Modeling Task Performance for a Crowd of Users from
Interaction Histories

Steven R. Gomez
Computer Science Department
Brown University
steveg @cs.brown.edu

ABSTRACT

We present TOME, a novel framework that helps developers
quantitatively evaluate user interfaces and design iterations
by using histories from crowds of end users. TOME col-
lects user-interaction histories via an interface instrumenta-
tion library as end users complete tasks; these histories are
compiled using the Keystroke-Level Model (KLM) into task
completion-time predictions using CogTool. With many his-
tories, TOME can model prevailing strategies for tasks with-
out needing an HCI specialist to describe users’ interaction
steps. An unimplemented design change can be evaluated
by perturbing a TOME task model in CogTool to reflect the
change, giving a new performance prediction. We found that
predictions for quick (5-60s) query tasks in an instrumented
brain-map interface averaged within 10% of measured expert
times. Finally, we modified a TOME model to predict closely
the speed-up yielded by a proposed interaction before imple-
menting it.

Author Keywords
Performance modeling; KLM; user interfaces; histories.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g., HCI):
User Interfaces

General Terms
Human factors; Performance; Measurement.

INTRODUCTION

Quantitative user studies can help interface developers evalu-
ate new tool designs, but are often difficult to plan and carry
out. Analyzing usage data in each design iteration is often
prohibitively expensive. An alternate approach is to construct
a predictive model of the tool’s utility for a task (e.g., user
speed or accuracy) and evaluate interface changes by running
the model.

Copyright ACM, 2012. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the proceedings of CHI’12.

David H. Laidlaw
Computer Science Department
Brown University
dhl@cs.brown.edu

This paper describes a framework called TOME for build-
ing and extending such models with minimal human involve-
ment. The framework prepares graphical storyboards of task
executions that yield task completion-time predictions using
the KLM [2] when loaded by the open-source application
CogTool [7]. TOME is aimed at modeling quick (5—60s), in-
teractive tasks in graphical user interfaces, e.g., querying and
marking places of interest with Google Maps. Unlike previ-
ous approaches, TOME uses the crowd wisdom of end users
expressed in interaction histories to model task executions.
With this, we explore performance modeling to guide devel-
opment of a prototype interactive brain-circuit map.

The contributions of this work include an early implementa-
tion of TOME and a case study with a brain-circuit visualiza-
tion that demonstrates the framework’s prediction accuracy
for task completion times and usefulness for evaluating new
interaction designs. We show that performance predictions
for two circuit query tasks average within 10% of expert per-
formance, and we extend one TOME-generated model to eval-
uate a proposed feature that speeds up one task by 16%.

DESIGN EVALUATION BY PERFORMANCE MODELING
Models of human performance with a tool can be used to
guide design choices. Our work uses the KLM, which pre-
dicts the time an expert user takes to execute necessary key-
board and mouse input and also cognitive operations (e.g.,
“mental preparation”). Here, an ‘expert user’ is an applica-
tion end user who knows the steps necessary to complete a
task and can do them as quickly as possible. A prediction
should be close to a lower bound on how long it takes to exe-
cute the critical interaction path for completing a task.

The TOME framework (shown in Fig. 1) gives a performance
prediction for a task by: 1) collecting histories of that task as
end users execute and label them; 2) determining a canonical
interaction sequence — or, what end users might reasonably
do — that completes the task; 3) compiling a canonical history
into a project for CogTool, which computes time predictions
from storyboards of interactions [7].

Collecting Histories

TOME provides an interface instrumentation library based on
Java’s Swing toolkit that automatically produces interaction
histories as end users of applications complete tasks. Library
widgets like buttons are meant to be instantiated in place of
respective Swing components. A basic logging API can be
used to capture other events and build logging widgets. There
is a one-time cost of instrumenting an interface, and these

User interactions

Interaction histories

CogTool XML storyboard

_—
Instrumented History i
User Interface Aggregator CogTool
—_—
Performance
prediction /
Adjust
design/tasks
Implement or

reject proposed Ul changes

Interface
designer

Figure 1. The TOME pipeline. Interaction histories are generated when end users complete tasks with the instrumented UI. Histories are aggregated
by a program into canonical interaction storyboards for each task; CogTool then produces time predictions from these storyboards. The dotted arrows
show actions a UI designer might take having retrieved the performance prediction from CogTool.

applications can be deployed ‘as is’. End users can toggle
logging on or off by editing a configuration file. Toggling the
configuration does not affect regular application functionality,
allowing end users to opt out of data collection easily.

