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Abstract

A heretofore unsolved problem of great archaeological
importance is the automatic assembly of pots made on a
wheel from the hundreds (or thousands) of sherds found
at an excavation site. An approach is presented to the
automatic estimation of mathematical models of such pots
from 3D measurements of sherds. A Bayesian approach is
formulated beginning with a description of the complete set
of geometric parameters that determine the distribution of
the sherd measurement data. Matching of fragments and
aligning them geometrically into configurations is based on
matching break-curves (curves on a pot surface separating
fragments), estimated axis and profile curve pairs for in-
dividual fragments and configurations of fragments, and a
number of features of groups of break-curves. Pot assembly
is a bottom-up maximum likelihood performance-based
search. Experiments are illustrated on pots which were
broken for the purpose, and on sherds from an archaeologi-
cal dig located in Petra, Jordan. The performance measure
can also be aposteriori probability, and many other types
of information can be included, e.g., pot wall thickness,
surface color, patterns on the surface, etc. This can also be
viewed as the problem of learning a geometric object from
an unorganized set of free-form fragments of the object and
of clutter, or as a problem of perceptual grouping.

Keywords:  automatic pot assembly, structure from
unorganized 3D data, geometric learning, perceptual

grouping.
1 Introduction

Many archaeological excavation sites are rich in fragments
of pots, called sherds hereafter, which are either axially
symmetric,® or look as though they might have such rota-
tional structure but really do not, e.g., the handles of a jar
or flat sections of the surface of a plate. There is great sci-
entific and cultural interest in the archaeological commu-
nity in reconstructing these axially symmetric pots from the

1].e, the intersection of the pot outer surface with a plane perpendicular
to the pot axis is a circle or nearly so.

sherds found. At present, few pots are reconstructed since
the assembly is done manually and is time consuming of-
ten taking a few days for one pot. Instead, most pottery
is approximately classified using two-dimensional drawing
and measurement techniques [6]. This paper presents an
approach to the largely automatic estimation of mathemati-
cal models of axially symmetric pots from 3D laser scanned
data of the sherds. This data is a dense set of 3D points over
the outer surface and perhaps other surfaces as well of each
sherd, such as along breaks and the inside of the pottery.

Some work has been done on the more general problem
of solving 3D puzzles via matching of either break curves
[11, 5] or break surfaces [7]. Noteworthy work with re-
spect to the specific problem of pot classification and as-
sembly is treated by Sablatnig et. al. in [10]. However,
none of the approaches assemble complete pots nor do they
use axis/profile-curves.

2 Sherd Geometry Parameters

(b)

Figure 1: (a) A group of sherds from a variety of pots; (b)
example of an urn reconstructed from 20-30 pieces [12].

In this section we present the geometric parameters that
uniquely and completely specify the geometry of a sherd
or pot, indicate their role in computing the probability of
the measurement data of a group of sherds aligned as a hy-
pothesized portion of a possible pot, and comment on the
search algorithm for doing MLE or MAP estimation of a
complete pot. All of these are major new contributions to
a concept of virtual pot estimation and specific algorithms
for implementing the various pieces of the approach. We



assume sherds are generated as follows. Nature generates
a number of pots of various shapes, breaks each pot into
fragments along break curves (Fig. 2) she has drawn on the
surface, scatters a subset of each such set of fragments, and
also scatters some pot-like fragments that do not come from
pots. Our job is to estimate mathematical models of the
original pots from laser scans of these sherds found. For the
purpose of this paper, we have focused on a subset of the
geometric information that can be used. It consists of the
outer-surface break-curves, break-curve vertices at T and Y
junctions (Fig. 2), axis/profile curve for each aligned group,
i.e. configuration, and Euclidean transformations that take
each sherd from its data-measurement position to its posi-
tion in a configuration. Our ultimate interest is only in esti-
mating the axis/profile curve for a pot. The other parameters
must be estimated because they explain the measurement
data, but the are nuisance parameters.
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Figure 2: Geometry used ro represent a fragmented vessel.
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Assume the pot is in standard position, i.e., its axis is
the z-axis and it sits on the zy-coordinate plane. Then the
pot and its fragments are specified by vectors of parameters
listed in Table 1. These are the parameters of the geometry
of the fragments in their original positions. We assume that
the it* fragment of a vessel in standard position undergoes
an arbitrary Euclidean transformation, T}, to move it to a
measurement position, which simply consists of a rotation
and translation. We call the transformed fragment a “sherd.”
The specific models are described later in § 3.

