
Nonphotorealistic rendering, which pro-
duces images in the manner of tradition-

al styles such as painting or drawing, is proving to be a
useful alternative to conventional volume or surface
rendering in medical visualization. Typically, such illus-

trations use simple lines to demon-
strate medical shapes and features,
omitting a great deal of detail. They
frequently highlight the most rele-
vant information better than glossy,
colored images. Medical illustration
has long regarded pen and ink as an
important medium. Thus, because
medical professionals are familiar
with pen-and-ink illustrations, they
could readily accept them as an
alternative to conventional render-
ing of medical images.

Several authors, such as Treavett
and Chen,1 have begun using NPR
in medical visualization (see the
“Related Work in Nonphotorealistic
Rendering” sidebar for a discussion
of other visualization techniques).
The general approach has been to

apply existing surface-hatching techniques to surface
models created from the volume data by marching
cubes2 or a similar method. Surface visualization, how-
ever, might not be well suited to portraying soft tissues,
which are difficult to model with isosurfaces.

This article introduces volumetric hatching, a novel
technique that produces pen-and-ink-style images from
medical volume data. Unlike previous approaches that
generate full-surface models, our technique uses the
characteristics of the volume near the stroke being pro-
duced to generate a local intermediate surface. Because
global isosurfaces can’t exactly model many medical
subjects, our volume-based method has considerable
advantages. Our method is largely insensitive to surface
artifacts. We focus on hatching with line strokes to por-
tray muscles, intestines, brains, and so on. Hatching
with line strokes requires determining not just the posi-
tion of the line strokes, but also their orientation. Thus,
the strokes not only illustrate the subject’s shape, but
also describe its character in some way—for example,
by displaying fiber orientations for muscles.

Volumetric hatching can’t replace conventional
medical visualization. Rather, it can supply an alter-
native description that can enhance medical under-
standing. It might be particularly useful with the
vector-based images of functional anatomy, where it
could both describe motion sequences more com-
pactly and focus on specific medical features demon-
strated in the animation.

Volumetric hatching
Figure 1 shows the volumetric hatching pipeline. Vol-

ume data is a 3D grid comprising a number of 2D
images. A set of eight adjacent volumetric data points
(VDPs)—sample points in the volume data—makes up
a volume cube, the basic unit of volume data.

The silhouette, or outline of the subject, provides
information about the subject—enough that some
objects are recognizable from their silhouettes. The sil-
houette changes if the subject is viewed from a differ-
ent direction.

Silhouette computation identifies a set of 3D points—

Nonphotorealistic Rendering

Volumetric hatching

produces pen-and-ink

illustrations suited for

medical illustration. This

approach accounts for data

beneath the surface,

producing images showing

the subject’s shape and

reflecting its character.

Feng Dong, Gordon J. Clapworthy, Hai Lin, and
Meleagros A. Krokos
De Montfort University

Nonphotorealistic
Rendering of
Medical Volume
Data

44 July/August 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

Volume data

Rendering

Stroke
directions

Silhouette
points

Stroke
generation

1 Overview of
volumetric
hatching. Vol-
ume data is the
input for pro-
ducing silhou-
ette points and
strokes, which
feed into the
rendering
module.

silhouette points—that pass to the rendering module to
generate silhouette lines in the final image. During sil-
houette computation, we collect 3D silhouette points
instead of lines. We project the points on the final image
and generate 2D lines connecting the projections dur-
ing rendering. We have had poor results with the alter-
native approach of tracing lines from one volume cube

to another to obtain 3D lines and projecting these lines
during rendering.

A direction field finds the overall stroke orientations.
The direction field gives the stroke direction at each VDP
and thus dictates how the hatching will occur. Compu-
tation or user interaction determines the direction field
to be used.

IEEE Computer Graphics and Applications 45

Work related to volumetric hatching includes surface
hatching, volume data hatching, and more general uses of
nonphotorealistic rendering in medical visualization.
Although NPR can take many forms, we concentrate on
pen-and-ink illustrations.

Surface hatching
Surface hatching in the pen-and-ink style illustrates a 3D

surface using strokes instead of colors, with the hatching
occurring on the surface.

