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1 Introduction

We present a technique for visualizing the differences between
two Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) vol-
umes. Our technique registers two DT-MRI’s and then produces
a 3D model that allows a user to simultaneously view structure in
both volumes. The geometric model is based on an earlier one de-
veloped to visually represent a single volume with a carefully cho-
sen set of streamtubes [6,7]. In the new model, we choose corre-
sponding tubes from both volumes and show how they differ. Col-
lectively, this illustrates the differences between the volumes. Sat-
uration is used to indicate the magnitude of the difference between
corresponding points on streamtubes. Streamtubes follow the ori-
entation of the principal eigenvector of the diffusion tensor at each
point in the volume. The cross-section at each point of the stream-
tube is an ellipse determined by the second and third eigenvectors
and eigenvalues of the diffusion tensor.

We apply the method to three cases. In the first, we compare the
streamtubes generated with different integration methods to show
how the choice of method can lead to different streamtubes. In the
second case, we show difference models for two volumes that are
identical except for noise. In the third case we show differences
between two volumes acquired from the same human subject but at
different orientations.

2 Methods

The technique used to generate the difference models presented in
this paper consists of four steps. First, two DT-MRIs are resampled
to the same isotropic resolution. The resampling is done using tricu-
bic interpolation of each of the six diffusion tensor components.
Basseret al. showed that such component-wise interpolation was
sufficient in several experiments [1].

Next, the two volume data sets are registered semi-automatically
using the gradient-based methods described in [2] to align T2-
weighted images. This approach works best when the difference
in orientation between the two images is small enough that most
voxels need move less than eight voxels. Therefore, an initial esti-
mate of the transformation matrix is applied to one of the original
images, and this image is then used by the automatic image regis-
tration program. Once the transformation matrix is calculated, it is
applied to one of the DT-MRI volumes. It is important to realize
that the diffusion tensors must also undergo a transformation to re-
flect the change in coordinates. To achieve this, we apply the linear
transform to the diffusion tensor.

Once the volumes are aligned, the third step is to generate cor-
responding streamtubes in each image. We first generate a model
for one of the volumes. This is described in more detail in [6,7]. A
streamtube is analogous to the streamline in fluid flow visualization.
It follows the principal direction of water diffusion. This is accom-
plished by integrating the principal eigenvector field (as discussed
in [1]) both forward and backward starting at a particular point. We
choose many seed points on a jittered grid. Streamtubes that are
similar to previously generated streamtubes are culled, as are short
streamtubes and streamtubes with low average linear anisotropy
(less than 0.2).

The numerical integration is carried out by either Euler, Runge-
Kutta, or Adams integration using Numerical Algorithms Group
[8] or Numerical Recipes [9] software. Diffusion tensor values at
non-grid coordinates are found by tricubic interpolation of the six
component values.
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(a) Runge-Kutta vs. Euler

(b) Adams vs. Runge-Kutta

Figure 1: Frontal view of streamtube difference images of human
brain data. For reference, note that the large left-to-right bundle
of tubes near the center is the corpus callosum and the ascending
connections from that bundle the corona radiata. (a) is a difference
image between a model generated with Runge-Kutta (in blue) and
Euler (in red) integration (see [10] for a color version of the paper).
(b) is a difference image between Adams (in blue) and Runge-Kutta
(in red) integration. In this case, we started with a smaller number
of tubes. Note that (b) is almost entirely gray, in contrast with the
color in (a), indicating that the Adams and Runge-Kutta integration
schemes produce paths that are much more similar to each other
than to paths generated by Euler integration.

With the seed points for the representative tubes for one volume,
we generate corresponding tubes in the second volume. The sec-
ond and third eigenvectors of the diffusion tensor at each sampled
point of a streamtube are stored as well as that point’s distance to



Figure 2: A streamtube difference image of the data used in figure 1
with noise added. Two new brain DT-MRI’s were generated. Note
the differences in streamtubes caused by the noise.

its corresponding streamtube in the other data set. The distance is
defined to be the minimum distance between the current point and
all points on the other streamtube.

The fourth and final step is the rendering of the difference model.
Each streamtube is rendered as a tube. At each sampled point of
the tube the second and third eigenvectors are used to construct an
elliptical cross-section. The color assigned to each point on the
cross-section is defined to be(maxd � d)=maxd, whered is the
distance found and stored in the previous step andmaxd is an ar-
bitrary constant (we used ten voxels) representing the maximum
voxel distance that can be represented. The elliptical cross-sections
are stitched together to produce a continuous tube and output as a
VRML mesh file, which can then be viewed in standard viewing
applications.

3 Results and Discussion

The first type of comparisons we examined were those between nu-
merical integration algorithms. Figure [1] shows that results can
vary depending on the integration scheme chosen.

We then used the same integration techniques to compare differ-
ent DT-MRI’s. First, we assessed the effect of noise on our tech-
nique. Figure [2] suggests that our technique is moderately sensi-
tive to noise in the two images. We then evaluated the effect align-
ment has on our technique in Figure [3]. The significant amounts
of gray are consistent with data collected from the same subject.
The color that is present may be due to noise, to inaccuracies in the
registration, or to thresholding, which can turn very small changes
in the tensor into large changes in the location of a threshold.

Streamtubes are well suited for showing changes in the orien-
tation of the principal direction of diffusion, but poorly suited for
depicting changes in anisotropy. While the second and third eigen-
vectors are encoded in a streamtube, it is difficult to determine by
sight the differences in these values between corresponding stream-
tubes.

4 Conclusions

This extended abstract describes a method designed to help investi-
gators visualize differences between DT-MRI’s. Despite some lim-
itations, the images show differences that are difficult to see con-
textually as well using other methods.

Figure 3: A different image between two acquisitions of the same
brain. The acquisitions were taken at different orientation and the
datasets registered before the different image was created.

Acknowledgments

This work was partially supported by the Human Brain Project
(NIDA and NIMH) and NSF (CCR-0086065). Thanks to Susumu
Mori for the data used in Figs 1 and 2 and to Benjamin Green-
berg, Carlo Pierpaoli, and Peter Basser for the data used in Fig. 3.
Thanks also to Eileen L. Vote for her careful reading and sugges-
tions. Opinions expressed in this paper are those of the authors and
do not necessarily reflect the opinions of NSF.

References

[1] Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A., Magn. Res. in Med.,
44:625-632, 2000.
[2] Nestares, O., Heeger, D., Magn. Res. in Med., 43:705-715, 2000.
[3] Laidlaw, D.H., Ahrens, E.T., Kremers, D., Proceedings Visualization ’98.
[4] Delmarcelle, T., Hesselink, L., Proc. Vis. ’92, 316-323, 1992.
[5] Pierpaoli, C., Basser, P.J., Mag. Res. in Med., 6:893-906:1996.
[6] Zhang, S., Curry, C. T., Morris, D. S., and Laidlaw, D.H., Proc. Vis. Work in
Progress ’00, 2000.
[7] Zhang, S., and Laidlaw, D.H., Proc. Int’l Soc. Magn. Reson. in Med., ’01, 2001.
[8] NAG, Numerical Fortran Library, 1993
[9] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery B. P., Numerical
Recipes in C: The Art of Sci. Computing, Cambridge U. P., 1992
[10] http://www.cs.brown.edu/research/graphics/research/pub/dtdiffviz01.pdf