Histories are encoded as sequences of widget-triggered inter-
action events and corresponding screenshots and keyboard or
mouse input. In essence, each history gathers the information
needed to build a graphical storyboard of the input events that
cause GUI state changes throughout the task. Other subtle
data is collected; for instance, the on-screen spatial bounds of
widgets used are reported to model mouse-targeting times by
Fitts’ Law [9].

Finding Canonical Interactions

A unique aspect of this work is using many histories to pro-
duce a single time prediction for a task. The idea is that for
certain types of tasks, the crowd wisdom for how to complete
the task can be extracted from a set of real end-user histories.

In our implementation, when a history aggregation program
is run, histories are grouped by labels that end users provide
after finishing tasks. Within a group, histories that share the
same interaction sequence are counted, and the most frequent
sequence is treated as the canonical one for the task. This
approach filters out noisy task executions (e.g., including ac-
cidental mouse or keystroke events) or unpopular strategies
without having to interpret the semantics of histories. Fur-
thermore, unlike applying the KLM manually, no modeler
must know and express how to complete tasks a priori.

Creating a CogTool Project

The program then compiles a single history with the canon-
ical sequence into an XML encoding of a CogTool project
that describes a storyboard of the task execution (see Fig. 2).
Finally, CogTool can open the project and run the model to
predict completion time.

The ability to edit these storyboards in CogTool makes our
approach more powerful than simply gathering average times
from history timestamps; we can compare current UI designs
against proposed changes by copying TOME storyboards and
perturbing them in the WYSIWYG editor to reflect incremen-
tal design changes. This utilizes both CogTool’s rapid proto-
typing ability and TOME’s ability to gather baseline models
for how end users currently complete tasks. We describe an
example design revision in the section titled “Evaluating New
UI Features”.

Related Work

Automating evaluation methods is an important challenge for
interactive tools [6]. We build on previous projects aimed
at making KLM more accessible as an evaluation method.
Hudson et al.’s CRITIQUE [5] generates KLM predictions
by having an individual demonstrate typical tasks on an in-
strumented prototype UL Unlike CRITIQUE, TOME consid-
ers histories and task strategies from real end users and toler-
ates noisy interactions. John et al.’s CogTool [7] lets analysts
build mock Uls for modeling-by-demonstration in a WYSI-
WYG editor. TOME uses CogTool for editing the storyboards
it builds; it minimizes the work needed to evaluate design
changes with CogTool alone.

Other previous work explored interaction histories for usabil-
ity evaluation [4], but to the best of our knowledge multiple
end-user histories have not been leveraged for easier KLM
modeling. Though TOME histories are not used by the instru-
mented applications, history-based features have been devel-
oped in tools like Tableau [3] and VisTrails [1] to support end
users in creating data visualizations or rendering dataflows.

CASE STUDY: INTERACTIVE BRAIN DIAGRAMS
We incorporated TOME into the development of a sample in-
terface, which was an interactive visualization prototype of

e 00 Design: TomePredictions > BrainVis [4]

¢ \g?_‘-t": £ I b | Design Properties
o) Keybdard |
= Y Name:
frame_Brain part AUD:pressed (3) -
— BrainVis [4]
7% Rasi
S <) Input Devices: Output Devices:
M . ‘\; A
Al E}
§ " 0 g , é\ ;;,< Add Devices...
S /“,‘2 8
"Q)* gt > < 3 Frames:
o]
Keybdard » frame_Brain part AUD:moved (4)

» frame_Brain part AUD:pressed (3)
» frame_Brain part MOs:moved (6)
» frame_Brain part MOs:pressed (5)

frame_Brain part AUD:moved (4)

» frame_Part selection:fired (1)

50 i
S d " . » ...tion:Pop-up about to appear (0

» ...ction:Pop-up about to disappea
§ C>_ é\ ;ﬁ

L <

(— — _ IBRID
Design Skin: (\yireFrame |4

Keyboard /

frame_Brain part MOs:pressed (5) | S
1

Figure 2. The CogTool interface showing a storyboard constructed by
TOME during the T2 task. The arrows between frames indicate GUI
state transitions caused by user interactions with widgets (located at the
base of each arrow).

the rat brain circuit (Fig. 2 thumbnails). To establish the ac-
curacy of TOME’s predictions, we instrumented this interac-
tive diagram to collect task histories, and then compared the
KLM predictions with measured task completion times. Fur-
thermore, we modified one model in CogTool to predict the
performance improvement given by a proposed feature.