A crucial problem in surface hatching is defining stroke
direction to best illustrate surface shape and features.
Although some authors have suggested isoparameter lines,
in general, the two directions of principal curvature appears
to be the favored approach.1,2 The main obstacles to fast
surface hatching are silhouette detection and visibility
computation. Although many approaches address these
problems, none stands out as a definitive solution.

We can apply surface hatching to many surface models,
including parametric and implicit surfaces. To date,
however, relatively few researchers have applied pen-and-ink
illustration to 3D volume data. Treavett and Chen generated
pen-and-ink images via volume rendering of 3D medical
data sets.3 They performed 3D drawing, which generates 3D
strokes as textures in object space and then projects them
on the image plane during rendering, and 2.5D rendering,
which forms 2D strokes in 2D image space using
information gained from the 3D object during prerendering.

Volume data hatching
Interrante used strokes to illustrate a surface shape within

volume data.2 She defined 3D scan-converted textures by
computing directions associated with particles
predistributed on the subject; she suggested the directions
of principal curvature as the best candidates for stroke
directions. Interrante then applied these textures to the
volume to increase the opacity during the rendering stage.
When displaying a transparent surface, the strokes help
enhance surface shape. This technique is useful for
visualizing layered isosurfaces in volume data.

NPR in medical visualization
Saito proposed an NPR-related method to preview

volume data in real time.4 He collected sample points
uniformly from an isosurface and projected them on the
image plane as geometric primitives such as lines. Because
the primitives’ orientation relies on the isosurface’s local
geometry, the method is restricted to isosurfaces.

Girshick and colleagues used principal-direction line
drawings to show curvature flow over the surface. The

technique aims at surfaces represented by 3D volume data
or a polygon surface mesh.5

Lu and colleagues presented an interactive direct-volume
illustration system that simulates stipple drawing.6 They
explored several feature-enhancement techniques for
creating effective, interactive visualizations of scientific and
medical data sets, and introduced a mechanism for
generating appropriate point lists for all resolutions.

Researchers have believed for some time that NPR could
be useful in medical visualization. Levoy and colleagues
proposed NPR in radiation treatment planning.7 More
recently, Interrante and colleagues enhanced transparent
skin surfaces with ridge and valley lines.8 Ebert and
Rheingans used volume illustration—basically a feature-
enhanced form of volume rendering—to highlight features
such as boundaries, silhouettes, and depth and orientation
cues.9 The results were not pen-and-ink illustrations.

Other methods have enhanced object contours within
the data.

References
1. G. Elber, “Line Art Illustrations of Parametric and Implicit Forms,”

IEEE Trans. Visualization & Computer Graphics, vol.4, no.1, 1998,
pp. 71-81.

2. V. Interrante, “Illustrating Surface Shape in Volume Data via Prin-
cipal Direction-Driven 3D Line Integral Convolution,” Proc. Sig-
graph, ACM Press, 1997, pp. 109-116.

3. S.M.F. Treavett and M. Chen, “Pen-and-Ink Rendering in Volume
Visualization,” Proc. IEEE Visualization, IEEE CS Press, 2000, pp.
203-210.

4. T. Saito, “Real-Time Previewing for Volume Visualization,” Proc.
Symp. Volume Visualization, IEEE Press, 1994, pp. 99-106.

5. A. Girshick et al., “Line Direction Matters: An Argument for the
Use of Principal Directions in 3D Line Drawings,” Proc. NPAR 2000:
First Int’l Symp. Nonphotorealistic Animation & Rendering, ACM
Press, 2000, pp. 43-52.

6. A. Lu et al., “Nonphotorealistic Volume Rendering Using Stippling
Techniques,” Proc. IEEE Visualization 2002, IEEE CS Press, 2002,
pp. 211-218.

7. M. Levoy et al., “Volume Rendering in Radiation Treatment Plan-
ning,” Proc. 1st Conf. Visualization in Biomedical Computing, IEEE
CS Press, 1990, pp. 4-10.

