx ¼
b2

hx �
X

y¼1:b2

1

hy

(2)

and positional joint congruence, pJC; is computed as follows:

pJC H1; dH2ð Þ ¼ � ln
X
x2X

wx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 xð Þ � dH2ðx

p
Þ

 !
(3)

4 Implementation in the Thumb Carpometacarpal

(CMC) Joint

The thumb CMC joint, located at the base of the thumb, is a
saddle-shaped articulation that is often susceptible to OA. Mor-
phological changes in the articular surface of the trapezium—the
carpal bone in the joint—at advanced stages of the disease have
been identified computationally and are detectible even observa-
tionally (Fig. 2). To our knowledge, potential differences between

healthy subjects and patients in the early stages of the disease
have not been reported in current literature. We analyzed the
CMC joints (Fig. 3(a)) of 35 subjects with early stage CMC OA
(Eaton Stage I/II) [31] and 35 age-matched healthy subjects to
determine group differences in the articular shape of the trape-
zium (Sec. 4.1) and in the congruence of the joint across eight
scanned positions (Sec. 4.2), with our methods and with the previ-
ously used metrics. Prior to enrollment in the study, the arthritic
subjects were screened by a board-certified orthopedic surgeon to
insure that they had one or more positive clinical signs and little
or no radiographic evidence of CMC OA.

4.1 Articular Shape of the Trapezium. After receiving
approval from our Institutional Review Board, computed
tomography (CT) image volumes of the dominant wrists and
thumbs of all the subjects were captured at a resolution of
0.3 mm� 0.3 mm� 0.625 mm or better. The bones in the CMC
joint were segmented semi-automatically (Mimics, Leuven,
Belgium) from the CT volumes and exported as 3D meshed surfa-
ces (Fig. 3(b)). The trapezial bone models were isotropically

scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vavg=Vs

� �
3

q
, where Vs is the subject-specific bone vol-

ume and Vavg is the average bone volume in a dataset of s subjects.
The isotropic scaling of the bone models, which involves scaling
of linear measures, i.e., the coordinates of the control points, can
also be carried out with a surface-area-based factor, but since we
found a direct correlation between the two factors (R2¼ 0.97;
p< 0.0001), we proceeded to using the volume-based factor. The
articular surfaces on the trapezium were manually selected by fol-
lowing the subchondral margins on the bone models (Fig. 3(b)). A
fifth order polynomial surface was fitted to the vertices of the
meshed articular surface (Fig. 3(c)) [15]. Principal curvature
magnitudes and directions were then computed at 400 pts/mm2

uniformly sampled across the fitted surface (Fig. 3(d)). The local
inflection point on each surface was determined with a second
partial derivative test (Appendix C) and the direction of maximum
curvature for the surface was determined by computing a sum of
the maximum curvature vector field. kmin and kmax histograms, as
well as average kmin and kmax, were then determined for each sub-
ject. A histogram bin size of 7 was chosen for each of the three
dimensions of the histogram.

An SVM with a linear classifier was used to find the optimal
separation hyperplane between the histograms of the healthy and
the early OA groups. A Student’s t test of the signed distance
from each histogram to the optimal hyperplane demonstrated a

Fig. 2 Illustration of arthritic progressions in the trapezium, with 3D bone models extracted
from CT scans of volunteers (normal, early OA) and excised trapezia of patients who underwent
trapeziectomy (late stage OA)
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significant difference between the articular shape of the trapezia
of healthy subjects and the trapezia of patients with early stage
OA (p¼ 0.0079 for kmin and p¼ 0.0133 for kmax histograms;
Fig. 3). The significance level was set at 0.025 to account for mul-
tiple comparisons. The differences between the average principal
curvatures of the articular surfaces in healthy trapezia and OA
trapezia were not statistically significant (normal subjects:
kmin¼�73 6 17 m�1, kmax¼ 120 6 20 m�1; early OA subjects:
kmin¼�85 6 26 m�1, kmax¼ 110 6 24 m�1; Student’s t-test results:
pmin¼ 0.578, pmax¼ 0.1053).

