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Abstract. We present a coloring method that conveys spatial relations between

DTI fiber tracts effectively; similar tracts are assigned to similar colors and differ-

ent tracts are assigned to different colors in a smooth and continuous manner. To

this end, we combine a standard spectral approach with a mass-spring heuristic

to embed fiber tracts into a perceptually uniform color space, L*a*b*. We also

introduce a new geometric bivariate coloring model, the flat torus, that allows

finer adjustment of coloring arbitrarily. Results indicate that our method allows a

quick evaluation of tract projections and facilitate demarcation of subtle anatom-

ical divisions in fiber tracts.

1 Introduction

Diffusion-TensorMagnetic Resonance Imaging (DTI) enables the exploration of fibrous

tissues such as brain white matter and muscles non-invasively in-vivo [1]. It exploits the

fact that water in these tissues diffuses at faster rates along fibers than orthogonal to

them. Integral curves that represent fiber tracts by showing paths of fastest diffusion are

among the most common information derived from DTI volumes [2]. Ability to esti-

mate fiber tracts in vivo is in fact one of the key advantages of DTI over conventional

imaging techniques. Integral curves are generated from DTI data by bidirectionally fol-

lowing the principal eigenvector of the underlying diffusion tensor field and often vi-

sualized with streamlines or variations of streamlines in 3D. Reflecting the intricacy

of the connectivity in the brain, these 3D models obtained from DTI brain data sets

are generally visually dense. It is often difficult to ascertain tract projections as well as

anatomical and functional structures clearly. Therefore, the ability to see similarities and

differences is fundamental to exploring tractography data. In this context, we present a

coloring method that conveys spatial relations between tracts effectively: similar tracts

are assigned to similar colors and different tracts are assigned to different colors in a

smooth and continuous manner. In other words, variation in similarities (and dissimilar-

ities) is represented with proportional variation of colors. To this end, we first compute

pair-wise similarities between the tracts then pose the problem of coloring tracts as an

optimization problem and solve it.

Contributions:Ourmain contributions are two fold. First, we present a coloringmethod

where variation in similarities among tracts is reflected with variation in perceptual dif-

ferences among their colors. Second, we introduce a geometric coloring model, the

flat torus, that allows fiber-tract color differences to be adjusted arbitrarily. We also in-

troduce a new fiber-tract similarity measure that uses the complete geometry of fiber

pathways while giving higher “importance” to the end points.



(a) (b)

Fig. 1: Two brain fiber bundles superimposed with slices of fractional anisotropy (FA) map. (a)

Corpus callosum with the mid-sagittal slice and (b) internal capsule with the mid-coronal slice.

We show example visualizations of the corpus callosum and internal capsule (see Fig-

ure 1). The corpus callosum is the largest white matter structure connecting the left

and right hemispheres in the brain. The internal capsule runs between the cerebral cor-

tex and the medulla, containing major longitudinal (both ascending and descending)

pathway systems, including the corticospinal tract, medial lemniscus, and corticobulbar

tract. Both the corpus callosum and internal capsule are targets for clinical and neuro-

science research into normal developmental vs. pathological changes in white matter

integrity across the lifespan and the functional correlates of those changes.

We have presented some of the ideas in this paper as a poster previously in [3]. Here, we

aim to give an extended and more complete view of our work. In the following section

we discuss related work. Then, we give details of our coloring method in section 3.1

and present and discuss the results in section 4. We finish the paper by summarizing our

work and contributions and by concluding in section 6.

2 Related Work

Mapping data values to colors is a fundamental operation in scientific visualization.

Previous work based on empirical studies addressed the problem of generating percep-

tually effective colormaps [4–7].

Several different geometric models, including lines, planes, cones, cylinders, and B-

spline surfaces have been proposed for univariate, bivariate or trivariate color map-

ping [8, 9]. We extend the earlier models by introducing the flat torus model to give a

continuous 2D color mapping that is approximately perceptually uniform and that can

be repeated an arbitrary number of times in both directions to increase sensitivity.