8. V. Interrante, H. Fuchs, and S. Pizer, “Enhancing Transparent Skin
Surfaces with Ridge and Valley Lines,” Proc. IEEE Visualization, IEEE
CS Press, 1995, pp. 52-59.

9. D. Ebert and P. Rheingans, “Volume Illustration: Nonphotorealis-
tic Rendering of Volume Models,” Proc. IEEE Visualization, IEEE CS
Press, 2000, pp. 195-202.

Related Work in Nonphotorealistic Rendering

The stroke generation module generates the 3D
strokes following the directions indicated by the direc-
tion field. The illumination defined for 3D strokes filters
the generated strokes, and their projections contribute
to the final image. This provides visual coherence—if
we move the viewpoint, we need only reproject the 3D
strokes on a new image plane, thus maintaining consis-
tency between images.

Detecting silhouette points
The silhouette conveys the most important informa-

tion about a subject’s shape, and might be its simplest
portrayal. The silhouette depends on the viewpoint and
exists only at the subject’s visible boundary. We consid-
er only VDPs for silhouette points because medical data
volume cubes are quite small and therefore a set of VDPs
represents silhouettes with sufficient accuracy.

To find silhouette points, we first mark the VDPs and
volume cubes. VDPs belonging to the subject are in, and
those outside the subject are out, based on the data seg-
mentation. We further categorize in VDPs as follows:

� Boundary point. The VDP is on the subject’s bound-
arythat is, it’s neighboring an out VDP.

� Inner point. The VDP’s neighbors are all in.

We categorize the volume cubes as follows:

� Interior cube. All eight VDPs are in.
� Exterior cube. At least one VDP is out.

Because these categorizations don’t change with the
viewpoint, we perform them only once.

During silhouette detection, we search only among
the boundary points in the exterior cubes. Because these
form a small fraction of the total VDPs, searching is fast.

To check whether a VDP is a silhouette point, we cast
a view line from the viewpoint toward the VDP. If the
line pierces any cubes belonging to the subject before it
reaches the VDP, the VDP can’t be a silhouette point. If
it doesn’t, we check the two cubes immediately follow-
ing the VDP along the line, such as cubes A and B after
the VDP P in Figure 2. If neither cube belongs to the sub-
ject, the VDP is a silhouette point. In Figure 2, Q is a sil-

houette point because cubes C and D are outside the sub-
ject; P is not a silhouette point.

This process ensures that a concave subject is dealt
with properly. A view line could hit an interior cube posi-
tioned on the farther branch of the concavityfor
example, the line through Q strikes interior cube E. The
resulting image will show one part of the subject sil-
houetted against the other part.

In practice, it’s more efficient to check the volume
cubes along the view line from P to the viewpoint. So,
we check the volume cube neighboring P first, then the
next cube toward the viewpoint, and so on. This way,
we don’t have to find the first volume cube along the
view line, which is typically quite time consuming.

Drawing the silhouette
To draw the silhouette, we project the 3D silhouette

points on the final image. During projection, we check
each point’s visibility. Because many of the silhouette
points come from the same volume cubes and are con-
nected in the 3D volume, we can form silhouette lines
by connecting the points’ projections using straight lines.

Because we can project many silhouette points close
to each other in the image, the projections can be
dense in areas, and we might create many unneces-
sary lines. To overcome this problem, we remove some
silhouette points in the dense areas before connecting
the projections.

We define two thresholds to identify areas in which
there are too many projections:

� A float number, dist, defines a minimum distance
between projections. We use the volume cube’s size
as the unit of measure to keep dist independent of
sample size.

� An integer, Neigh, defines next(P, Neigh), a set of VDPs
that are close to silhouette point P.

If Neigh = 1, the set next(P, 1) consists only of P’s
neighboring VDPs. If Neigh = 2, then next(P, 2) includes,
in addition to P’s neighbors, the neighbors of the VDPs
in next(P, 1). We likewise extend the definition for larg-
er values of Neigh.