4.2 Trapeziometacarpal Joint Congruence. All the partici-
pating subjects were scanned with their wrists and thumbs in a
neutral position, during three functional tasks (key pinch, jar
grasp, and jar open), and during four maximum thumb range-of-
motion positions (extension, flexion, abduction, and adduction).
Thumb posture was standardized with custom-designed polycar-
bonate jigs. During the functional tasks, subjects were scanned
with their hand relaxed in the prescribed positions. 3D bone mod-
els were generated by segmenting the neutral position CT volume
and articular facets were manually delineated on both the trape-
zium and metacarpal, as previously described. 3D kinematics of
the trapezium and metacarpal from the neutral position to the
remaining positions were determined with a markerless bone
registration algorithm [32]. Joint congruence, pJC, for each thumb
position was then computed from the kmax histogram of the trape-
zium and the kmin dynamic histogram of the metacarpal, since the
directions of principal curvatures in the trapezium and metacarpal

are offset by approximately 90 deg. The previously used congru-
ence index (CI) was also computed for comparison [15].

A multivariate analysis of variance of the pJC across different
joint postures revealed that the thumb CMC joints in subjects with
early signs of OA are less congruent than in normal subjects
(Fig. 4; the p values of the post hoc tests for pairwise comparisons
were <0.0001, 0.0001, 0.0289, 0.0001, 0.0071, 0.0003, 0.0045,
and 0.0083 for neutral, key pinch, jar grasp, jar open, extension,
flexion, abduction, and adduction postures, respectively). In con-
trast, the CI was lower (better congruence) for the OA group than
the healthy group (p< 0.0001; Fig. 4).

5 Discussion

We have described a method that enables the comparison of 3D
articular joint surfaces across subjects and have defined a joint
congruence measure that takes into account articular morphology
and physiological position. With accompanying experiments, we
demonstrated that the proposed methods: (1) can identify morpho-
logical changes that occur in the early stages of CMC OA, which
previous average curvature metrics did not identify and (2) sug-
gest that joints in the early stage of OA have decreased congru-
ence, while, in contrast, the previously used CI suggests that
arthritic joints have better congruence than healthy joints. Since
better congruence is associated with higher mechanical stability, it
is highly unlikely that arthritic joints have higher congruence than
healthy joints from subjects of the same age. CI is based on mor-
phology alone and does not account for positional information.
The same research group that proposed the CI has demonstrated

Fig. 3 (a) 3D bone models of a wrist and hand from a CT scan, (b) manually selected subchondral facets on the
trapeziometacarpal joint, (c) the fifth order polynomial surfaces fitted to the facets, and (d) minimum curvature vector fields on
the fitted surface ranging from 0 to 0.45 mm21, represented here at lower resolution, for visual purposes

Fig. 4 The mean (6SD) position specific dissimilarity measure, pJC, in the normal
and arthritic groups during (a) neutral, (b) key pinch, (c) jar grasp, (d) jar open, (e)
extension, (f) flexion, (g) abduction, and (h) adduction position, as well as the
previously used CI, where, for both pJC and CI, a higher value indicates lower
congruence
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that, contrary to what the CI indicates, better geometrical similar-
ity between two mating articular surfaces does not always result
in improved joint contact [33].

While offering several advantages in comparison to the
previous metrics, the methods proposed here have limitations or
characteristics that must be considered. First, our congruence
measure compares the magnitude, but not the direction, of the
principal curvatures of corresponding areas in the mating surfaces.
The simplification of the principal directions of curvature of the
mating surfaces to 90 deg is consistent with previous methods, but
the advantage of the current implementation is that the compari-
son of magnitudes is position-dependent. Second, the purpose of
implementing a weighting factor in the congruence measure is to
amplify the contribution of curvature comparisons in areas that
are in closer physical proximity. We chose a weighting factor that
is linearly proportional to the bone-to-bone proximity, but other
nonlinear functions may be more appropriate. We have not inves-
tigated the utility of other weighting factors. We found, however,
that when no weighting factor is implemented, the dissimilarity
measure yields no group differences. Third, the construction of
polar histograms may be difficult to achieve in severely arthritic
joints, where there may be irregular transformations in the articu-
lar surfaces. The current methods are intended for investigating
subtler differences, rather than cases involving gross pathological
change.