Sherd measurement-data is provided by a Shapegrabber
laser/camera scanner [1]. It produces 15,000 3D points/sec.
at a resolution and accuracy of the order of 0.25mm. All of
these points are surface measurements, i.e., measurements
of outer, inner, and break surfaces including the 3D ridges
that separate these surfaces. For the algorithms used in this
paper, we have extracted two subsets of the measurement
data: 1) those points which are measurements of a sherd
outer-surface and 2) those which are measurements of a

| symbol | signification
1 z-axis (axis of vessel in standard position)
a Radius curve for entire vessel
(i.e., profile-curve, r(z), with respect to z-axis)

a; Portion of radius curve for fragment
Q;j Portion for the union of fragments ¢ and j

B Break-curves for entire vessel

Bi Portion of break-curves for fragment ¢
Bij Portion shared by fragments ¢ and j

Table 1: Basic geometric parameters. Note that, o’s and 3’s
are all vectors of model parameters.

| symbol | signification |
U; Outer surface data for sherd
Vi Break-curve data for sherd i

Vi, | Break-curve data for i’ sherd
over i, jt* sherd break

U’ Vector composed of all the U;
\'A Vector composed of all the V;

Table 2: The measurement data.

sherd outer-surface break-curve. Our approach to doing this
for the data sets used in this paper is fast, based on cluster-
ing, and is described in [13].

2.1 Assumptions

Surface measurement pointsareiid N(0, 02)
These are independent, identically distributed, Gaussian
perturbations perpendicular to the surface and having
mean 0 and variance o2. See [2] for a justification of this
model.
Break-curve measurement pointsareiid N(0, 021)
These are independent, identically distributed spherically
symmetric Gaussian perturbations in 3-space about each
point on the true break-curve, with mean 0 and variance o7 .
Note that, more appropriate but more complicated models
can be used.

The joint probability of all surface and break-curve data
given a profile curve, a break-curve, and all transformations
to sherds, can be written as:

P(U,V'|T', e, HPU' Vi|T},a,8). (1)

The MLE is the vector of values for T, «, 8 that maxi-
mizes (1). A combined MAP and MLE is the vector of val-
ues that maximizes P(U', V'|T', a, ) P(a), where P(«)
is the a priori probability distribution for the vessel profile



curve. Note that, eqn.(1) illustrates the role of T, i.e., it
translates 1, ; and 3; to the 4** sherd position. Also note
that estimating a virtual pot can be though of as aligning
into standard position the data sets for the individual sherds
which involves estimating T; = (T}) .

3 Sherd Alignment and Geometry
Estimation

We begin by matching the break-curve measurements for
pairs of sherds starting at their break-curve vertices. These
vertices occur where two, three, and in some cases four or
more, sherd corners meet. In the prevalent cases of two
or three sherd vertex points, the vertices can meet in T-
junctions or Y-junctions respectively (Fig. 2). Toward this
end, we put down a finite number of points along the mea-
sured break-curve for each sherd starting at a vertex. Suc-
cessive points are a Euclidean distance “d” from one an-
other. For a given sherd, each measured break curve is
matched with all the measured break curves on other sherds.
The error criterion is a sum of squared errors, and the error
function also contains the sum of squared differences in the
measured unit normals to the surfaces at the data points used
in the matches. The latter is to impose surface tangent conti-
nuity across a break curve. Let us consider the break-curve
data point p;,,, from sherd ¢, and denote R and t as the
estimated rotation matrix and translation vector coming as
solution to equation (2) below, where X is a chosen positive
constant, n;,,, is the unit normal to the surface data of sherd
i at the break-curve data-point p;,,, and M is the number of
data points used, which is 5 at present. Then we have the
optimization problem:

