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Abstract

A heretofore unsolved problem of great archaeological
importance is the automatic assembly of pots made on a
wheel from the hundreds (or thousands) of sherds found at
an excavation site. An approach is presented to the automatic
estimation of mathematical models of such pots from 3D
measurements of sherds. The overall approach is formulated
and described and some detail is provided on the elements
of the procedure. The end result is a representation suitable
for comparisons, geometric feature extraction, visualization
and digital archiving. Matching of fragments and aligning
them geometrically is based on matching break-curves
(curves on a pot surface separating fragments), estimated
axes and profile curves for individual fragments and groups
of matched fragments, and a number of features of groups
of break-curves. Pot assembly is a bottom-up maximum
likelihood performance-based search. In our case, associated
with subassemblies of fragments is a loglikelihood which is a
sum of energy functions. Experiments are illustrated on pots
which were broken for the purpose, and on sherds from an
archaeological dig located in Petra, Jordan.

Keywords: Object modeling and restoration. Laser scan
data analysis. Virtual pots from sherds. Digital Archiving.

1 Introduction

Many archaeological excavation sites are rich in fragments of
pots, called sherds hereafter, which are either axially symmet-
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ric,1 or look as though they might have such rotational struc-
ture but really do not, e.g., the handles of a jar or flat sections of
the surface of a plate. There is great scientific and cultural in-
terest in the archaeological community in reconstructing these
axially symmetric pots from the sherds found. At present, few
pots are reconstructed since the assembly is done manually
and is time consuming often taking a few days for one pot.
Instead, most pottery is approximately classified using two-
dimensional drawing and measurement techniques [6, 5, 12].
This paper presents an approach to the largely automatic es-
timation of mathematical models of axially symmetric pots
from 3D laser scanned data of the sherds. This data is a dense
set of 3D points over the outer surface and perhaps other sur-
faces as well of each sherd, such as along breaks and the inside
of the pottery.

1.1 Problem Formulation

The virtual-pot assembly consists of three parts: (i) a descrip-
tion of our model for sherd generation and sherd-data gener-
ation;2 (ii) a probability measure for a hypothesized arrange-
ment of sherd data to represent a pot (i.e., how well does an
alignment of sherd surface data and break-curve data represent
an admissible axially symmetric pot shape); (iii) approaches to
aligning the sherd data such that the probability of this align-
ment or of this alignment and prior pot shape information is a
maximum, i.e., a Bayesian-based approach to assembling 3D
sherd data to produce a mathematical estimate of a complete
pot.

The following is our probabilistic model for how the data
is generated. There are

�
axially symmetric pots and � ar-

tifacts which are not such pots but look as though they could
be sherds of such pots.

�
and � are either a priori unknown

1I.e., the intersection of the pot outer surface with a plane perpendicular to
the pot axis is a circle or nearly so.

2By sherd generation, we mean the piece of broken pot. By sherd-data
generation, we mean the erosion and laser measurements of the eroded piece.
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Figure 1: Examples of pottery profiles.

numbers constrained to some ranges, or are independent ran-
dom variables. A pot is in some standard position. It can have
a range of shapes and sizes. Its shape is completely specified
by an axis and an associated profile curve (i.e., the silhouette
from the side). The profile curve can be a priori unknown,
or can be a stochastic curve. The pot also has a thickness-
curve, which is the thickness of the pot wall as a function of
height along the pot axis. Again, thickness may be an a priori
unknown function or may be stochastic. Note that, pots are
usually thicker in vicinity of the lip and the wall near the base
(Figure 1). In general, thickness at a certain height of the pot
is not exactly constant around the surface; there are small vari-
ations which are a nuisance when one tries to estimate the axis
and profile curve for a single sherd. Hence, we can introduce
a thickness perturbation function which is a deterministic or a
slowly-varying stochastic function.

The pot is further partitioned into sherds by a set of inter-
secting break-curves on the surface (Figures 2 and 3). Break-
curves can be a priori unknown but satisfying constraints, or
can be stochastic. In this paper, we use the former. A con-
straint that we impose is that break curves intersect largely
in vertices of three break curves. These intersections are T
junctions or Y junctions. Occasionally, four or more break
curves will intersect, but that is rare. Some sherds in a pot
can be missing. For the

� th pot, this number ��� can be a pri-
ori unknown or can be a random variable. Next, the geome-
try of each sherd may or may not be deformed. In the latter
case, the deformation is due to erosion. This usually takes
the form of a smoothing and perhaps a significant amount of
material removal from the break surface and perhaps from the
outer/inner surface. This erosion can be treated as a priori
unknown or as stochastic. At present, we use the former as-
sumption. Finally, each sherd undergoes a Euclidean transfor-

