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Connectivity-aware sectional visualization of 3D DTI volumes
using perceptual flat-torus coloring and edge rendering

Abstract
We present two new methods for visualizing cross-sections of 3D diffusiontensor magnetic resonance imaging
(DTI) volumes. For each of the methods we show examples of visualizations of the corpus callosum in the mid-
sagittal plane of several normal volunteers. In both methods, we startfrom points sampled on a regular grid on the
cross-section and, from each point, generate integral curves in both directions following the principal eigenvector
of the underlying diffusion tensor field. We compute an anatomically motivatedpairwise distance measure between
each pair of integral curves and assemble the measures to create a distance matrix. We next find a set of points
in a plane that best preserves the calculated distances that are small—each point in this plane represents one of
the original integral curves. Our first visualization method wraps this planar representation onto a flat-torus and
then projects that torus into a visible portion of a perceptually uniform color space (L*a*b*). The colors for the
paths are used to color the corresponding grid points on the original cross-section. The resulting image shows
larger changes in color where neighboring integral curves differ more. Our second visualization method lays out
the grid points on the cross section and connects the neighboring points with edges that are rendered according
to the distances between curves generated from these points. Both methodsprovide a way to visually segment 2D
cross sections of DTI data. Also, a particular contribution of the coloring technique used in our first visualization
method is to give a continuous 2D color mapping that provides approximate perceptual uniformity and can be
repeated an arbitrary number of times in both directions to increase sensitivity.

1. Introduction
Diffusion-Tensor Magnetic Resonance Imaging (DTI) en-
ables the exploration of fibrous tissues such as brain white
matter and muscles non-invasivelyin-vivo. It exploits the
fact that water in these tissues diffuses at faster rates along
the fibers than orthogonal to them fibers. However, the mul-
tivalued nature of DTI data poses challenges in visualizing
and understanding the underlying structures. Integral curves
that represents neural pathways by showing paths of fastest
diffusion are among the most common information derived
from DTI volumes. They are generated tracking the principal
eigenvector of the underlying diffusion tensor field in both
directions. They are often visualized with streamlines or
variations of streamlines (streamtubes and hyperstreamlines)
in 3D. In this paper, we present two new methods for visu-
alizing cross sections of DTI volumes that preserve the 3D
out-of-plane connectivity information typically conveyed by
the integral curves (see1). Slice-based 2D visualizations
of scientific data are generally effective, fast and synop-
tic [CM02, SWD04]. Also, looking at 2D cross-sections is
still the most common practice by far among scientists and
physicians for data exploration. Furthermore, there is some
evidence that incorporation of 2D cross-sections in 3D visu-
alizations of medical data sets data is preferred [DJK∗06].

For each of the visualization methods we show exam-
ples of visualizations of the corpus callosum in the mid-
sagittal plane of one normal volunteers. The corpus callo-
sum is the largest white matter fiber bundle in the brain and

a target for clinical and neuroscience research into normal
developmental vs. pathological changes in white matter in-
tegrity across the lifespan and the functional correlates of
those changes. Distinct cross-sectional regions of the corpus
callosum may contain fibers that subserve specific cognitive
or behavioral functions mediated by the cortical regions to
which they project. Proxy measures (e.g., thickness, volume,
area, shape) of the health of these cross-sectional regions
may correlate with measures of the cognitive and behav-
ioral functions they subserve. In fact, the corpus callosum
has been shown to differ on such measures by handedness ,
gender, and age as well as in diseases such as Alzheimer’s
disease and schizophrenia [HJL∗04].

2. Related Work
Mapping colors to data values is a fundamental operation
in scientific visualization. Previous work based on empirical
studies addressed the problem of generating perceptually ef-
fective colormaps [War88, Hea96, LH92, KRC02]. We use
the CIE L*a*b* color space that is a perceptually uniform
(approximately) color space proposed by the Commission
Internationale de l’Eclairage (CIE) in 1976. A color space is
said to be perceptually uniform if the perceptual difference
between any two colors in just noticeable difference (JND)
units is equal to the Euclidean distance between the two col-
ors in that color space. Several different geometric models,
including line, plane, cone, cylinder, and B-spline surfaces
have been proposed for univariate, bivariate or trivariate col-
ormapping [Pha90, Rob88]. We extend the earlier models
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Figure 1: Flat-torus coloring (left) and edge rendering (right) visualizations of the mid-saggital plane of the corpus callosum
in a normal person’s brain

by introducing the flat-torus model to give a continuous 2D
color mapping that is approximately uniform and that can
be repeated an arbitrary number of times in both directions
to increase sensitivity. Integral curves generated from DTI
volumes have been visualized generally with streamlines in
3D with different geometric (i.e., hyperstreamlines, stream-
tubes, etc.) and coloring combinations. It is also common
practice to juxtapose streamtubes with 2D cross-sections
of the volume data. Volume visualization of DTI data in-
cluded isosurface extraction and volume rendering. Previ-
ous cross-sectional visualizations of DTI included mapping
glyphs (box, ellipsoid and superquadratic) and colors to ten-
sor voxels [ZKL04]. Pajevicet al.proposed methods to col-
ormap principle eigenvectors of tensor voxels on DTI cross-
sections using different color spaces, including perceptually
uniform CIE L*u*v color space. The authors point the po-
tential limitations due to irregularity of L*u*v space. Our
flat-torus model addresses some of the limitations discussed
in this work [PP99].