Given a fixed dist and Neigh for each silhouette point
P, we consider the set of silhouette points that are in
next(P, Neigh) and discard the points that project with-
in a distance dist of the projection of P. After removing
these points, we join the remaining points using straight
lines to create the silhouette. Removing the points can
create some gaps in the silhouette. Increasing dist and
Neigh removes more unnecessary lines, but creates larg-
er gaps. Typically, dist is between 0 and 1 and Neigh is
between 1 and 3. Because silhouette detection and
drawing is quick, users can readily experiment with
these values.

Determining stroke directions
Determining stroke directions relies on both the

subject (for instance, to portray muscles, medical
artists typically use strokes indicating muscle fiber
direction) and the individual, as different artists
have their own hatching styles. Hence, designing a

Nonphotorealistic Rendering

46 July/August 2003

Interior cube Exterior cube

A

B

Viewpoint

P

C

D

E

Q

2 Finding
silhouette
points. Because
the two cubes
(C and D)
immediately
following Q
along the line
are outside the
subject, Q is a
VDP. Because
cube B is inside
the subject, P is
not a VDP.

general algorithm to automatically define stroke
directions for any subject is difficult. Rather, stroke
direction decisions should depend on the character
of the subjects.

For muscles, stroke orientation must follow the direc-
tion of the muscle fibers. In earlier work, we describe a
method for detecting muscle fiber orientation from vol-
ume data.3 The process involves quickly estimating an
approximate fiber orientation for each VDP and refin-
ing it into a more accurate direction. We then associate
each VDP inside the muscle volume with a direction
indicating the fiber orientation at that point. For mus-
cles, we perform this process only for those VDPs with-
in a prescribed distance of the muscle surface.

For other subjects, such as a human brain, strokes fol-
low the direction of principal curvature, which we cal-
culate from the volume data using Thirion and
Gourdon’s method.4 They derived principal curvature
formulas that use only partial differentials of the 3D vol-
ume; hence, we can compute the principal curvature
directly from the volume without extracting a surface.
The stroke lies along one of the principal directions asso-
ciated with the principal curvature.

Both methods are very versatile—the principal-
curvature method has been widely used to illustrate dif-
ferent subjects, and the other works on any subject with
line textures.

To produce a hatching style for a particular subject,
you should adopt an approach tailored to that subject.
If this requires introducing a new approach, the rest of
the algorithm will be unaffected, as hatching style is
independent of other components.

Producing strokes
In volumetric hatching, unlike surface hatching, inte-

rior data make contributions. Some interior strokes are
portrayed to improve rendering quality.

In general, to produce a stroke at a VDP, we fit a local
surface patch approximating the geometry at the VDP

and then intersect that patch with a normal plane fol-
lowing the stroke direction. The intersection of the patch
and the plane defines the stroke.

In Figure 3, we use a linear blue surface patch to esti-
mate the geometry at VDP P. The patch intersects the
green plane containing the stroke direction and gradi-
ent at P to produce the stroke. The final form of each
stroke is a piecewise succession of straight lines across
the patch’s tessellated surface.

In this step, the main work is generating a useful
patch. Simply creating an isosurface patch that passes
through the VDP gives unsmooth results. To generate a
smooth patch around the VDP, we fit the patch from the
smoothed volume gradient. The sidebar “Smooth Patch-
es for Generating Strokes” gives technical details.

IEEE Computer Graphics and Applications 47

P

Stroke direction

Normal

Plane

Patch

Stroke

3 Stroke gener-
ation. To pro-
duce a stroke,
we intersect a
linear surface
patch with a
plane and gradi-
ent at VDP P.

Smooth Patches for Generating Strokes
Before generating a smooth patch at a volumetric data

point (VDP), we must decide the patch’s primary
orientation so we can represent the smooth patch in terms
of a height field.

The patch’s primary orientation is the main direction the
patch facesx, y, or z. We determine its orientation by
checking the gradient at the VDP. If the patch’s z
component is greater than its x and y components, its
primary orientation is z.

Here, we assume the primary orientation is z, but you
can apply the procedure equally to x or y orientations. The
regular grid of the height field’s 2D domain is then in the
xy plane.

Creating an isosurface patch
Because we describe the smooth patch as a height field,

to create it we must find the discrete height values at grid
points G(x, y) in the 2D domain. From these, generating a
mesh is straightforward.

