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Abstract

We present three methods for visualizing cross-sections of diffusion tensor

magnetic resonance imaging (DTI) volumes. The goal of our methods is to effec-

tively bring 3D out-of-plane connectivity information into the cross-section plane,

as inspecting 2D cross-sections is a common practice for scientific data explo-

ration. In order to derive the connectivity information associated with a cross-

section, we first sample points (seeds) on a regular grid on the cross-section and

then, from each point, generate integral curves following the principal eigenvector

of the underlying diffusion tensor field in both directions. We quantify how these

curves relate to each other by computing an anatomically motivated pairwise dis-

tance measure between them and assemble the measures into a distance matrix.

All of the three methods visualize these 3D distance relations on the cross-section

plane. Our first method (Bohemian coloring) uses color changes proportional to

the distances in the L*a*b* color space; our second method (icon layering) uses

both color changes and icons of varying size and layout; our third visualization

uses line segments rendered with different thicknesses and shades (edge render-

ing). All of our methods provide a way to visually segment 2D slices of DTI

data with respect to the integral curves crossing the slice plane. We demonstrate

our methods in visualizing the mid-sagittal cross-section of the corpus callosum in

the brain. Experts report that our methods may facilitate demarcation of subtler

anatomical-functional divisions of the corpus callosum and can be useful in quick

diagnosis of subtle but critical changes in the number and shape of the neuro-fibers

due to injuries. Also, a particular contribution of the current work is to intro-

duce a continuous 2D color mapping technique based on a new geometric model,

flat-torus, providing approximate perceptual uniformity and can be repeated an

arbitrary number of times in both directions to increase sensitivity.

1 Introduction

Diffusion-Tensor Magnetic Resonance Imaging (DTI) enables the exploration of

fibrous tissues such as brain white matter and muscles non-invasively in-vivo. It



exploits the fact that water in these tissues diffuses at faster rates along fibers than

orthogonal to them. However, the multivalued nature of DTI data poses challenges

in visualizing and understanding the underlying structures. Integral curves that

represent neural pathways by showing paths of fastest diffusion are among the

most common information derived from DTI volumes. They are generated by

tracking the principal eigenvector of the underlying diffusion tensor field in both

directions. They are often visualized with streamlines or variations of streamlines

(streamtubes and hyperstreamlines) in 3D.

In this paper, we present three new methods for visualizing cross sections of

DTI volumes that incorporate the 3D out-of-plane connectivity information typi-

cally conveyed by the integral curves. Slice-based 2D visualizations of scientific

data are generally effective, fast and synoptic [1, 6]. Also, looking at 2D cross-

sections is still the most common practice by far among scientists and physicians

for data exploration. Furthermore, there is some anecdotal evidence that incorpora-

tion of 2D cross-sections in 3D visualizations of medical data sets data is preferred

by the same group [2]. For each of our three visualization methods we show exam-

Figure 1: Icon layering (left), Bohemian coloring (middle), and edge rendering (right)

visualizations of the mid-saggital plane of the corpus callosum in a normal volunteer’s

brain.

ple visualizations of the corpus callosum in the mid-sagittal plane of three normal

volunteers. The corpus callosum is the largest white matter structure connecting

the left and right hemispheres in the brain. It is a target for clinical and neu-

roscience research into normal developmental vs. pathological changes in white

matter integrity across the lifespan and the functional correlates of those changes.

The fibers in the corpus callosum usually project to homologous regions in oppo-

site hemispheres on an anterior-posterior gradient, but heterologous connections

also exist. Accordingly, distinct cross-sectional regions of the corpus callosum

may contain fibers that subserve specific cognitive or behavioral functions medi-

ated by the cortical regions to which they project. Proxy measures (e.g., thickness,

volume, area, shape) of the health of these cross-sectional regions may correlate

with measures of the cognitive and behavioral functions they subserve. In fact,

the corpus callosum has been shown to differ on such measures by handedness,

gender, and age as well as in diseases such as Alzheimer’s disease and schizophre-

nia. Until fairly recently, structural clinical neuroimaging studies on the corpus

callosum either in development, aging, or disease have been based on quantitative

2



measurements obtained from conventional anatomic MRI or computed tomogra-

phy (CT) images. However, because there are no visually distinct structural or

functional segments of the corpus callosum, most of these studies have relied on

rather arbitrary divisions. The advent of DTI fiber tracking provides an opportunity

to demarcate and measure callosal subdivisions that are based on spatial trajectory

of the fibers, an approach that should permit greater specificity in determining

anatomic-functional correlations within the corpus callosum.