3. Methods
In both visualization methods presented here, we start from
points (seeds) sampled on a regular grid on the cross-section
and, from each point, generate integral curves in both di-
rections following the principal eigenvector of the underly-
ing diffusion tensor field. We compute an anatomically mo-
tivated pairwise distance measure between each pair of inte-
gral curves and assemble the measures to create a distance
matrix. The distance matrix is utilized by the both methods
to convey the out-of-plane connectivity information. We ex-
plain how we measure distances between the integral curves
to construct the distance matrix in the next section.
3.1. Distance Measure Between Integral Curves
Integral curves generated from DTI volumes are solutions to
the following first-order differential equation:

dC
ds

= ~v1(C(s)) (1)

wheresparameterizes the curve andv1 is the principal eigen-
vector at the pointC(s) = (x(s),y(s),z(s)). We compute the
integral curveC(s) passing through a given seed pointC(0)
(initial conditions) by integrating the above equation for

s > 0 ands < 0 (i.e., both directions from the seed point).
There have been different distance measures proposed for
integral curves generated from DTI volumes. In the current
work we adapt a measure proposed by Zhanget al. with a
slight modification [ZDL03]. Note that our measure does
not necessarily satisfy triangle inequality therefore it is not a
metric. Given any two integral curvesCi andCj that are rep-
resented as polylines withmandn vertices respectively (like
the ones shown in Figure2), we first find mean distancesdi j
andd ji then, determine the maximum of these two distances
as the distanceDi j between the two curves:

di j =
∑m

k=1dist(Ck
i ,Cj )

m
(2)

d ji =
∑n

k=1dist(Ck
j ,Ci)

n
(3)

Di j = D ji = max(di j ,d ji ) (4)

The functiondist(p,C) returns the shortest Euclidean dis-
tance between the pointp and curveC. We compute distance
between each pair of integral curves as we denoted and as-
semble the measures to create a distance matrix. The dis-
tance matrix is a real positive symmetric matrix with zeros
along the diagonal.

3.2. Flat-Torus Coloring
The goal of our first method is to reflect the boundaries in
distance differences in the data as perceptual boundaries. For
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Figure 2: Polyline representations of two integral curves Ci
and Cj
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Figure 3: Flat-torus coloring of the mid-sagittal of the cor-
pus callosum in a normal person’s brain

this, we lay out the seed points on the plane and adjust their
positions using a simple mass-spring based optimization al-
gorithm so that the calculated distances between their as-
sociated integral curves are locally preserved best. Figure4
illustrates how seed point coordinates change after running
the optimization algorithm. We coordinate-transform the ad-
justed points using principle component analysis (PCA) to
have a succinct representation. Finally, we wrap this planar
representation onto a flat torus and then projects that torus
into a visible portion of the CIE L*a*b* space. A flat-torus
in 4-space is a Cartesian product of two circles inR2. It can
be obtained by a mappingW : R2 → R4 such that

W(x,y) = (u,v,z, t) = (r1cosx, r1sinx, r2cosy, r2siny)
(5)

—wherer1 andr2 are the radii of the circles. The flat-torus
has 0 Gaussian curvature everywhere (i.e., is a developable
surface), therefore a plane can be wrapped around it without
distortion [dC76].

We project the flat-torus to the visible partition of L*a*b*
color space, centered at(Lo,ao,bo) as follows.

L∗ = Lo + t (6)

a∗ = ao + r1 +u+z (7)

b∗ = bo + r1 +v+z (8)

The resulting images show larger changes in color where
neighboring integral curves differ more. One of the advan-
tages of using this flat-torus projection is that we can adjust
the sensitivity of the color mapping by rescaling point plane
and wrapping around the two circles continuously.

distance fitting

Figure 4: Seed points are adjusted so that Euclidian dis-
tances between the points on the plane reflect the distances
between their associated integral curves.

Figure 5: Edge rendering visualization of the mid-sagittal
plane of the corpus callosum in a normal person’s brain.

3.3. Edge Rendering
Our second visualization method lays out the grid points
on the cross section and connects the neighboring points
with edges that are rendered according to the distances be-
tween curves generated from these points. Note that we sam-
ple seed points on a rectilinear grid where the vertical and
horizontal distances between the grid points are equal to
δ . We define the seed pointsXi and Xj to be neighbors if
||Xi − Xj ||2 = δ or ||Xi − Xj ||2 = δ

√
2 (i.e., a seed point

can have maximum 8 neighbors). Edges are drawn redder
in color and thicker where neighboring seed points’ integral
curves differ more.

4. Results and Discussion
Figure3 and 5 show the visualizations of the same normal
person’s corpus callosum with close-up views of the same
region. Notice the correspondance between regions in flat-
torus coloring and edges in edge rendering. More results
from two different persons’ DTI brain data sets are shown
in Figure6. It is important to note that the perceptual uni-
formity in our color mapping is an approximation due to the
flat-torus to the L*a*b* space projection distortions. While
flat-torus cannot be mapped to the L*a*b* space isometri-
cally, it could be possible to have a projection that preserves
perceptual uniformity better than the one presented in this
paper.

5. Conclusions
We have presented two new cross-sectional visualization
methods. The primary strength of both methods is providing
a compact and contextual visualization by bringing higher
dimensional connectivity information onto 2D plane which
is effective and familiar to practitioners. We have applied
them to visually segment the mid-saggital cross-section of
the corpus callosum in the brain. Feedback from neurosci-
entist collaborators suggests that our visualization methods
can be useful in identification of smaller caliber anatomi-
cally or functionally related white-matter structures, partic-
ularly those that are contained within large bundles or fas-
ciculi that project to multiple areas. Flat-torus coloring is a
new geometric model for bivariate color mapping allowing
approximately uniform and that can be repeated an arbitrary
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Figure 6: Flat-torus coloring (left) and edge rendering (right) visualizations of the mid-saggital plane of the corpus callosum
in two normal persons’ brains.

number of times in both directions. The underlying of idea
of this work can be extended to visualization of any other
vector, tensor or multi-scalar data volumes.
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