Exploring tools that are sensitive to fine variations in bony
morphology will help evolutionary biologists and orthopedic
biomechanists track natural variations in skeletal functional mor-
phology that may relate to adaptation and, most importantly,
disease. We recognize that there are other approaches for shape
analysis that preserve spatial information that could yield desira-
ble results, e.g., SSMs, spherical harmonics, and other feature-
based descriptors [34]. These methods, however, have not been
employed for articular surface comparison in current literature,
and performing a comparative analysis is beyond the scope of
this paper. Our purpose was to offer an alternate approach to the
currently used average-curvature metrics for the shape analysis
and congruence of articular joints and let the particular scientific
questions and future experimental results dictate the utility of
each method.

Acknowledgment

The authors would like to thank Dr. A.-P. C. Weiss, Dr. A. L.
Ladd, A. Garcia, J. B. Schwartz, J. C. Tarrant, T. K. Patel, and B.
Berg for their contributions to this work. This work was supported
by NIH AR059185.

Nomenclature

CI ¼ congruence index
H ¼ mean curvature
K ¼ Gaussian curvature

kmax ¼ maximum curvature
kmin ¼ minimum curvature
ke

max ¼ equivalent minimum curvature
ke

min ¼ equivalent maximum curvature
krms ¼ root-mean-square curvature

a ¼ the angle between the principal directions of curvature on
the point of contact between the two articular surfaces

Appendix A: Principal Curvatures

The principal curvatures (minimum, kmin, and maximum, kmax)
measure the minimum and maximum bending of a surface,
f x; yð Þ; at a specific point [35]. They are related to the Gaussian
curvature, K, and the mean curvature, H, as follows:

kmax ¼ H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2 � K

p
Þ (A1)

kmin ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2 � K

p
Þ (A2)

where

K ¼
fxxfyy � f 2

xy

ð1þ f 2
x þ f 2

y Þ
2

H ¼
fxx þ fyy þ fxxf 2

y þ fyyf 2
x � fxfyfxy

2ð1þ f 2
x þ f 2

y Þ
1:5

Previous studies have also employed the root-mean-square curva-
ture as a measure of surface flatness [15]

krms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

min þ k2
max

2

r
(A3)

Appendix B: Average Curvature-Based CI

The congruence of a joint depends on the curvature of the artic-
ulating surfaces at the point of contact; let us call these articulat-
ing surfaces S1 and S2, with the following principal curvatures at
the point of contact: kmax1, kmin1, kmax2, and kmax2, respectively. To
compute congruence, an “equivalent system” has been proposed,
where the equivalent surface, Se represents the difference between
S1 and S2. Congruence can then be determined between a plane
and Se by using only the principal curvatures, ke

min and ke
max, of the

equivalent surface, computed as follows:

ke
min ¼ D1 þ D2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2 þ 2A1A2 cos 2a

q
(B1)

ke
max ¼ D1 þ D2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2 þ 2A1A2 cos 2a

q
(B2)

where

D1 ¼ kmin1 � kmax1

D2 ¼ kmin2 � kmax2

A1 ¼
1

2
kmin1 þ kmax1ð Þ

A2 ¼
1

2
ðkmin2 � kmax2Þ

Since determining the point of contact in a joint is not feasible
in vivo, a simplification has been proposed by Ateshian et al.,
wherein the average curvatures of the whole surfaces are used
instead of the principal curvatures at the point of contact [15].
After computing the equivalent curvatures as shown above, and
assuming that a is 90 deg—since the principal curvatures between
the two articulating surfaces on a saddle joint are approximately
90 deg apart—the CI is then computed as follows:

CI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðke

minÞ
2 þ ðke

maxÞ
2

2

s
(B3)

The idea is that if S1and S2 were perfectly congruent, then
the equivalent surface Se (the difference between them) would be

a plane, where ke
min¼ ke

max ¼ 0 !yields
CI ¼ 0.

Appendix C: Local Saddle Point

In a given surface, f x; yð Þ, a critical point, f a; bð Þ; determined
as follows:
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fx a; bð Þ ¼ fy a; bð Þ ¼ 0

is a saddle point if
fxxða; bÞ fxyða; bÞ
fyxða; bÞ fyyða; bÞ

����
���� < 0 [36].
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