We presented preliminary results involving two of our methods as a short paper

in [3]. In this paper we give a more complete coverage our work with an addition

of a new layered icon-based visualization method.

The ideas and techniques used in our work relate to previous works from dif-

ferent areas in multiple fields. In the following section we discuss these related

works. Then, we give details on the three visualization methods in section 2.1

and present the results of their applications with an evaluation by experts in sec-

tion 3. We finish the paper by summarizing our work and contributions, and by

concluding in section 4.

2 Methods

The goal of our visualization methods is to effectively combine 3D out-of-plane

connectivity information into the cross-section plane. We start with measuring

how a region of interest (ROI) in given cross-section relates (connects) to the other

parts of the data.

2.1 Measuring Connectivity

In order to derive the connectivity information associated with a cross-section, we

first sample points (seeds) on a regular grid on the cross-section and then, from

each point, generate integral curves following the principal eigenvector of the un-

derlying diffusion tensor field in both directions (see Figure 2). Integral curves

generated from DTI volumes are solutions to the first-order differential equation

dC

ds
= ~v1(C(s)) (1)

Figure 2: 3D view of the mid-saggital plane of the corpus callosum with the integral

curves (represented with streamtubes) generated by sampling seed points on a regular

grid in the slice plane.
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Figure 3: Polyline representations of two integral curves Ci and C j

,where s parameterizes the curve and v1 is the principal eigenvector at the point

C(s) = (x(s),y(s),z(s)). We compute the integral curve C(s) passing through a

given seed point C(0) (initial conditions) by integrating the above equation for

s > 0 and s < 0 (i.e., both directions from the seed point).

2.2 Distances Between Integral Curves

We quantify how integral curves relate to each other by computing an anatomically

motivated pairwise distance measure between them and assemble the measures

into a distance (similarity) matrix.

There have been different distance measures proposed for integral curves gen-

erated from DTI volumes [5]. In the current work we adapt a measure proposed by

Zhang et al. with a slight modification [8]. The measure is anatomically motivated

in that it is designed to increase whenever one path has points that are not near the

other path. As these curves are approximations for neural pathways, our measure

tries to capture how much any given two curves follow a similar (or dissimilar)

path. Note that our measure does not necessarily satisfy the triangle inequality,

therefore, it is not a metric. Given any two integral curves Ci and C j that are rep-

resented as polylines with m and n vertices respectively (like the ones shown in

Figure 3), we first find mean distances di j and d ji then, determine the maximum of

these two distances as the distance Di j between the two curves:

di j =
∑

m
k=1 dist(Ck

i ,C j)

m
(2)

d ji =
∑

n
k=1 dist(Ck

j ,Ci)

n
(3)

Di j = D ji = max(di j,d ji) (4)

The function dist(p,C) returns the shortest Euclidean distance between the point p

and curve C. We compute distance between each pair of integral curves as we de-

noted and assemble the measures to create a distance matrix. The distance matrix

is a real positive symmetric matrix with zeros along the diagonal.
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distance fitting

Figure 4: Seed points are adjusted so that Euclidean distances between the points on

the plane reflect the distances between their associated integral curves.

2.3 Embedding Curves into 2D Plane

Our icon layering and Bohemian coloring methods aim to reflect the boundaries

in distance changes between integral curves as perceptual boundaries. For this, we

first embed the distance relations represented by the distance matrix into a plane

where each 2D point uniquely represents an integral curve, and Euclidean distances

between the points are approximations to the distances between the corresponding

integral curves. The seed points are a natural initialization for our embedding

algorithm. We lay out the seed points on a plane (embedding plane) and adjust

their positions using a simple mass-spring-based optimization algorithm so that

the calculated distances between their associated integral curves are best preserved

locally. Figure 4 illustrates how seed point coordinates change after running the

optimization algorithm. We coordinate-transform the adjusted points using

2.4 Flat-torus:A New Model for Bivariate Colormapping

We propose flat-torus as a new geometric model for bivariate color mapping. We

“wrap” the embedding plane onto a flat-torus. A flat-torus in 4-space is a Cartesian

product of two circles in R2. It can be obtained by a mapping W : R2 → R4 such

that

W (x,y) = (u,v,s, t) = (r1 cosx,r1 sinx,r2 cosy,r2 siny) (5)

where r1 and r2 are the radii of the circles. The flat-torus has 0 Gaussian curva-

ture everywhere (i.e., is a developable surface), therefore a plane can be wrapped

around it without distortion [4]. This is particularly useful because wrapping the

embedding plane onto the flat-torus does not distort the embedded distances. One

of the primary advantages of using flat-torus is that we can adjust the sensitivity of

the color mapping by rescaling the data values (i.e., points on the plane) uniformly

and wrapping around the two circles, determined by r1 and r2,continuously (see

Figure 5).