At each G(x, y), we compute the isosurface patch height,
denoted hiso(x, y), to produce the 3D points S(x, y, hiso).
We then obtain the normals to the isosurface by calculating
the gradient at points S(x, y, hiso) using linear interpolation.
The normal n associated with grid point G(x, y) is denoted
n(x, y).

We first generate an isosurface patch local to the VDP,
using the gradients on the isosurface to estimate its surface
normals. Because these gradients are smooth, they provide
a good foundation for generating the smooth patch.

Fitting a Smooth Patch
We fit a smooth patch such that the normals on the patch

are close to those obtained in the previous step. We regard
n(x, y) as the normal of the smooth patch at T(x, y, hsmo),
so we can expand the xyz components of n(x, y) as linear
combinations of hsmo. We find height values hsmo for the
grid points G(x, y) using least squares fitting, thus defining
the 3D points T(x, y, hsmo). Once we’ve found all the
hsmo(x, y), making the surface patch is simple.

Figure 4 shows the volumetric hatching of an image with
and without smoothing.

Figure 5 shows how we would fit a smooth patch at
VDP P. The yellow polygon is the isosurface patch at P,
and the green arrows are surface normals generated on
the isosurface patch. We fit the smooth patch from these
normals. The red grid is the height field domain.

A height field h(x, y) gives a height value for each
point (x, y) in a 2D domain. It therefore defines a set of
3D points (x, y, h(x, y)). Obviously, we can easily make
a mesh from the height field by joining these 3D points.

Strokes are produced only at VDPs. If users require
more strokes to build their desired tones, we can insert
more data points into the cubes (via trilinear interpola-
tion) and produce more strokes from these points. If
users prefer a lighter tone, they can filter out some of
the strokes. Another alternative for tone building is illu-
mination, as described in the next section.

In Figures 3 and 5, computing strokes at P uses 2 × 2
× 2 neighboring cubes. In practice, if you prefer longer
strokes, you can use more neighboring cubes. We’ve
often used 4 × 4 × 4.

Rendering
During the rendering stage, the 3D silhouette points

and strokes are presented in a 2D final image. This
involves several processes: illuminating the strokes,
determining the contribution of the strokes to the final
image, and drawing the silhouette.

Stroke illumination. Lighting is fundamental to
providing a 3D feel to a subject. In pen-and-ink illustra-
tion, including more or fewer strokes in an area can pro-
duce darker or lighter intensities. Thus, adjusting the
number of strokes that pass through an area controls
the intensity associated with that area.

We apply a volumetric illumination method based in
object space—that is, we calculate the volume cubes’
lighting intensity. We linearly convert each cube’s light-
ing intensity to the number of strokes in the cube. If the
intensity is less than the number of existing strokes, we
reduce the number of strokes in the cube until it corre-
sponds to the lighting intensity at the cube.

Because the illumination occurs in the object space
and results in filtered strokes, we can reuse the strokes
even if we reposition the viewpoint, as long as the view-
ing distance and lighting sources remain approximate-
ly unchanged. The sidebar “Calculating Stroke
Illumination” provides further details.

VDP contribution. A VDP’s contribution to the
final image is the projection of its associated stroke. As
in volume rendering, exterior VDPs occlude the contri-
butions of interior VDPs. We therefore only consider
contributions from the interior VDPs near the subject’s
surface—that is, those within the user-defined distance
depth of the surface. During volume data segmentation,
identifying these VDPs, which form a set called the shell,
is straightforward. We need strokes only at the VDPs
within the shell.

In volume rendering, opacity controls the visibility of
internal structures. Likewise, volumetric hatching pre-
sents only the data within a certain distance beneath
the subject’s exterior surface, as controlled by parame-
ter depth. A proper depth choice lets users portray sub-
ject parts that lie just below the surface, but nevertheless
influence the subject’s appearance, while excluding sub-
ject parts that lie deep inside the subject. Because this
part of the process is fast, we can manually adjust the
depth value during rendering.

We further classify interior cubes as

� shell cubes, which have all eight VDPs in the shell, and
� core cubes, which have at least one VDP not in the

shell.