Figure 2: Sherds which have been laser scanned and for which
we extracted break-curve measurement data using a dynamic
programming approach (see [9]).

mation which puts it in its found position. Again, this trans-
formation can be unknown or stochastic. We use the former.
With all of these parameters, whether the parameters are as-
sumed to be a priori unknown or stochastic with known dis-
tributions determines whether the pot assembly estimation is
a Maximum Likelihood Estimation (MLE), or a Maximum A
posteriori Probability estimation (MAP), or a combination of
the two. The measurement data is a dense collection of 3D
points of the inner, outer, and break surfaces of the sherds. We
assume these measurements contain errors which are indepen-
dent identically distributed random variables, which are either
3D around each point to be sensed, or are 1D in the direction
perpendicular to the sherd surface. In theory, this should be
the complete measurement-error model. In practice, we have
found it to be useful to assume independent break-curve and
surface measurement-noises.

Note that other features can be useful in helping reducing
the search space when attempting matching sherds. For ex-
ample, paintings and texture patterns on the outer and inner
surface, color variations, 3D carving on the surfaces, horizon-
tal circles on the inner/outer surface about the pot axis due to
finger smoothing while the pot is spinning on the wheel, etc.
We will not consider this additional information in this paper,
but we note that our probabilistic framework can accommodate
such data. Furthermore, higher level semantic description, as
found in the descriptive approaches of traditional archaeology,
shall be included in our system, at a later developing phase.

1.2 Recent Attempts at Solving the Sherd As-
sembly Problem

Classification based on qualitative (e.g., global shape) and
quantitative (e.g., color) features of profiles with human-driven
pre-processing is being developed at the Technical University
of Vienna [8, 18]. The problem of matching 3D curves - taken
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to be break-curves of sherds - has been addressed by the Mid-
dle East Technical University of Ankara. A simple matching
technique relying on an accurate - but potentially non-robust -
extraction of the trace of a curve and the computation of curva-
ture and torsion is described, but only tested on artificial data
[19]. Within the Digital Michelangelo project, a team is tack-
ling the problem of assembling a Roman marble map from
more than a thousand sherds. This jigsaw puzzle is mostly
a 2D problem, based on matching break curves and possibly
texture patterns [10]. At the University of Athens, a system
called the Virtual Archaeologist has been developed to match
3D sherds modeled via surface patches [13]. A region growing
method starting from a polygonal mesh of the scanned data is
combined with a surface texture measure to locate break sur-
faces. Simulated Annealing is used to compute pairwise sur-
face matching measures and reduce the error in matching due
to varying poses. Some limiting assumptions are made. In par-
ticular, two sherds may only share one face (surface). While
their approach focuses on surfaces (segmentation and match-
ing), we turn our attention to other global shape features, such
as the main axis of rotational symmetry, profile and thickness
curves, break curves, and other geometric features such as me-
dial axis symmetries, and ridges and valleys of the inner/outer
surfaces [11]. Recently we have achieved high accuracy ex-
traction and matching of 2D and 3D break curves by combin-
ing a coarse-scale representation of curves, refined iteratively
via a fine-scale elastic matching [9]. Another relevant prob-
lem sharing many similarities with the sherd assembly chal-
lenge, is to assemble 3D surface fragments obtained by mul-
tiple scanning measurements in order to retrieve a complete
surface description of an object. Each 3D fragment needs to
be optimally matched and blended with others; this involve
not only aligning the fragments but possibly deforming these
to allow overlapping sub-regions to tightly blend together. An
interesting recent project along these lines is the Pietà Project
at IBM [2].

2 New Methods for Describing Sherds
and their Re-Assembly

In this section we present the geometric parameters that
uniquely and completely specify the geometry of a sherd or
pot, indicate their role in computing the probability of the mea-
surement data of a group of sherds aligned as a hypothesized
portion of a possible pot, and comment on the search algo-
rithm for doing MLE or MAP estimation of a complete pot.
All of these are major new contributions to a concept of vir-
tual pot estimation and specific algorithms for implementing
the various pieces of the approach. For the purpose of this

Figure 3: Geometry used in representing a fragmented vessel.

paper, we have focused on a subset of the geometric informa-
tion that can be used. This subset is sufficient for a prototype
system. It consists of the outer-surface break-curve common
to the pairs of touching sherd data-sets in an aligned group,
break-curve vertices, axis/profile curve for each aligned group,
and Euclidean transformations that take each sherd from its
data-measurement position to its position in an aligned group.
We have ignored sherd-thickness geometry, painted or base-
relief patterns on the sherd outer surface, circular rings made
by potters fingers or an instrument on the inside-surface of a
sherd, symmetry set representations [11], etc.

