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Abstract: We propose visual embedding as a model for automatically generating 
and evaluating visualizations. A visual embedding is a function from data points 
to a space of visual primitives that measurably preserves structures in the data 
(domain) within the mapped perceptual space (range). Visual embedding can 
serve as both a generative and an evaluative model. We demonstrate its use 
with three examples: coloring of neural tracts, scatter plots with icons, and 
evaluation of alternative diffusion tensor glyphs. We discuss several techniques 
for generating visual embedding functions, including probabilistic graphical 
models for embedding within discrete visual spaces. We also describe two 
complementary approaches--crowdsourcing and visual product spaces--for 
building visual spaces with associated perceptual distance measures. Finally, we 
present future research directions for further developing the visual embedding 
model.!
!
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Visual!Embedding:!A!Model!for!Visualization!
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Automating the design of effective visualizations is an 
unsolved problem. Though numerous guidelines and 
heuristics have been proposed, a formal framework for 
design and evaluation remains elusive. Instead, user studies 
conducted a posteriori remain the primary tool for assessing 
the effectiveness of visualizations. Using theoretical models 
presents another, albeit less explored, approach to the 
problem [15]. We believe that the generative potential of 
model-based visualizations can accelerate design and 
complement the summative nature of user studies. 

Developing a theory of visualization that is both 
descriptive and generative is difficult. The space of 
visualizations is large and the use of visualization spans 
many issues in human perception and cognition. Additional 
factors, such as interaction techniques, can have a 
significant effect on the success of visualizations. Given 
our current knowledge, the problem of visualization design 
is underconstrained. As a result, there is value in 
developing simpler, constrained models, each addressing 
certain aspects of visualization while ignoring others, like 
spotlights on a theater stage. 

In this context, we introduce visual embedding as a 
model for visualization construction. We define a 
visualization as a function which maps from a domain of 
data points to a range of visual primitives (Figure 1). We 
claim a visualization is “good” if the embedded visual 
elements preserve structures present in the data domain. 
Our model is motivated by the fact that understanding 
patterned structures in data is one of the primary goals of 
visual analysis. The proposed basic framework can be used 
to generate and evaluate visualizations based on both the 
underlying data and–through the choice of preserved 
structure–desired perceptual tasks. 

In this article, we first review previous model-based 
visualization work. We then describe our visual embedding 
model and provide examples of how it can be applied to 
visualization design and evaluation.  

!
Figure!1:!Visual!embedding. 

Related!Work!!

In prior work, researchers have proposed both general and 
specific models of visualization. Due to space limitations, 
we confine our discussion to a small but representative 
subset. 

The seminal work of Mackinlay [11] is one of the most 
influential systems for the automatic generation of 
visualizations. Following Bertin’s aphorism of graphics as 
a language for the eye [2], Mackinlay formulates 
visualizations as sentences in a graphical language and 
argues that good visualizations are those that meet his 
criteria of expressiveness and effectiveness. A visualization 
meets the expressiveness criteria if it faithfully presents the 
data, without implying false inferences. Effectiveness 
concerns how accurately the chosen visual encoding 
variables are decoded by viewers, and is informed by prior 
studies in graphical perception (e.g., those of Cleveland and 
McGill [4]). Mackinlay’s automatic presentation tool 
(APT) employs a composition algebra over a basis set of 
graphical primitives derived from Bertin’s encodings to 
generate alternative visualizations. The system then selects 
the visualization that best satisfies formal expressiveness 
and effectiveness criteria. 

APT does not explicitly take user tasks or interaction 
into account. To this end, Roth et al. [13] extend 
Mackinlay’s work with new types of interactive 
presentations. Similarly, Casner [3] builds on APT by 
incorporating user tasks to guide visualization generation. 



Some of these ideas are now used to support visualization 
recommendation within Tableau, a commercial 
visualization tool. 

House et al. [8] integrate user preferences in their 
automatic visualization system. They use genetic 
algorithms to refine a “population” of visualizations in 
response to user ratings. In contrast to this empirical 
approach, Pineo and Ware [12] propose using a 
computational model of the retina and primary visual cortex 
to automatically evaluate and optimize visualizations. van 
Wijk [15] argues for first modeling a perceptual domain 
(e.g., luminance or shape perception) and then optimizing 
for some perceptual goal according to that model. 

If we were to choose a motto for visual embedding, it 
would be visualization as a perceptual painting of structure 
in data. In this sense, Mackinlay’s expressiveness and 
effectiveness criteria together loosely correspond to our 
model’s perceptual structure preservation criterion. Visual 
embedding can also be seen a reusable template within van 
Wijk’s discussion on perceptually optimal visualizations.!

Visual!Embedding!!