2.5 Icon Layering

Our first visualization method icon layering wraps the planar representation gener-

ated by the embedding algorithm onto a flat-torus creating 4D (u,v,s, t) coordinates

for the plane points and, then, superimposes one layer of circular icons over a col-

ormapped plane using the 4D flat-torus representation. While we create the first

layer by mapping u and v values to an equiluminant plane of the L*a*b* color

space, we create the second layer by placing icons in a Poisson disk distribution
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on the plane and coloring them by mapping s and t values to another plane of the

L*a*b* color space. The mapping is simple:

(L1∗,a1,b1) = (c1,a0 +u,b0 + v) (6)

(L2∗,a2,b2) = (c2,a0 + s,b0 + t) (7)

This effectively means that we obtain the color for the first layer of our visualiza-

tion by mapping the planar representation to (x,y) to a circle centered at (a0,b0)
on L = c1 plane and the color for the second layer of our visualization by mapping

the same (x,y) to another circle centered again at (a0,b0) but on a different, L = c2,

luminance plane. Details on our icon-placement algorithm based on Poisson-disk

distribution can be found in [7].

For the icon layering visualization examples shown in this paper (Figures 1,8,

and 9), we use L1 = c1 = 64 and L2 = c2 = 74 luminance planes of the L*a*b*

color space with a0 = −10,b0 = 20 (see Figure 6) and a flat-torus with r1 = r2 =
40.

2.6 Bohemian Coloring

Our second visualization method,Bohemian coloring, also wraps the planar rep-

resentation generated by the embedding algorithm onto a flat-torus creating 4D

(u,v,s, t) coordinates for the plane points. However, Bohemian coloring projects

the flat-torus onto a a quartic surface called Bohemian Dome (see Figure 7) cen-

tered at (Lo,ao + r1,bo) in a visible portion of the L*a*b* color space as follows:

(L∗,a∗,b∗) = (Lo + t,ao + r1 +u+ s,bo + v) (8)

The colors for the paths are used to color the corresponding grid points on the

original cross-section. The resulting image shows larger changes in color where

neighboring integral curves differ more.

Note that this projection is not isometric. It has two lines of self-intersection

(where different (x,y) points map to the same colors) as well as distorting the

angles between the coordinate directions. We discuss this further in section 3. For

the examples shown in this paper, we locate the projected Bohemian Dome in the

(a) low (b) medium (c) high

Figure 5: Flat-torus model allows adjusting the sensitivity of colormapping by rescal-

ing the planar representation (embedding) of the integral curves and “wrapping” around

the flat-torus as many times as needed. Pictures shows the visualization of the mid-

sagittal plane of the corpus callosum using Bohemian coloring with increasing sensi-

tivity.
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L*a*b* interval I = (IL, Ib, Ic), where IL = [60,80], Ia = [−50,30], Ib = [−20,60],
and use r1 = 30, r2 = 10. Note that L0 = 70,a0 = −10, and b0 = 40 follows.
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Figure 7: Bohemian Dome.

2.7 Edge Rendering

Our third visualization method lays out the grid points on the cross section and

connects the neighboring points with edges that are rendered according to the dis-

tances between curves generated from these points. Note that we sample seed

points on a rectilinear grid where the vertical and horizontal distances between the

grid points are equal to δ . We define the seed points Xi and X j to be neighbors

if ||Xi −X j||2 = δ or ||Xi −X j||2 = δ
√

2 (i.e., a seed point can have maximum 8

neighbors). Edges are drawn redder in color and thicker where neighboring seed

points’ integral curves differ more.

3 Results and Discussion

Figure 1 show the visualizations of the same normal person’s corpus callosum with

close-up views of the same region. Observe the correspondance between regions in

icon layering and Bohemian coloring, and edges in edge rendering. Other results

from two DTI brain data sets are shown in Figures 8 and 9.

It is important to note that the perceptual uniformity in Bohemian coloring is an

approximation, because the flat-torus cannot be mapped to three dimensions iso-

metrically. Our projection can deemphasize changes in certain regions of the flat

torus. There are other projections that may be closer to isometric and it also may be

possible to add a fourth perceptual dimension like texture to the three color dimen-

sions, removing the need for a projection and preserving the properties of the flat
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torus. Similarly, by mapping u,v and s, t coordinates to the two luminance planes

of the L*a*b* color space, icon layering visualization overestimates distances.