Pajevic et al. proposed methods to colormap DTI cross-sections according to principal

eigenvectors of tensor-valued voxels using different color spaces, including the percep-

tually uniform CIE L*u*v* color space [10]. The authors point at the potential limi-

tations due to the irregularity of the L*u*v* space. Our flat torus model addresses the

limitations due to the shape of the color space by allowing cyclic continuous bivariate

mapping.



Integral curves generated fromDTI volumes have been visualized generallywith stream-

lines in 3D with different geometric (i.e., hyperstreamlines, streamtubes, etc.) and col-

oring combinations [11, 12].

In a work that is the closest to ours, Brun et al. colored DTI fiber tracts by embed-

ding them in the RGB color space using a non-linear dimensionality-reduction tech-

nique [13]. The authors use end-point distances of tracts to define the similarity. Our

work differs from this work in 1) the similarity measure that we use, 2) the embedding

approach that we take, 3) the perceptual color space that we embed the curves in, and

4) the bivariate coloring model that we introduce.

3 Methods

The goal of our coloring method is to represent the spatial variation among the fiber

tracts as perceptual variation among their colors. To this end, we first compute a “dis-

tance” matrix quantifying similarities (or dissimilarities) between pairs of tracts. Then,

we express the coloring as an optimization problem such that perceptual distances

among colors of fiber tracts are proportional to similarities among fiber tracts quan-

tified in the distance matrix. The problem as posed is a distance embedding problem

and we approximate the solution using a spectral approach. We refine this global re-

sult using a simple mass-spring-based heuristic restricted to local neighborhoods. In

the context of our paper, embedding fiber tracts means finding a set of corresponding

points in a Euclidean subspace where distances among the points optimally preserve

the corresponding distances among the fiber tracts. We use our embedding procedure in

two ways. In one, we embed tracts in the three-dimensional color space directly. In the

other, we embed them into a plane and color via the flat-torus model by covering the

flat-torus surface with the planar embedding.

3.1 Fiber Tracts as Integral Curves

Integral curves are models extracted from DTI volumes to approximate neural fiber

tracts in the brain 1. These integral curves are solutions to the following first-order dif-

ferential equation: dC
ds

= v1(C(s)), where s parametrizes the curve and v1 is the principal

eigenvector of the underlying diffusion tensor field at the pointC(s) = (x(s),y(s),z(s)).
We compute the integral curve C(s) passing through a given seed point C(0) by inte-

grating the above equation for s> 0 and s< 0 (i.e., both directions from the seed point).

We represent integral curves as lists of connected line segments (i.e., polygonal chains).

3.2 Similarities Between Fiber Tracts

We quantify how fiber tracts relate to each other by computing an anatomically moti-

vated pairwise distance measure between them. Our measure tries to capture howmuch

1 We use the terms integral curve and fiber tract interchangeably throughout the paper



any given two tracts follow a similar path, while giving more weight to the points closer

to tract ends. There have been different distance measures proposed for fiber tracts gen-

erated from DTI volumes [14]. In the current work, we modify the chamfer distance

measure so that points closer to the ends of the curves have higher weights. Note that

our measure does not necessarily satisfy the triangle inequality; therefore, it is not a

metric. Given two integral curves Ci = {C1
i , . . . ,C

m
i } and C j = {C1

j , . . . ,C
n
j } that are

represented as polylines with m and n vertices respectively, we first find mean weighted

distances di j and d ji, then determine the maximumof these two distances as the distance

Di j between the two curves:

di j =
1

m

m

∑
k=1

αi
kdist(Ck

i ,C j) (1)

d ji =
1

n

n

∑
k=1

α j
kdist(Ck

j ,Ci) (2)

Di j = D ji = max(di j,d ji) (3)

The function dist(p,C) returns the shortest Euclidean distance between the point p and

curveC. Also,αk = 1
Z
e|k−(m+1)/2)|2/σ2

, where the normalizing factor Z = ∑
m
k=1 e

|k−(m+1)/2|2/σ2
.

We set the parameter σ automatically, proportional to LC, the length of the fiber tract,

such that σ = λLC, where λ ∈ (0,1]. We use λ = 0.5 for the demonstrations in this

paper. We compute distance between each pair of integral and assemble the measures

to create a distance matrix. While we believe our distance measure is a good approxi-

mation of the notion of similarity in the domain, our coloring method is independent of

a particular distance measure.