Mathematically, we can model a visualization as a function 
from data points to a space of visual primitives. We 
propose that a “good” visualization is a function that 
preserves structures in the data (domain) within the 
embedded perceptual space (range). We call a visualization 
function that meets this criterion a visual embedding of the 
data points. Our proposed model is a generalization of 
earlier work on structure-preserving colorings [5].  

Representing Structures in Data 
According to its dictionary definition, structure is “the 
arrangement of and relations between the parts or elements 
of something complex.” How, then, can we express 
structures in data?  The problem is that a user might not 
explicitly know about important structures in the data, let 
alone express or quantify them. On the other hand, one 
often can hypothesize some notion of distance between data 
points. Using pairwise distances is one simple and general 
way of implicitly expressing structures in spaces. For 
example, if a function transforms a two- or three-
dimensional Euclidean space while preserving pairwise 
Euclidean distances, the shape and size of objects in the 
space will stay the same. Similarly, if there were a function 
from a sphere to a plane that preserved all pairwise 
distances on the sphere, we would have world maps without 
distortion (i.e., angles and areas would be simultaneously 
preserved). Structure can be operationalized in terms of 
these atomic pairwise relations; in this context, it is the 

visualization function’s job to picture what these pairwise 
relations amount to. 

Distance in data space ideally should reflect a user’s 
understanding of the similarity between data points as it 
relates to her current task. This allows the user to hint at the 
type of structures she is interested in seeing. For instance, if 
the user is interested in symmetries then she should provide 
a measure that quantifies these relationships. In fact, 
structural criteria such as symmetry and continuity are often 
used as design choices in creating visualizations. Distance 
in the visual space, on the other hand, should convey the 
perceptual distances between visual primitives. 

Of course, there can be many other ways of expressing 
structures in data. However the structure is expressed, the 
corresponding perceptual range must be capable of 
depicting that structure. One advantage of using pairwise 
distances is that application to visual spaces is conceptually 
straightforward. They can be encoded as perceptual 
differences of color, shape, texture, spatial distance, size, 
etc. Our following discussion assumes the use of pairwise 
distances as our method of expressing structure in the data 
domain.  

Estimating Perceptual Distances with 
Crowdsourcing 
To assess structural preservation, we require perceptual 
distance measures for a given visual embedding space. 
Except for a few perceptually uniform color spaces, 
however, we don’t have these measures for most visual 
spaces. Online crowdsourcing can help us estimate 
perceptual distances in these cases [7] 

A visual space is said to be perceptually uniform if a 
perturbation to any element in the visual space results in a 
proportional change in a viewer’s percept. For example, 
perceptual experiments find that linear mappings for 2D 
position or 1D length are perceptually linear. By design, the 
CIELAB color space is approximately perceptually 
uniform, whereas RGB and CIEXYZ are not. The 
Euclidean distance between two color points in CIELAB is 
approximately proportional to the empirically-reported 
perceptual difference between the colors. Conversely, a 
small change to RGB or CIEXYZ triplet values may cause 
a disproportionate change in perceived colors. 

Crowdsourcing is one means of collecting large and 
diverse perceptual data samples. For example, Heer and 
Bostock [7] successfully replicated prior graphical 
perception results using crowdsourced experiments on 
Amazon’s Mechanical Turk. Note that CIELAB was also in 
a sense “crowdsourced”: it was created by fitting an 
appearance model to observers’ color-scale judgments. We 



demonstrate the viability of this approach within an 
example below (Section 4.2) by crowdsourcing the 
perceptual distances for a simple discrete space of polygons 
(!!in Figure 2).  

!
Figure!2:!Example!of!a!visual!product!space.!

New Visual Spaces from Old: Visual 
Product Spaces 
Formulating visualizations as structure-preserving functions 
raises the possibility of transferring other related concepts 
from mathematics. Product spaces (or sets) provide one 
example: we can generate a new visual space using the 
Cartesian product of existing visual spaces. We call this 
new space a visual product space (Figure 2). 

As a general rule, the product of two perceptually 
uniform visual spaces will not itself be uniform. On the 
other hand, we know that when we have two topological 
spaces endowed with metrics, constructing a metric for the 
product space is straightforward. One challenge is to 
discover if there are cases where an analogous procedure 
exists for constructing visual product metrics. This issue 
strongly resonates with research on interactions between 
perceptual dimensions (e.g., integral vs. separable visual 
encodings). Looking into separable cases reported in the 
literature may be a promising starting point. 