Experimental Design

To collect test histories, eight participants were recruited as
application end users and completed two types of tasks with
the brain-diagram tool, as described below. All were under-
graduate or graduate students in computer science. The par-
ticipants were split into two groups (A and B) that completed
the task types with different brain part queries. Using two
groups with different instances of data gives more model pre-
dictions to compare, and therefore more confidence in gener-
alizing that these task types can be predicted with the KLM.

With the informed consent of each participant, we recorded
participant videos and screen capture for posterior analysis.
Participants were trained with the brain node-link diagram for
10-15 minutes and asked to complete the following tasks as
quickly and accurately as possible:

T1: ‘Nearest neighbor’ neural projections. Given the name of
a specific brain part p, select the two nearest parts on the
map that share a projection (edge) with p.

T2: Map adjustment. Given the names of two specific brain
parts p; and p- and a target part ¢, click and drag both p;
and py on top of £.

In both tasks, participants were required to interpret the di-
agram and complete several motor activities using the key-
board and mouse.

20
Experts
[] Tome Prediction
15
6 I
Q
@
o 10
g I
=
5
0
T1-A T1-B T2-A T2-B
Tasks

Figure 3. Average prediction error for these models is less than 10%.
Error bars show +1 std. dev.

Each participant completed each task 25 times during a ses-
sion of about an hour. The first five runs in each task tested
the subject on all different brain parts so as to increase famil-
iarity with the tool and task. The remaining 20 runs of each
task were repeated with the same query in order to estimate
the average expert completion time (mean from runs 11-20,
using a timer) to compare to KLM. Of the 160 total expert
runs collected, 5 times were discarded from this mean due
to users stopping or encountering technical problems in these
trials. Runs 1 through 10 for each task were training data
(histories) for TOME to construct the canonical storyboard.

Evaluating New Ul Features

After gathering histories and building TOME storyboards, we
extended one of these models to evaluate a new feature be-
fore implementing it. We used a model created for the T1
task to evaluate an interaction called radius select that makes
T1 faster. With radius select, a user can select all brain parts
within a circular area of interest by choosing a central brain
part and a radius on the map; this interaction can thus solve
T1 quickly, without individually selecting nearby nodes. We
used CogTool to edit the T1 model built by TOME after our
experiment (see interface on Fig. 2). This amounted to adding
one transition triggered by a new mouse action to the previ-
ously constructed storyboard. We simulated radius select in
CogTool to produce a time prediction for experts.

Results

Figure 3 shows results for prediction accuracy for the tasks
described previously. The worst error was just under 14%,
on group B’s T2 task. Reviewing the video for this instance
showed that one participant repeatedly deviated from the
most popular strategy that TOME automatically storyboarded;
this participant’s significantly slower task executions raised
the mean expert time. Performance times over repeated trials
became more consistent with experience. For both groups A
and B, the standard deviation of all training set times (runs 1-
10) was at least 50% higher than in expert trials (runs 11-20)
for each task.

We extended the T1-A storyboard to include the radius select
interaction. The prediction for the T1-A task using this fea-
ture was 5.7 seconds, 18% faster than the original prediction
(6.9 sec). We implemented this feature and tested it with four

Right-click Right-click
node n; node nz

E——E—E)—()
Part-of-interest Neighbor n1 Neighbor nz
selected highlighted highlighted

Text input
Start

Radius Select:
Double right-click node n2

t3 hm .
- -~
4‘ ~~

N NG NG

Figure 4. Updating a storyboard. States sg . .. s3 and transitions tg . . .
t3 express the storyboards for task T1 in the original (top) and modified
(bottom) designs. The dotted arrow shows the transition we added in
CogTool to predict the performance improvement given by this feature.

participants — two from group B and two new participants —
using the previous protocol. One of the 40 expert runs col-
lected was discarded due to a technical problem during the
trial. Expert times using radius select are about 16% faster
than previous expert times.