3.3 Embedding Fiber Tracts

In our coloring approach, we aim to reflect the boundaries in distance changes between

integral curves as perceptual boundaries of colors. Intuitively, we are looking for a

set of color coordinates x in a given color space that optimally preserves relations (as

defined in D). Therefore, given a similarity matrix D, we define a cost function E(x)
and minimize it.

E(x) = ∑
i< j

(||xi− x j||−Di j)

Searching for x that minimizes E(x) is indeed a distance embedding problem and we

take a spectral approach to approximate it as suggested in [15]. The reason for choos-

ing this particular spectral embedding method is its simplicity and speed. We refine the

spectral embedding result using a mass-spring-based heuristic restricted to an ε neigh-

borhood [16].

Perceptually uniform color spaces such as the L*a*b* are natural choices for our method

as perceptual differences between colors are encoded as Euclidean distances in these

color models. A color space is said to be perceptually uniform if the perceptual differ-

ence between any two colors in just-noticeable-difference (JND) units is equal to the

Euclidean distance in that color space [17].
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Fig. 2: (a) Bohemian Dome. (b-d) Illustration of the flat torus model adjusting the sensitivity

of colormapping by rescaling the planar representation (embedding) of the integral curves and

“wrapping” around the flat torus as many times as needed. Pictures, (b-d), show the visualization

of the mid-sagittal plane of the corpus callosum with increasing sensitivity of coloring.

We use the embedding procedure above in two different ways to color fiber tracts. In the

first, we embed the fiber tracts into the three dimensional L*a*b* color space 2 directly.

In the second approach, we use the flat torus as a bivariate coloring model. For this, we

first create an embedding in the plane and then map this planar embedding to cover the

flat-torus surface arbitrarily many times to adjust the sensitivity of the coloring. Then,

we submerse the flat torus in the color space to color the curves.

Flat torus We propose the flat torus as a new geometric model for bivariate color

mapping. A flat torus in 4-space is a Cartesian product of two circles in R2. It can be

obtained by a mappingW : R2 → R4 such that

W (x,y) = (u,v,s,t) = (r1 cosx,r1 sinx,r2 cosy,r2 siny) (4)

where r1 and r2 are the radii of the circles. The flat torus has zero Gaussian curvature

everywhere; therefore, a plane can be wrapped around it without distortion [18]. This

can be particularly useful if all four coordinate values are used in a perceptually mean-

ingful way, because wrapping the embedding plane onto the flat torus does not distort

the embedded distances. One of the primary advantages of using flat torus is that we

can adjust the sensitivity of the color mapping by rescaling the data values (i.e., points

on the plane) uniformly and wrapping around the two circles, determined by r1 and r2,

continuously an arbitrary number of times. This in turn provides a more flexible use

of the color bandwidth. Our second coloring approach wraps the planar representation

generated by the embedding algorithm onto a flat torus creating 4D (u,v,s,t) coordi-

nates for the plane points. Then we project the flat torus onto a quartic surface called

the Bohemian Dome (see Figure 2) centered at (Lo,ao + r1,bo) in a visible portion of

the L*a*b* color space as follows:

(L∗,a∗,b∗) = (Lo + t,ao+ r1 +u+ s,bo+ v)

2 L*, a*, and b* are the three orthogonal axes of the color space, where L* determines the

lightness of the color (ranging from 0 to 100) while a* (ranging green to red) and b* (ranging

from blue to yellow) together determine the chroma and hue of the color. See [17] for further

details.
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Fig. 3: Corpus callosum colored by (a) embedding the tracts in the L*a*b* color space directly

and (b) submersing the flat torus, covered with a planar embedding of the fiber tracts, in the

L*a*b* color space. Notice non-local color repetitions in the latter case.