Constructing the Visualization Function 
Construction of a “good” visualization function under our 
proposed model is fundamentally an optimization problem. 
The nature of embedding spaces often determines the 
techniques available to us. Embedding spaces can be 
Euclidean (e.g., most color spaces, including RGB, 
CIELAB, CIELUV, etc.), continuous but non-Euclidean 
(e.g., parametric shape spaces and texture spaces), and 

discrete (e.g., finite sets of icons, shapes, glyphs and fonts). 
Principal component analysis (PCA), multidimensional 
scaling (MDS), isometric feature mapping (ISOMAP), and 
local linear embedding (LLE) are just few examples of the 
many techniques used to embed a domain in Euclidean 
space [6].  

Although embedding in the Euclidean space is 
computationally well studied, embedding in non-Euclidean 
spaces (continuous or discrete) is not. The latter problem 
can be formulated as a combinatorial optimization; 
graphical models [10] are one way to formulate and solve 
these problems. 

A graphical model depicts a joint probability 
distribution of random variables. Nodes and edges of a 
graphical model represent random variables and their 
conditional dependencies, respectively. How might we use 
a graphical model for visual embedding?  Consider: we can 
define a random variable (node) for each data point, 
assigning the data point to a visual primitive (e.g., color, 
icon, shape, etc.) in the visual embedding space. Similarly, 
we can use edges to express pairwise distances as 
conditional dependencies that we intend to preserve 
perceptually in the embedding space. Then the visual 
embedding problem can be defined as finding the mode of 
the joint distribution defined by this graphical model, which 
can be computed using efficient inference algorithms [10]. 
In Section 4.2, we give a simple example of how graphical 
models can be used for visual embedding.  

Directed and undirected graphical models have great 
potential for expressing and synthesizing visualizations. 
They can also be extended to construct embeddings in 
continuous visual spaces. Using graphical models also 
opens up an opportunity to model conditional distributions 
of visual embeddings. One can imagine a scenario in which 
a visualization tool presents a user with sampled 
visualizations drawn from a distribution over possible 
visualizations learned by the model.  

Examples 
 
We give three examples to demonstrate our model.  



Coloring Neural Tracts 
Our first example concerns the coloring of neural fiber 
pathways estimated from a diffusion imaging brain dataset. 
Given a set of tracts, we first compute distances (or 
dissimilarities) between pairs of pathways, using a simple 
measure that quantifies the similarity of trajectories that 
two given neural pathways follow. We then construct the 
visualization function by embedding the distances in 
CIELAB color space using MDS. Figure 3 shows the 
obtained colorings. Notice that spatial variations in tracts 
are reflected by perceptual variations in color.  

Scatter Plots with Icons 
The second example demonstrates embedding in a discrete 
visual space using a toy problem. We would like to assign 
polygonal icons from !! (Figure 2) to a given set of 2D 
points so that the spatial proximity of the points is 
redundantly encoded via the perceptual proximity of the 
assigned polygons. Though simple, this setup is not 
unrealistic; redundant visual encoding is common in 
visualization. Alternatively we could use icons to convey 
attributes of other dimensions of the data points. 

Unlike the previous coloring example, here we lack a 
perceptual model for estimating perceived distance. 
Consequently, we first obtain a crowdsourced estimate of 
the perceptual distances between the elements of !! using 
Amazon’s Mechanical Turk service. Users were shown all 
possible pairs, including identical ones. We use errant 
ratings of identical polygon pairs to filter “spammers.” 
After this initial filtering, we normalize the ratings within 

each user and then average ratings across users. Finally, we 
normalize the averaged ratings and accumulate the results 
in a distance matrix. Figure 4a shows the task interface and 
resulting perceptual distance matrix. 

We then pose the embedding problem as maximum a 
posteriori estimation in a Markov random field (an 
undirected graphical model) to find an embedding of a 
simple 2D point set in !!. Figure 4b shows the result. The 
polygonal primitive assignment reflects the clustering of 
the data points, as desired. 

Evaluating Tensor Glyphs 
Our proposed model can also be used to evaluate existing 
visualizations; given suitable data and perceptual metrics, 
we can assess the structure-preserving qualities of 
competing visualization techniques. 

To demonstrate this point, we compare superquadrics and 
cuboids, two alternative glyphs used in visualizing second 
order diffusion tensors (Figure 5a). We take the diagonal 
tensor D=[2.1 0 0; 0 2 0; 0 0 1] and rotate it around its 
smallest eigenvector (0,0,1) with five incremental degrees, 
while computing the change in the tensor value with the 
Euclidean distance between the reference tensor and the 
rotated tensor. We approximate the perceptual change in the 
corresponding glyph visualizations with the sum of the 
magnitudes of the optical flow at each pixel in the image 
domain. Note that we average the optical flow distances 
over 9 different viewpoints uniformly sampled on a 
circumscribed sphere under fixed lighting and rendering 
conditions. 

Figure!3: Neural!tracts,!(a)!the!internal!capsule!and!(b)!the!corpus!callosum,!colored!using!visual!embedding!in!a!
perceptually!uniform!color!space.!