2.1 Parameters to Describe Sherd Geometry
and Measurement Data

2.1.1 The Set of Geometric Parameters

Assume the pot is in standard position, i.e., its axis is the � -
axis and it sits on the ��� -coordinate plane. Then the pot and
its fragments are specified by vectors of parameters listed in
Table 1. These determine the parameters of the geometry of
the fragments in their original positions. We assume that the
�����

fragment of a vessel in standard position undergoes a Eu-
clidean transformation to move it to a measurement position,
which simply consists of a rotation and translation. We call the
transformed fragment a “sherd.” This is an a priori arbitrary
transformation. The specific models are described later in � 3.

The geometric parameters for transformed fragments, i.e., for
sherds, are listed in Tables 2 and 3. The basic transformation
equations are then:
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symbol signification� � -axis (axis of vessel in standard position)� Radius curve for entire vessel
(i.e., profile-curve, ��� ��� , viz. � -axis)� � Portion of radius curve for fragment

�� ��� Portion for the union of fragments
�

and 	

Break-curves for entire vessel


� Portion of break-curves for fragment
�


��� Portion shared by fragments
�

and 	
Table 1: Basic geometric parameters. Note that, � ’s and



’s

are all vectors of model parameters.

symbol signification��
� Euclidean transformation of

� ���
sherd� 

� ����� rotation matrix - 3 parameters� 
� ����� translation vector - 3 parameters���
�

� -axis transformed (via
� 
� and

� 
� )� � Unit direction vector of

� �
�

(2 parameters)��� ��� ��� � � � � � � � Line location for
� �
�

(e.g., intersection with � � -plane)� 
� Profile curve for

� ���
sherd
 

� Transformed break-curve


���

��� Transformation to align the datasets
of sherd

�
with those of sherd 	� 

��� Axis for the aligned datasets
�

and 	
Table 2: Geometric parameter vectors for sherds under Eu-
clidean transformations. Boldface indicates a vector or matrix.

� �
� � � 

� � � �� ! � � � � � � � � � � " �� 
� � � 

� � � � � �
#
� � � 

� � 
 � �%$
The Measurement Data parameters are listed in Table 3.

Sherd measurement-data is provided by a Shapegrabber
laser/camera scanner [1]. It produces 15,000 3D points/sec.
at a resolution and accuracy of the order of 0.25mm. All of
these points are surface measurements, i.e., measurements of
outer, inner, and break surfaces including the 3D ridges that
separate these surfaces. For the algorithms used in this paper,
it has been convenient to extract and use two subsets of the
measurement data, i.e., those points which are measurements
of a sherd outer-surface and those which are measurements of
a sherd outer-surface break-curve. Our approach to doing this

symbol signification& 
� Outer surface data for sherd

�' 
� Break-curve data for sherd

�

' 
��( � Break-curve data for

� ���
sherd

over
� � 	 ��� sherd break& 

Vector composed of all the
&
�' 

Vector composed of all the
'
�

Table 3: Parameter vectors for measurement data.

for the data sets used in this paper is fast, based on cluster-
ing, and is described in [21]. An alternative approach is to use
some sort of model to estimate break-curves as ridges [9], see
Figure 2, and then extract those data points that are close to
these estimated ridges.

2.1.2 Assumptions

A. 1 (Surface measurement points are iid
� ��) �+*#,- � ) These

are independent, identically distributed, Gaussian perturba-
tions perpendicular to the surface and having mean ) and
variance * ,- .

See [4] for a justification of this model.

A. 2 (Break-curve measurement points are iid
� �.) �+* ,/ � )

Independent, identically distributed, Gaussian perturbations
in 3-space about each point on the true break-curve, with
mean ) and variance *0,/ .