M
win > [Ipim — RPjm — ¢lI° + Amim — Rty ] -

R,t

)

Equation (2) has an explicit solution. This is a linear

least-squares problem, and the solution is computed at little

cost.? Stored with each matched pair is the sum of squared

errors between the five pairs of corresponding points used
in the alignment computation. We denote this error er:

m=1

M
er = Y [Ipim — Rpjm — tI, (3)

m=1

where T is the transformation that produced the best align-
ment. It can be shown [3] that this cost is equivalent to
MLE of the common break-curve on the pot surface for the
data points, (Pim, Pjm) m = 1,...,5. Computation speed
is important here because if each sherd has 4 vertices on

2|t takes less than a millisecond of CPU time on our PC’s.

average, there are 8 break-curves for each sherd and there-
fore roughly 8002 = 640, 000 break-curve pairs to match.
This computation would be impractical were each match to
require 1 second, for example.
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Figure 3: Break-curve pair matches.

Figure 3 shows matched and aligned break-curve data
for 4 pairs of sherds. Examples (a) and (b) represent cor-
rect matches with resulting alignments. Examples (c) and
(d) are incorrect matches and alignments. For the incorrect
matches shown, the matching error is small, i.e., the five
pairs of points match well. It does occur in practice that an
incorrect match may have a smaller match-error than will a
correct match. Incorrect matches may be quickly identified
via two methods: 1) by detecting break-curve data over-
lap, as illustrated in case (c), or 2) by comparing the profile
curve for the surface data for each matched pair of sherds
as illustrated by case (d).

Figure 4: Example of a break-curve triplet match.

An example of a correctly-matched triplet is shown in
Figure 4. In these cases one sherd is held fixed and each of
the other two is transformed, which means that two transfor-
mations must be estimated or 12 parameters. These param-
eters are estimated simultaneously using all the matching
data in a single cost function. Unfortunately, in this case
the estimation is nonlinear. The approach extends immedi-
ately to four or more groups of sherds, where &£ — 1 trans-



formations must be estimated simultaneously for optimally
matching & sherds.

Whereas effective algorithms have been developed for
estimating the axis and associated profile curve for a sherd
that comprises a large portion of the surface of an axially
symmetric pot, there do not appear to be effective algo-
rithms for estimating a pot axis when the sherd is a very
small portion of the pot or when the profile curve is compli-
cated. But these cases are important in practice and chal-
lenging in concept. We consider two approaches to estimat-
ing axis/profile-curves: one makes use of spheres of curva-
ture and the other uses algebraic surface models.

(a) p1135

(b) p654 (c) p1313

Figure 5: A spectrum of archaeological sherds from the
Great Temple site of Petra, Jordan [4], used to illustrate our
axis/profile-curve estimation.

We have parameterized the axis of symmetry, 1, using the
standard parametric equation of a 3D line:

T =mgzz+b;,
Yy=myz+by.

(4)

These equations contain four unknown parameters. Two of
these, m, and m,, describe the slope of the line when it is
projected onto the xzz-plane and the yz-plane, respectively.
The remaining two parameters, b, and b,,, specify where the
line intercepts the zy-plane at z = 0.

The first method uses an algebraic surface model [9]
(equivalently, an algebraic profile-curve model) and can
handle shapes for which the radius function is multivalued
(Fig. 6a). An algebraic curve of degree d has [(d + 1)(d +
2) /2] unknown coefficients and takes the following form:

fd('ra Z) = Z

0<j+k<d; j,k>0
Here, d is a parameter which is related to the geometric
complexity of the pottery sherd profile-curve to be esti-
mated. For the artifacts in this paper, all experiments are
performed with d = 6. These and the axis parameters de-
fine the objective function (6) below, which is a modified
version of the energy function in [9], for estimating the pro-
file curve coefficients:

ajkrjzk =0. (5)

I

€grad = Z(fﬁ(n-, zi) +p |[nf — Vfa(rs, )%, ()

i=1

Since the surface model depends on the axis, the result-
ing objective function is highly non-linear. Consequently,
convergence to a local minimum may occur if minimization
is started far from the true parameter value. The estimation
algorithm needs only a hypothesized axis of symmetry in
order to begin. In practice, we begin with the axis estimate
provided by an improved version [13] of the Plicker co-
ordinates method as described in [8]. This initial estimate
is very fast — probably less than a millisecond. The to-
tal computation time? is of the order of 1 to 3 minutes for
roughly 3,000 data points.