The resulting image shows larger changes in color where neighboring integral curves

differ more. Note that this projection is not isometric. It has two lines of self-intersection

(where different (x,y) points map to the same colors); it also distorts the angles between

the coordinate directions. For the examples shown in this paper, we locate the pro-

jected Bohemian Dome in the L*a*b* interval I = (IL, Ib, Ic), where IL = [45,95], Ia =
[−50,70], Ib = [−20,70], and use r1 = 45, r2 = 25. Note that L0 = 70,a0 = 10, and

b0 = 25.

4 Results

We implemented our distance computation routines in C++ and the embedding proce-

dure in Matlab. Source codes are available online at [19]. We set ε = 4.0 in the spring

embedding refinement such that only distances within epsilon are iteratively refined.

We apply our coloring procedure to the corpus callosum and internal capsule. Fig-

ure 3 shows the coloring of the corpus callosum via the flat torus model. Similarly,

Figure 4 shows the coloring of the internal capsule using direct embedding into the

L*a*b* space.

A common way of coloring fiber tracts in the DTI community is to color-encode the

lines determined by the end-points of the tracts (also known as the end-point vector, the

direction of which does not matter) by mapping the absolute value of the normalized

end-point vector to RGB color-triples [20]. Figure 5 demonstrates the advantage of our

similarity coloring method over this de-facto standard. The end-point vector coloring

gives almost uniform colors (due to mirror symmetries resulted by taking the absolute

value of the vector) for both the internal capsule and corpus callosum models, while



Fig. 4: Two views of the internal capsule colored by embedding the tracts in the L*a*b* space

directly.

our method clearly represents the spatial variation among tracts as variation among

their colors.

(a) (b)

Fig. 5: Internal capsule colored (a) using the end-point vector coloring and (b) embedding the

tracts in the L*a*b* space directly.



5 Discussion

It is important to note that the perceptual uniformity when the flat torus is used is an

approximation, because the flat torus cannot be mapped to three space isometrically.

Our projection can deemphasize changes in certain regions of the flat torus. There are

other projections that may be closer to isometric, although our experimentationwith lin-

ear and non-linear metric embedding methods such as metric multidimensional scaling

(MDS) and isomap [21] using geodesic distances on the flat torus, which are projections

of the lines in the lattice space, did not work as well as the Bohemian Dome projection.

It also may be possible to add a fourth perceptual dimension like texture to the three

color dimensions, removing the need for a projection and preserving the properties of

the flat torus. It should be also noted that the perceptually uniformity of the L*a*b*

color space is an empirical approximation obtained under certain display settings. De-

viation from these settings (e.g., when monitors used are not calibrated) further distorts

the approximation of perceptual uniformity [17].

Unless there is an isometry between the “manifold” of fiber tracts and the embedding

space (e.g., R3, R2), it is not possible to preserve similarities among all pairs of fiber

tracts in the embedding space. Our two-step embedding process aims to preserve simi-

larities locally without distorting the global structure too much. However, as the number

of fiber tracts increases while ε is kept fixed, it should be expected that both the com-

putational cost and embedding distortion will increase, in general.

The two coloring approaches discussed here have their own merits. While coloring

via the flat torus provides a cyclic use of the color space, direct embedding makes

better use of the volume of the color space resulting in more saturated colors. Still, for

both approaches, initial results indicate that our coloring method can help to quickly

ascertain tract projections and find subtler anatomical divisions in fiber tracts.

6 Conclusions

We presented a coloring method that reflects spatial relations between neural fiber tracts

effectively, assigning similar tracts to similar colors, and different tracts to different

colors, with differences preserved proportionately. We also introduced the flat-torus

model that gives the ability to adjust the sensitivity of the color mapping by rescaling

the data values (i.e., points on the plane) uniformly and wrapping around the two circles,

enabling continuous use of the color “bandwidth.”

We applied our method to the corpus callosum and internal capsule in the brain. Feed-

back from neuroscientist collaborators suggests that our visualization methods can be

useful in identification of smaller caliber anatomically or functionally related white-

matter structures, particularly those that are contained within large bundles or fasciculi

that project to multiple areas.

While our application interest has been in DTI, the coloring method described here can

be applied to curves representing flow, surveillance trajectories, paths, etc. In fact, given



a measure of similarity, our method can be used for coloring data entities arising from

any field easily.
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