Note that, better, but more complicated models can be used,
such as:

1. Noise dependent on the angle between the incident laser
measurement ray and the surface normal.

2. Incorporating a sherd break-curve erosion model.

2.1.3 Example of one of these probability densities

Assume a plane specified by point �1� and unit vector � , then
the probability density for the surface measurement point � is
given as:

2 � �43 � � ���5� � �6 798 * ,-;:=<�> ?0@ �7 * ,-BA � � � � @ ���C�ED ,=F $ (1)
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2.2 The Probability of All the Data given All the
Global Geometry Parameters

The joint probability of all surface and break-curve data given
a profile curve, a break-curve, and all transformations to
sherds, can be written as:

2 � &  � '  3 �  � � � 
 � � �

�

2 � & 
� � ' 

�
3 � 
� � � � 
 � (2)

� �

�

2 � & 
� � ' 

�
3 � 
�
� � � � 

� � 
 
�
� $

MLE is the vector of values for
�  � � � 
 that maximizes (2).

A combined MAP and MLE is the vector of values that max-
imizes

2 � &  � '  3 �  � � � 
 � 2 � ��� , where
2 � �1� is the a priori

probability distribution for the vessel profile curve. Note that,
eqn.(2) illustrates the role of

� 
� , i.e., it translates

�
, � � and



�

to the
�����

sherd position. Also note that


� � �

� � 
 
�
� where�

� � � � 
�
����� .

2.3 Combining Sherd Data using MLE

The following is our approach to sherd assembly. The fun-
damental features to be used for each sherd are outer sur-
face break-curve, axis/profile curve, and vertices of the break-
curve. For axis/profile curve, it is not just the shape of the
profile curve that is important, but also its orientation and dis-
tance from the axis. Distance from the axis at each point
along the profile curve is the radius of the pot at that height
along the axis. The loglikelihood of a group of two or more
sherds,3 henceforth called a configuration, is the negative of
the sum of (i) the loglikelihoods of the break-curve data fit
to the estimated break-curve between pairs of adjacent sherds
and (ii) the loglikelihood of the surface-data fit to the esti-
mated axis/profile curve for the configuration (i.e., the assem-
bled group of sherds). In � 3.4 we show that this is the sum
of a number of energy functions, which result in a cost (error)
function for the assembly representing what should be mini-
mized. The parameters to be estimated for this purpose are
the Euclidean transformation for each sherd, and the resulting
outer-surface break-curve and axis/profile curve.

The data-set to think about in the following is a set of 100
to 200 sherds, which, as indicated in � 1.1, could come from
a number of pots as well as from other objects. The search
aims at grouping and aligning sherds along contours of con-
stant cost. Hence, we proceed as follows:

3I.e., the log of the probability of the measurement data given the geomet-
ric arrangement of the sherds.

1. Estimate the axis/profile-curve for each sherd: associate
the resulting error measure, i.e., the sum of squared dis-
tances from the surface data measurements to the MLE
for the sherd 3D surface; see � 3.2 thru 3.3. This is com-
putationally costly.

2. For each pair of sherds, estimate all reasonable align-
ments. This is computationally fast; see � 3.1 thru 3.1.2.
Each aligned pair forms a configuration. Then, a consis-
tency check is run. This is to see whether the two sherds
overlap significantly. If they do, that sherd-pair alignment
is not considered further.

3. For each configuration from step 2, improve the
alignment and estimate the axis/profile-curve for the
improved-aligned pair. The improved alignment is ob-
tained by minimizing the sum of the break-curve data-
alignment errors and the surface-data model-fit errors.
Since this can start from the results of steps 1 and 2, the
computation cost is significant but not as large as that in
step 1. The resulting group of configurations, together
with the cost (i.e., error measure associated with the pair)
for each configuration, is stored in a table in order of in-
creasing cost. Also included in this table are the 1-sherd
configurations from step 1. The associated cost for each
1-sherd configuration is based only on the outer-surface
measurement data; see � 3.4.

4. Explore merging pairs of configurations, where each
merge is of two 2-sherd configurations or of one 2-sherd
configuration with one 1-sherd configuration. Configu-
rations to be aligned are those which result in new con-
figurations having minimal associated costs. In general,
only a small fraction of all possible alignments need to be
considered for two reasons:

(a) Those alignments involving pairs of configurations
where each configuration in the pair has a high cost,
will not result in a new configuration having small
cost and, thus, only configurations near the top of
the table need to be considered.

(b) Since an alignment of two configurations involves
aligning one or more pairs of sherds, each sherd
in such a pair belonging to a different configura-
tion, a first rough alignment of the two configura-
tions can be obtained from table lookup, and align-
ment geometries that result in significant configura-
tion overlaps are quickly detected and discarded.

5. Lastly, improve all remaining minimal-cost alignments
through re-estimation of break-curves and profile-curves.
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The resulting configurations along with their costs are
added to the table, and the alignment of pairs of config-
urations in the updated table continues. This alignment
proceeds along contours of constant cost.