To calculate the contribution of a VDP in the shell,
given the viewpoint and image plane position, we again
use a view line. If the line doesn’t encounter any core
cubes before it reaches the VDP, the VDP is visible and
its stroke is projected. In Figure 6, the view line toward
P hits only the shell cube A before it reaches P, so P is a vis-
ible point and its associated stroke contributes to the final
image. If the line hits a core cube before it reaches the
VDP, the VDP is invisible and doesn’t contribute to the

Nonphotorealistic Rendering

48 July/August 2003

4 Volumetric
smoothing of
an image (a)
without
smoothing and
(b) with
smoothing.

(a)

(b)

Y

X

Z

P

 Normals Smooth
patch

Isosurface
patch

5 Fitting a
smooth patch.
Fitting the
yellow isosur-
face patch gives
us the blue
smooth patch.

final image (for example, VDP Q in Figure 6 is invisible).
For speed, we perform the calculation in reverse

direction—from the cube neighboring the VDP toward
the viewpoint—as in silhouette detection.

Experimental results
We’ve applied volumetric hatching to various sets of

medical data, including segmented muscles from visi-
ble human data, a human brain from a magnetic reso-
nance imaging data set, and part of the human digestive
system from a cat scan data set.

Figure 7 (next page) gives the results of a silhouette
computation applied to a muscle data set; the silhouette
lines display the subject in a simple form. The data set is
190 × 162 × 500 pixels. Figure 8 compares our method
for creating silhouettes with directly projecting 3D sil-
houette lines on the final image. Figure 8a shows a result
from 3D silhouette lines, while Figure 8b shows the
results for our method, with parameters Neigh = 2, dist
= 0.6. Figure 8b looks much better, as Figure 8a has too
many unnecessary lines.

Figure 9 illustrates the muscles at the front of an
upper leg. As we segmented the data, we removed mus-
cles that were not to be displayed from the data. We cal-
culated strokes using 4 × 4 × 4 neighboring cubes and a
depth of 16 for the rendering shell, because the effects
of surface muscle fibers penetrate a few volume cubes

beneath the surface.
In Figure 9a, the ratio of the cube’s lighting intensity

to the number of strokes in the cube is smaller than in

IEEE Computer Graphics and Applications 49

Calculating Stroke Illumination
To perform stroke illumination, we first convert the

intensity of a volume cube into the number of strokes in the
cube. We define cube intensity as the average lighting
intensity at the cube’s eight VDPs. If we normalize the range
of cube intensity values to [0, 1], cube intensity is related to
the stroke number by

StrokesNum = (1 – cube intensity) × ratio + base (1)

where ratio defines the relation between the intensity and
the number of strokes, and base is the ambient tone, which
controls the number of strokes at the brightest cube.
Increasing ratio gives greater contrast. We typically set base
between 0 and 3.

We apply this illumination model to the strokes we’ve
created. The strokes are fairly evenly distributed because we
generate a stroke at each VDP. If we obtain the average
number of strokes in the volume cubes before illumination
and regard this as the number of strokes at the darkest cube
(that is, where cube intensity is 0), we calculate ratio as
Ratio = average stroke number – base.

The illumination process then removes strokes from the
volume cubes in which cube intensity is greater than 0. The
number to be removed at a cube is equal to the difference
between the number of strokes before illumination and
number of strokes at the cube, which we determine from
Equation 1.

If the number of strokes in the volume cube is larger than
StrokesNum (overtoned), we remove strokes to reduce the
number of strokes at the cube. That is, we select a stroke and
remove the segment that lies within the cube. In practice, it

doesn’t matter which stroke we cut, so we cut them randomly.
If we select a stroke for removal using this method, we

check the cubes through which it passes. If any of them are
overtoned, we cut the stroke from it, too. Thus, if a stroke is
cut from a volume cube, it becomes the first candidate to
be cut from other volume cubes—in Figure A, the bold
stroke is cut from cube A and also from the overtoned cubes
B and C, through which it passes. This lessens the number
of strokes to be cut and reduces the proliferation of small,
scattered line segments.