Figure 5 shows a set of three sherds from an archaeolog-
ical dig at Petra, Jordan [4], which were used to evaluate
the algorithm above. The sherd surface-data is overlaid in
white on the estimated pot-surface. Also, upon rotating the
estimated sherd data-axis to coincide with the z-axis, the
distance of each 3D surface data-point is plotted as a func-
tion of z. The narrowness of the swaths of data in Figure 6
demonstrate the accuracy of our estimates for axes for these
difficult examples. 5.(a) is an example of a small sherd hav-
ing a somewhat complicated multi-valued radius function
r(z). Note from Figure 5.(b) that accurate estimates may
be derived from sherds which seem to contain little shape
information. Figure 5.(c) gives a good appreciation of how
much information may be extracted from a large piece.

Using the second method, we define spheres of curvature
which are the spheres centered at one of the principal cen-
ters of curvature and having radius equal to the correspond-
ing radius of curvature. These spheres are tangent to the
surface. Itis easy to show that for each point on the surface,
the center of the sphere of principal curvature correspond-
ing to the parallel circles is on the main axis (of revolution).
By finding the line which minimizes the least squares dis-
tance from the estimated centers to a hypothesized axis, we
can estimate the main axis and then its profile curve.

One useful feature of a surface of revolution is that
the principal curvature corresponding to the parallel cir-
cles does not depend on second derivatives; our approach
is therefore more robust to noisy data. We denote this prin-
cipal curvature .. Given a set of m 3D data-points from a
surface of revolution, let p; and n; be the m 3D data points
and their corresponding normals. Suppose the axis of revo-
lution is the line 1. This axis can be specified by a point pg
on 1and a unit vector w corresponding to the direction of 1.
We make the point pg unique by requiring po - w = 0. For
any point p on the surface, suppose the normal at that point
is n. It can be shown that

SImplemented using the C programming language.
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Figure 6: Axis/profile-curve estimates for the sherds of Figure 5, and their estimated 3D pot models.

[l > wi|

Ky = —m——————— .
" l(p — po) x W]

All the centers of the sphere of curvature corresponding to
k. should be on the axis of revolution, hence we can mini-
mize following function:

f(p05w) =

2
S e = po) xw = e x|

There are six parameters in the function f, which are not
independent. They satisfy the following constraints:

po-w=0and |w| =1.

We want to reduce the six dependent parameters to four in-
dependent parameters. Define the matrix R as following:

cos¢siny sin¢cosy siny

R= —sin¢ cos ¢ 0 ’

then the vector w can be represented as:
w = —cos¢gsing —singsing cost ]T i

Define py) = (z),y4)T = R - po. Then the objective func-
tion f can be represented as a function of four parameters,

¢, 1, 24, Yo

F(&,9,25,90) =

[[(E-p—ro)|
TR

2

it ||(R-pi —pp) — (R-ny)

()

Weighted least squares takes care of outliers. The ob-
jective function 7 is easy to calculate, and the minimization
can be carried out by general iterative methods, beginning
with the Pliicker coordinates method described in [8]. In its
present implementation, the computation time is a few min-
utes in MATLABQ) for a dataset of a few thousand points.

4 Sherd Joint-Geometry Estimation

During pot assembly, sherds are assembled into configu-
rations, each configuration is an assembly of a subset of
sherds aligned based on their break-curve and associated
surface data. In this section we treat the problem of esti-
mating the joint geometry of an arbitrary number of sherds
based on the preceding measurement data alone. The sherd
surface and boundary parameters obtained via methods in
8§ 3 are combined into a single cost function which is a sum
of the cost functions previously mentioned.