(a)! (b)!



The trends in Figure 5b suggest that superquadrics 
represent the change in the data more faithfully (i.e., better 
preserve the structure) than cuboids. This supports the 
visualization design choice motivating superquadrics [9].  

Conclusions  
Good visualizations should facilitate exploration and 
understanding of patterned structures in data. Motivated by 
this, we proposed a visualization model based on structure-
preserving functions into visual primitive spaces and 
discussed some tools to construct these functions. Although 
we focus on visualization, embedding spaces need not be 
restricted to visual stimuli: any perceptual channel or 
combinations thereof – such as color, texture, shape, icon, 
tactile, and audio features – might play the role of the 
embedding space. For example, one could in theory apply 
our formulation to construct sonifications for people with 
visual disabilities. 

Our current examples are intended only as a proof-of-
concept, including our approach for perceptual distance 
estimation via crowdsourcing. Visualizations live in 
context; estimated perceptual distances with crowdsourcing 
cannot capture all the perceptual interactions of every 
context. Also, running large-scale crowdsourcing studies 
can be difficult. In the example here, we have a small 
discrete space and thus it was feasible to present every pair 
of embedding space points to each of the study participants. 
Running a similar experiment with thousands of discrete 
visual primitives will require larger studies and more 
sophisticated analysis methods for estimating a distance 
matrix (e.g., [14]).  Similarly, large-scale embedding can be 
slow, although there are many heuristics such as restriction 
of pair-wise distances to local neighborhoods and sampling 
that can ameliorate the problem. 

Based on these challenges and insights derived from our 
examples, we envision several research directions going 
forward: 

1. Standard library of visual spaces: We would like to see 
a “standard” library of visual spaces with associated 

perceptual measures made available to the larger 
visualization community. Such a library would be a 
practical resource for constructing useful defaults for 
visualizations. This effort will require consulting the 
perception literature on the interference of perceptual 
dimensions as well as running large-scale crowdsourcing 
studies. It is possible that metric learning might help for 
the latter [14]. 

2. Probabilistic models of visualizations: Implementation 
of visual embedding with graphical models provides an 
opportunity for exploring probabilistic models of 
visualization design spaces. This may prove to be fruitful 
because there are often several “optimum” visualizations. 
Using graphical models can also help in expressing high-
level structures in data. Such models may also make it 
easier to incorporate aesthetic or subjective criteria into 
automatic visualization generation processes. 

3. Evaluating visualizations: Given alternative visual 
encodings for the same type of data and task, it is natural 
to ask: which encoding is better?  As our tensor glyph 
example demonstrates, visual embedding can provide a 
framework for evaluating visualizations. One of the 
challenges in this direction is to devise and validate 
appropriate image space measures (e.g., optical flow) to 
approximate perceptual distances. 

4. Tools: Finally, we would like to develop tools that 
facilitate the construction of visualizations under our 
proposed model. Two challenges stand out. The first is to 
develop a visualization language allowing users to 
express and create visual embeddings without having to 
implement any optimization algorithm. This language 
should integrate libraries of visualization defaults for 
different data and task domains. It may also benefit from 
crowd programming ideas (e.g., [1]) to enable “coding” 
of user validation in visualization programming. The 
second challenge is to develop a visualization debugger 
in the spirit of the example (Section 4.3), allowing users 
to get “runtime” feedback about the quality of their 
visualizations. We envision visualization development 
environments in the future integrating such languages 
and debuggers. 

Figure!4:! (a)!Perceptual!distances!estimated!for!a!discrete!polygonal!shape!space,!!!,!using!crowdsourcing:!(left)!The!task!interface!at!
Amazon!Mechanical!Turk,! (right)! the! estimated! perceptual! distance!matrix.! Darker! colors! indicate! closer! distances.! (b)! Planar! data!
points!are!embedded!in!!!.!Note!that!the!polygonal!icon!assignment!reflects!the!spatial!variation!and!clustering!of!the!data!points.!

(a)! (b)!
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Figure! 5: (a)! Two! different! tensor! glyphs,! cuboid! and! superquadric,! used! for! visualizing! the! same! tensor! field! (adapted![9]).!
Respective!inset!glyphs!represent! the!diagonal!tensor!D.!(b)!Changes! in! the!size!of! the!diagonal! tensor!D!and! its!superquadric!and!
cuboid!representations!with!respect!to!rotations!around!the!tensor’s!smallest!eigenvector!are!shown.!Note!that!the! tensor!size!and!
the!superquadric!glyph!appearance!follow!a!similar!trend!while!the!cuboid!glyph!appearance!has!a!trend!different!from!the!two.!This!
suggests!that!superquadric!glyphs!better!preserve!the!structure!in!the!data!in!this!experiment. 
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