3.1 Expert Evaluation

Current methods for visualizing corpus callosum from DTI data consist mainly of

cross sectional views of scalar parameter maps such as fractional anisotropy (FA)

or mean diffusivity (MD) or by fiber tractography. Each of these methods has

strengths and weaknesses. For example, sagittal mid-section views of the corpus

callosum in scalar maps provide a clear picture of its shape and boundaries. The

entire corpus callosum or subregions can be sampled to obtain scalar values that

provide insight into the structural integrity of the white matter fibers that comprise

it. Unfortunately, these scalar maps are visually homogeneous and therefore pro-

vide no visual information about the trajectory of fibers in the corpus callosum

or of how fibers running through different regions might differ from one another

in terms of their anatomical origins and destinations or of their functional signifi-

cance. Tractography models provide this trajectory information but these models

are typically visually dense and it is difficult to ascertain anatomical subdivisions.

Therefore, in order to understand the potential anatomical and clinical util-

ity our methods and how and if they can mitigate some of the problems discussed

above, we asked two neuroscientists to evaluate our methods. We report a summary

of their response. Their feedback shows that three visualization methods presented

in this paper provide complimentary information about the structure of CC that

maximizes their advantage of scalar and tractographic representations while min-

imizing their limitations. As such, the potentially provide a major advance over

current visualization methods. Our methods allow to quickly ascertain anatom-

ical subdivisions of the corpus callosum (Bohemian coloring), to define distinct

boundaries between them (edge rendering), and then to view at a finer level of

detail (icon layering), variations in fiber trajectory within larger anatomical re-

gions. They allow researchers to do this with visual ease without the visual clutter

of a tractography model. The methods will help researchers empirically define

anatomical subregions whereas current methods for dividing the CC are somewhat

arbitrary.

According to our experts, the methods have a number of potential applications.

They could be quite valuable in training neuroscientists in white matter anatomy

and individual variability. They might have particular relevance to the study of

brain development and could help answer a number of intriguing anatomical and

clinical questions. For example, how what are the effects of maturation (or ag-

ing) on the size and shape of CC subdivisions or in the variability of their fiber

trajectories? What are the functional correlates of the fibers? Do certain disor-

ders (e.g., dyslexia, autism) have derangements in the trajectories, number, or size

of callosal fibers? What are the anatomical correlates of interhemispheric trans-

fer of information in disorders such as generalized seizure disorder, alcoholism,

schizophrenia, etc.? How what is the impact of waxing and waning white matter

inflammation such as occurs in multiple sclerosis of HIV on callosal fiber structure

and integrity?

The experts pointed at limitations due to tracking algorithms as well. For exam-

ple, errant fibers in the tractography models will presumably get mapped onto these

visualization schemes. If so, how can they be identified and culled when trying to

identify distinct tracts. Also, it is clear that the boundaries between subdivisions
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Figure 8: Icon layering (left), Bohemian coloring (middle) and edge rendering (right)

visualizations of the mid-saggital plane of the corpus callosum in a normal volunteer’s

brain.

suggested by the color models are not always borne out on the edge detection mod-

els raising questions about where to define such boundaries for subregion analysis.

4 Conclusions

We have presented three cross-sectional visualization methods for DTI volumes.

The primary strength of these methods is providing a compact and contextual visu-

alization by bringing higher dimensional connectivity information onto a 2D plane

which is effective and familiar to practitioners. We have applied them to visually

segment the mid-saggital cross-section of the corpus callosum in the brain. Feed-

back from neuroscientist collaborators suggests that our visualization methods can

be useful in identification of smaller caliber anatomically or functionally related

white-matter structures, particularly those that are contained within large bundles

or fasciculi that project to multiple areas.

We have also proposed flat-torus as a new geometric model for bivariate color

mapping. Flat-torus provide a natural mechanism for continuous cyclic mappings,

easing the color “bandwidth” limitations due to the shape of the color space used

and the skewed distribution of the data values mapped. This, in turn, provides a

mechanism to adjust sensitivity of color mapping as desired. Using the flat-torus

model with two different projections to the L*a*b* color space, we introduced

two continuous 2D color mapping techniques that provide approximate perceptual

uniformity and can be repeated an arbitrary number of times in both directions to

increase sensitivity.

Figure 9: Icon layering (left), Bohemian coloring (middle) and edge rendering (right)

visualizations of the mid-saggital plane of the corpus callosum in a normal volunteer’s

brain.
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All of the three sectional visualization can be easily extended to visualization

of other vector, tensor or multi-scalar data volumes. Furthermore, the underlying

idea of this work, computing similarities between model primitives (geometric

or otherwise) that represent how a ROI in a data set relates to the other regions

and then incorporate the similarity information to the visualization of the ROI,

can be applied to data and information visualization problems in different fields

effectively.
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