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1 Introduction

We present a technique for visualizing the differences between
two Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) vol-
umes. Our technique registers two DT-MRIs and then produces a
3D model that allows a user to simultaneously view structure in
both volumes. The geometric model is based on one developed
to visually represent a single volume with a carefully chosen set
of streamtubes [6,7]. In the new model, we choose corresponding
tubes from both volumes and show how they differ. Collectively,
this illustrates the differences between the volumes. Saturation is
used to indicate the magnitude of the difference between corre-
sponding points on streamtubes. Streamtubes follow the orientation
of the principal eigenvector of the diffusion tensor at each point in
the volume. The cross-section at each point of the streamtube is an
ellipse determined by the second and third eigenvectors and eigen-
values of the diffusion tensor.

We apply the method to three types of cases. In the first, we com-
pare the streamtubes generated with different integration methods
to show how the choice of method can lead to different streamtubes.
In the second case, we show difference models for two volumes that
are identical except for noise. In the third case, we show differences
between two volumes acquired from the same human subject but at
different orientations. Differences are shown in all the cases and
they are easily identifiable from the color coding.

2 Methods

The technique used to generate the difference models presented in
this paper consists of four steps. First, two DT-MRIs are resampled
to the same isotropic resolution. The resampling is done using tricu-
bic interpolation of each of the six diffusion tensor components.
Basseret al. showed that such component-wise interpolation was
sufficient in several experiments [1].

Next, if not already registered, the two volume data sets are reg-
istered semi-automatically using the gradient-based methods de-
scribed in [2] to align T2-weighted images. This approach works
best when the difference in orientation between the two images is
small enough that most voxels need move less than eight voxels.
Therefore, an initial estimate of the transformation matrix is ap-
plied to one of the original images, and this image is then used by
the automatic image registration program. Once the transformation
matrix is calculated, it is applied to one of the DT-MRI volumes. It
is important to realize that the diffusion tensors must also undergo a
transformation to reflect the change in coordinates. To achieve this,
we apply the linear transform to the diffusion tensor.

Once the volumes are aligned, the third step is to generate cor-
responding streamtubes in each image. We first generate a model
for one of the volumes. This is described in more detail in [6,7]. A
streamtube is analogous to the streamline in fluid flow visualization.
It follows the principal direction of water diffusion. This is accom-
plished by integrating the principal eigenvector field (as discussed
in [1]) both forward and backward starting at a particular point. We
choose many seed points on a jittered grid. Streamtubes that are
similar to previously generated streamtubes are culled, as are short
streamtubes and streamtubes with low average linear anisotropy
(less than 0.2).

The numerical integration is carried out by either Euler, Runge-
Kutta, or Adams integration using Numerical Algorithms Group [8]
or Numerical Recipes [9] software. Diffusion tensor values at non-
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Figure 1: (a) Runge-Kutta vs. Euler. (b) Adams vs. Runge-Kutta.
Frontal view of streamtube difference images of human brain data.
For reference, note that the large left-to-right bundle of tubes near
the center is the corpus callosum and the ascending connections
from that bundle the corona radiata. (a) is a difference image be-
tween a model generated with Runge-Kutta (in blue) and Euler (in
red) integration (see [10] for a color version of the paper). (b) is
a difference image between Adams (in blue) and Runge-Kutta (in
red) integration. In this case, we started with a smaller number of
tubes. Note that (b) is almost entirely gray, in contrast with the
color in (a), indicating that the Adams and Runge-Kutta integration
schemes produce paths that are much more similar to each other
than to paths generated by Euler integration.

grid coordinates are calculated by tricubic interpolation of the six
component values.
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Figure 2: Difference images of the data used in figure 1 with noise
added. Gaussian noise was used, with different standard deviation
σ, which affects the signal-to-noise ratio. (a)σ = 0.0000001,
SNRv1000 (b) σ = 0.000001, SNRv100 (c) σ = 0.00001,
SNRv10. The SNR of a real dataset is typically between 10 and
30. Note that the differences in streamtubes increase asσ value
increases.

Figure 3: A different image between two acquisitions of the same
brain. The acquisitions were taken at different orientation and the
datasets registered before the different image was created.

With the seed points for the representative tubes for one volume,
we generate corresponding tubes in the second volume. The sec-
ond and third eigenvectors of the diffusion tensor at each sampled
point of a streamtube are stored as well as that point’s distance to
its corresponding streamtube in the other data set. The distance is
defined to be the minimum distance between the current point and
all points on the other streamtube.

The fourth and final step is the rendering of the difference model.
Each streamtube is rendered as a tube. At each sampled point of
the tube the second and third eigenvectors are used to construct an
elliptical cross-section. The color assigned to each point on the
cross-section is defined to be(maxd − d)/maxd, whered is the
distance found and stored in the previous step andmaxd is an ar-
bitrary constant (we used ten voxels) representing the maximum
voxel distance that can be represented. The elliptical cross-sections
are stitched together to produce a continuous tube and output as a
VRML mesh file, which can then be viewed in standard viewing
applications.

3 Results and Discussion

The first type of comparisons we examined were those between
numerical integration algorithms. Figure 1 shows that results can
vary depending on the integration scheme chosen. In particular,
Euler integration with a large step size leads to significant differ-
ences compared to other more accurate integration methods. Note
that Figure 1b show some slight differences between two very ac-
curate methods. We believe that these are caused by threshold ef-
fects at the boundaries of the regions of anisotropy: different in-
tegration methods have different choices about where to put the
next foothold, and some of them may stride over a region of low
anisotropy where others walk into it and stop.

We then used the same integration techniques to compare dif-
ferent DT-MRIs. First, we assessed the effect of noise on our
technique. Gaussian noises with different standard deviations were
added to the original dataset, and comparisons were made between
the noisy datasets and the original dataset. Figure 2 shows that the
differences increase as the standard deviationσ increases, and sug-
gests that our technique is moderately sensitive to noise. The noise
changes the boundary of the anisotropic region a little amount, and
threshold effects, again, are likely to be responsible for significant
portions of the colored tubes.

We then evaluated the effect alignment has on our technique in
Figure 3. The significant amounts of gray are consistent with data
collected from the same subject. The color that is present is consis-



tent with the differences we see due to noise in Figure 2. It is also
possible that the color is due to errors in registration, although it is
not noticeably greater than would be expected from noise alone.

Streamtubes are well suited for showing changes in the orien-
tation of the principal direction of diffusion, but poorly suited for
depicting changes in anisotropy. While the second and third eigen-
vectors are encoded in a streamtube, it is difficult to determine by
sight the differences in these values between corresponding stream-
tubes.

4 Conclusions

This extended abstract describes a method designed to help investi-
gators visualize differences between DT-MRIs, specifically, the dif-
ferences between the tracts generated in linear anisotropy regions.
The images show differences that are difficult to see.
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