DISCUSSION

We were able to predict task times with reasonable accuracy
for two diagram-query tasks. Simple design iterations can
be evaluated by 1) using TOME to get a model of task per-
formance with the current interface, then 2) using CogTool’s
editor to insert design changes into the storyboard, and re-
running the model to retrieve a prediction. For the radius
select interaction we considered, the predicted speed-up was
compelling enough to implement. For the tasks studied, we
also confirmed that participants became more consistent in
completion time over the course of trials. This validates the
choice of tasks in the study. Tasks where completion times do
not become more consistent or appear to converge over many
trials are unlikely to be predicted well with the KLM.

Limitations

We evaluated only a small number of end users and tasks in
a lab setting. An extensive, longitudinal study of end users
completing tasks in situ would be more ecologically valid
than having participants repeat trials in hour-long sessions.

The main limitation with TOME itself is that only certain
kinds of tasks can be modeled with the KLM. Some tasks,
like freely exploring a visualization, usually do not have pre-
dictable interaction steps that make sense to model with the
KLM. Additionally, tasks that can be modeled must be ex-
ecuted in a TOME-instrumented interface. Instrumenting an
interface and editing storyboards in CogTool requires time
and learning. While our experience suggests that editing a
TOME-built storyboard (as in Fig. 4) in CogTool is faster than
building one from scratch, we did not evaluate the time and
difficulty involved.

Automating TOME further could make it easier to use in live
settings. An open problem is automatically classifying inter-

action histories with task labels. What processes are needed
to differentiate noisy executions from divergent strategies or
different tasks? Currently, end users manually label their task
histories, but this bookkeeping may be tedious or error-prone.

CONCLUSION

We have described work toward a novel architecture for mod-
eling human task performance from multiple interaction his-
tories. Unlike previous methods, our system does not require
an HCI expert to predict and model the steps taken by crowds
of end users to complete tasks with an interface. Limitations
of this approach include those of the KLM and that end users
must label their task histories. Modeling higher-level cogni-
tive processes with minimal human expertise remains an im-
portant challenge. Still, our results are encouraging: for quick
diagram-query tasks, we demonstrated that TOME generates
predictions within the 20% error claimed by KLM [8] and
that these models can be used to evaluate iterative designs.

ACKNOWLEDGMENTS

This work was supported in part by NSF award IIS-10-16623
and NIH award RO1-EB004155. All opinions, findings, con-
clusions, or recommendations expressed in this document are
those of the authors and do not necessarily reflect the views
of the sponsoring agencies.

REFERENCES

1. Callahan, S. P, Freire, J., Santos, E., Scheidegger, C. E.,
Silva, C. T., and Vo, H. T. Vistrails: visualization meets
data management. In ACM SIGMOD (2006), 745-747.

2. Card, S. K., Moran, T. P,, and Newell, A. The
keystroke-level model for user performance time with
interactive systems. Comm. of the ACM 23,7 (1980),
396-410.

3. Heer, J., Mackinlay, J., Stolte, C., and Agrawala, M.
Graphical histories for visualization: supporting analysis,
communication, and evaluation. IEEE TVCG 14
(November 2008), 1189-1196.

4. Hilbert, D. M., and Redmiles, D. F. Extracting usability
information from user interface events. ACM Comput.
Surv. 32 (December 2000), 384-421.

5. Hudson, S. E., John, B. E., Knudsen, K., and Byrne,
M. D. A tool for creating predictive performance models
from user interface demonstrations. In ACM UIST (1999),
93-102.

6. Ivory, M. Y., and Hearst, M. A. The state of the art in
automating usability evaluation of user interfaces. ACM
Comput. Surv. 33 (December 2001), 470-516.

7. John, B. E., Prevas, K., Salvucci, D. D., and Koedinger,
K. Predictive human performance modeling made easy. In
ACM CHI (2004), 455-462.

8. John, B. E., and Suzuki, S. Toward cognitive modeling
for predicting usability. In HCI International (2009),
267-276.

9. MacKenzie, I. S., and Buxton, W. Extending Fitts’ law to
two-dimensional tasks. In ACM CHI (1992), 219-226.

	Introduction
	Design Evaluation by Performance Modeling
	Related Work

	Case Study: Interactive Brain Diagrams
	Experimental Design
	Evaluating New UI Features
	Results

	Discussion
	Limitations

	Conclusion
	Acknowledgments
	REFERENCES