Denote (all) the available geometric data by ©; ;, the
break-curve data by ®; ; and the surface data by ; ;, this
for sherds 4 and j. Then alignment and pot model estimation
for sherd ¢ and j data sets jointly, is done by the minimiza-
tion over all geometric parameters, i.e.:

min [—log P {0; ; | Bij,Lij, Tij, cij}]
min [—log P {®; ; | Ti;} —log P{S%; | Tij, Lij, i }]
et + egrad + CONStant,,

where the two energies, et and egrqq, are defined in equa-
tions (3) and (6), respectively.

The implemented algorithm uses approximations for do-
ing the minimization, is computationally fast, and is reason-
ably accurate for the few examples tried. Figure 7 shows
results for one such experiment. This algorithm is presently
undergoing refinement to speed it up considerably.

5 Pot Assembly Search Algorithm

The sherds may only describe a single or several small por-
tions of the overall vessel. Therefore, the pot assembly
algorithm must accomodate for situations where the input
data consists of extra and/or missing pieces as well as possi-
bly groups of pieces which may belong to entirely different
vessels.

To this end, we propose a MLE-based algorithmic
search in order to robustly perform pot assembly. The
algorithm examines significant joint-geometries of vari-
ous sherd groups according to the method described in



8 4. Here and afterwards significant denotes those con-
figurations whose joint-geometry cost (cost is the nega-
tive of the loglikelihood) represents a possible (i.e. not-
improbable) solution. At the moment, we are considering
typical datasets which consist of 100 to 200 sherds, which,
as indicated, could come from a number of pots as well as
from other objects. The search aims at grouping and align-
ing sherds along contours of constant cost. Hence, we pro-
ceed as follows:

1. Estimate the axis/profile-curve for each of the sherds
§ 3 (Computationally costly).

2. For each pair of sherds, estimate all reasonable align-
ments using break-curve data 8§ 3 (Computationally
fast).

3. For each significant configuration, improve the align-
ment using 8 4 and store configurations and individual
sherds in order of increasing cost in a stack (Computa-
tionally of medium cost at present).

4. Starting with the top item in the stack, go down
through the stack and merge the configuration with
those lower in the stack that result in roughly lowest
cost configurations according to 8 4. Update the stack.
Note, a sherd can appear only once in a configuration,
though the same sherd can appear in many configu-
rations. Return to step 3 or stop (Computationally of
medium cost at present).

Note, this search proceeds along contours of constant
configuration-probability to find the most probable virtual
pot. That configuration is removed and the remaining
are then searched for other pots. A more optimal ap-
proach using all the data simultaneously is discussed in the
talk. Those realizations of high probability will perpetuate
through the search algorithm whereas improbable geome-
tries will eventually not be considered.

(@ (b)

Figure 7: Estimated joint geometry. The two sherd data sets
fit together well, (a); the projected-data scatter about the
estimated profile curve is small, (b).

6 Conclusion

A Bayesian approach has been outlined for the estimation
of mathematical representations for pots based on sherds
found at archaeology sites. The key algorithms for imple-
menting the approach have been developed, and experimen-
tal results from applying these algorithms to real sherd 3D
data have been presented and discussed. At this time, exper-
iments have been run on automatic matching and aligning
pairs and triples of sherds.

The framework discussed in this paper is for estimating
arbitrary a priori unknown axially-symmetric pot models.
Hence, it is unsupervised pot geometry-learning from sherd
data. If instead we know a priori that the pot sherds present
are not arbitrary but rather that each belongs to one of a
group of 10 known pot shapes, the problem is computation-
ally much easier because the sherd alignment problem is
then more of a pot shape-recognition problem and less of a
shape-estimation problem.

The framework presented can accommodate additional
geometric and pattern information which should result in
doing the pot estimation faster, or with fewer sherds, or es-
timating models for more complex objects.

The axis/profile-curve estimators can be thought of as
generalized cylinder axis/cross-section estimators, and are
more accurate for these small data fragments than any algo-
rithms demonstrated to date. Note, the challenge here is
estimating the axis accur ately!
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