When we reposition the viewpoint, we don’t need to
recompute the illumination if the distance between the
subject and the viewpoint remains nearly unchanged. If the
subject moves closer, however, we need more strokes. We
create extra strokes inside the volume cubes by generating
extra data points. If the subject moves away from the
observer, we use a smaller ratio to generate a lighter tone.

A B

C

A 2D illustration of stroke removal.

P

Q

Viewpoint

A

Exterior cube Shell cube Core cube

6 Computing VDP contribution. Because the view line
hits only the shell cube A before reaching P, P is a visible
point and its associated stroke contributes to the image.

Figure 9b, giving the image greater contrast.
Figure 10a shows part of the human digestive system,

and Figure 10b is a human brain. Because illustrations

of these organs rarely use many strokes, we set a small
value to the intensity–stroke ratio to reduce the num-
ber of strokes, and set base (the ambient tone) to 0. We
calculated strokes using principle curvature directions
and 2 × 2 × 2 neighboring cubes. Because we needed a
light tone and were interested only in VDPs close to the
surface, we used a rendering shell depth of 1.

Table 1 gives the computational times associated with
some images in Figures 9 and 10. As the table shows,
stroke generation is the most computationally expensive
part of the process. Fortunately, because a user can store
strokes, subsequent reexamination of the data wouldn’t
require regenerating them, making viewing much faster.

Rendering consists of two parts: the first corresponds
to illumination calculation, and the second to VDP pro-
jection. Although illumination calculation is rather time
consuming (see the “Calculating Stroke Illumination”
sidebar), the results are reusable as long as the viewing
distance and lighting sources remain approximately
unchanged, in which case the user could skip this part
of the process. Part 2, VDP projection, is relatively fast.
Although it must be performed each time the viewpoint
changes, the rerendering time is acceptable as long as
the viewing distance and lighting sources don’t change
greatly.

Volumetric hatching is also efficient in terms of stor-
age because the images are based purely on the projec-
tion of 3D strokes, and thus can be stored in vector form.

Table 2 compares the storage requirements of images
in vector and raster forms, both compressed and uncom-
pressed. Storing the images in vector form saves a lot of

Nonphotorealistic Rendering

50 July/August 2003

7 Muscle data
presented using
silhouettes. The
silhouette lines
display the basic
outline of the
subject.

8 Comparison of silhouette generation methods on
medical data: (a) 3D silhouette lines and (b) volumetric
hatching using silhouette points.

(a)

(b)

9 Volumetric hatching of a human leg using different ratio of the lighting
intensity to the number of strokes. Because the ratio in (a) is smaller than in
(b), (b) has greater contrast.

(a) (b)

space, even though the raster images are not very large.
The space required for images stored in raster form
increases with the size of the image, but doesn’t change
for images stored in vector form.

Because volumetric hatching deals directly with vol-
ume data, it differs greatly from most existing tech-
niques, which are based on surface hatching. As we
mentioned at the start of this article, a straightforward
approach to hatching volume data is to generate iso-
surfaces from
the data using
marching cubes
and then apply
standard sur-
face-hatching
techniques. Fig-
ure 11 compares
this method with
our volumetric
hatching. Hatch-
ing on the iso-
surface generated a poor result
(Figure 11a) compared with volu-
metric hatching (Figure 11b). We
applied the same lighting and stroke
illumination to the surface and vol-
ume. Stroke illumination failed to
generate a good result for the
strokes embedded on the surface.
The result from volumetric hatching
is more impressive because the vol-
umetric strokes (including those
underneath the surface) better
describe the subject.

Conclusions and future
work

The silhouette computation tech-
nique still requires improvement.
The current method depends too
much on the sample distance of vol-

IEEE Computer Graphics and Applications 51

(a) (b)

10 Volumetric
hatching exam-
ples: (a) human
digestive sys-
tem from a cat
scan data set
and (b) human
brain from a
magnetic reso-
nance imaging
data set.

Table 1. Timing results for volumetric hatching.

Stroke
Data Generation Rendering (seconds)

Figure Size (seconds) Part 1 Part 2

9a 190 × 162 × 500 305 52 5
9b 190 × 162 × 500 305 63 2

10a 120 × 82 × 300 78 13 2
10b 150 × 102 × 200 82 15 2

Table 2. Storage requirements comparison.

 Raster Form (Kbytes) Vector Form (Kbytes)
Figure Size (pixels) Uncompressed Compressed Uncompressed Compressed

9a 319 × 783 734 213 240 116
9b 319 × 783 734 206 220 102

10a 326 × 444 424 49 42 21
10b 467 × 317 434 45 43 21

(a) (b)

11 Comparison of (a) surface hatching with (b) volumetric hatching. Volumetric strokes better
describe the subject, resulting in a more defined image.

ume data. Because we choose the silhouette points in a
discrete space, errors can’t be ignored if the sample dis-
tance increases.

To date, the images we’ve produced have been static.
A possibility for future work is to consider visual coher-
ence, particularly in animated sequences. Because we
treat illuminated strokes as 3D objects, the techniques
have a built-in visual coherence. If the viewpoint moves
much closer, however, we will have to generate more
strokes in the focused area to retain the required detail.

Another limitation is that volume hatching only works
with segmented volume data. Because line strokes are
designed to indicate a subject’s shape, we must identi-
fy the subjects before hatching can occur.

Pen-and-ink illustration using line strokes is just one
of many NPR styles used in medical illustrations and
books. Thus, our future work will focus on a more gen-
eral approach incorporating many NPR styles. �

Acknowledgments
The European Commission, within the MultiMod pro-

ject no. IST-2000-28377 and the Chinese Natural Sci-
ence Foundation, award no. 60003009, supported the
work presented in this article.

References
1. S.M.F. Treavett and M. Chen, “Pen-and-Ink Rendering in

Volume Visualization,” Proc. IEEE Visualization, IEEE CS
Press, 2000, pp. 203-210.

2. W.E. Lorensen and H.E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Comput-
er Graphics, vol. 21, no. 4, 1987, pp. 163-169.

3. F. Dong, G.J. Clapworthy, and M. Krokos, “Volume Ren-
dering of Fine Details Within Medical Data,” Proc. IEEE
Visualization, IEEE CS Press, 2001, pp. 387-394.

4. J.P. Thirion and A. Gourdon, “Computing the Differential
Characteristics of Isointensity Surfaces,” Computer Vision
and Image Understanding, vol. 61, no. 2, 1995, pp. 190-202.

Feng Dong is a research fellow in
computer graphics in the Depart-
ment of Computer and Information
Sciences, De Montfort University,
UK. His research interests include
fundamental computer graphics
algorithms, medical visualization,

volume rendering, human modeling, and virtual reality.

Dong received a PhD in computer science from Zhejiang
University, China. He is a member of the UK Virtual Real-
ity Special Interest Group (VRSIG).

Gordon J. Clapworthy is a pro-
fessor of computer graphics in the
Department of Computer and Infor-
mation Sciences, De Montfort Uni-
versity, UK. His research interests
include medical visualization, com-
puter animation, biomechanics, vir-

tual reality, surface modeling, and fundamental computer
graphics algorithms. Clapworthy received a PhD in aero-
nautical engineering from the University of London. He is
a member of the ACM, ACM Siggraph, Eurographics, and
the UK-VRSIG, and is secretary of the British Chapter of
the ACM.

Hai Lin is a research fellow in com-
puter graphics in the Department of
Computer and Information Sciences,
De Montfort University, UK. His
research interests include medical
visualization, volume rendering and
virtual reality. Lin received a PhD in

computer science from Zhejiang University, China.

Meleagros A. Krokos is a
research fellow in computer graphics
in the Department of Computer and
Information Sciences, De Montfort
University, UK. His research interests
include computer-aided geometric
modeling of curves and surfaces,

medical visualization, and virtual reality. Krokos was edu-
cated at the University of London. He is a member of the
IEEE Computer Society, ACM Siggraph, and the UK-VRSIG.

Readers may contact Feng Dong at the Dept. of Com-
puter and Information Sciences, De Montfort Univ., UK,
MK7 6HP; fdong@dmu.ac.uk.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Nonphotorealistic Rendering

52 July/August 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