Note that, sherds containing portions of both pot tops and
pot walls, and sherds containing portions of both pot bottoms
and pot walls are especially useful. Since they contain high-
curvature ridge structure, they provide more accurate pot-axis
estimates than do low-curvature sherds containing portions of
pot walls only. Also, these sherds are pot-geometry delim-
iters: this information can be used effectively in determining
which configurations to align next and thus reduce computa-
tional cost in the sherd assembly process

Various other issues have been glossed over in this discus-
sion. For example, the costs that measure how well the break-
curve data fits the estimated break-curve and how well the
surface-data fits the 3D surface model determined by the esti-
mated axis/profile-curve involve numbers of data points which
differ by two or three orders of magnitude. Hence, some nor-
malization must be introduced in order that one cost does not
completely overwhelm the contribution of the other. Other
normalizations may be necessary as well because the simple
probabilistic distributions we are using may not be representa-
tive enough for the full range of geometric deformations to be
encountered. A second observation is that even though only a
few of the many sherds associated with a pot may be present in
the data-set being processed and even if none or only a few of
them share a common break-curve, it may still be possible to
estimate the virtual pot based on the set of axis/profile-curve
estimates for these sherds. In theory, this can be done if the
vertical extents of the sherds present covers the vertical extent
of the entire pot. A third comment is that in the preceding
discussion, all the sherd surface and break-curve measurement
data gets processed each time a sherd is involved in a con-
figuration appearing in a pair of configurations that are being
aligned. As mentioned in � 3.4, the possibility exists of using
the estimated geometric parameters and their covariance ma-
trices to do the alignment rather than using the raw data. This
would speed up the required computation by one to two orders
of magnitude. See [4] for basic ideas.

3 Sherd-Data Alignments and Pot Geo-
metry Estimation

3.1 Modeling and Alignment of Break-Curve
Data for Pairs and Triples of Sherds

In this section we first describe our approach to aligning a pair
of sherds based on their break-curve data, and then show that
this approach is the MLE of the portion of the break-curve
common to the pair of fragments. The representation used
for the portion of break-curve common to a pair of fragments
is a finite sequence of points on this break-curve segment.
Hence, the alignment of the two sherds involves (i) keeping
the measurement-data for one sherd fixed, and, (ii) determin-
ing the Euclidean transformation of the measurement-data for
the other sherd. This is performed such that (i) the break-curve
data matches well at a finite number of points, and, (ii) the tan-
gents for the outer-surface data of the two sherds at a pair of
matching break-curve points are roughly the same. This en-
sures that the two break-curve data-sets match well and that
the estimated outer-surfaces fit together smoothly with conti-
nuity of the normals to the surfaces.

We begin by matching the break-curve measurements for
each sherd starting where it has vertices. These vertices occur
where three, and in some cases four or more, sherd vertices
meet, as a result of the breaking of the pot at that point. In the
prevalent case of a three vertex points, the vertices can meet
in Y-junctions or T-junctions. For T-junctions there are really
only 2 vertices to consider,4 while for Y-junctions, there are
three vertices (Figure 3).

There are typically four to six such vertices for a break-
curve of a sherd. Hence, there are roughly 65 such vertices for
the 13 sherds resulting from one of the pots we have scanned.5

We try to match a pair of sherds starting at the vertices. To-
ward this end, we put down a finite number of points along
the measured break-curve for each sherd starting at a vertex.
Successive points are a Euclidean distance “

�
” from one an-

other. For each pair of sherds and each pair of vertices, one
from each sherd, we try to match the corresponding pairs of
data points, one point from each sherd. The error criterion is a
sum of squared errors, and the error function also contains the
sum of squared differences in the measured unit normals to the
surfaces at the data points used in the matches. Let us consider
the break-curve data point � ��� , from sherd

�
, and denote

�
and

�
as the estimated rotation matrix and translation vector

coming as solution to equation (3) below, where � is a chosen
positive constant, � ��� is the unit normal to the surface data of

4One vertex remains “hidden” on the “top” of the T.
5Experiments were run on a pot broken for the purpose in order to have

ground truth.
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sherd
�

at the break-curve data-point � � � and
�

is the number
of data points used, which is 5 at present. Then we have the
optimization program:

������ (�� 	

��� �

�� � � � @ � � � � @ � � ,�� �
�
� ���

@ � �%� � � ,�� $
(3)

The resulting alignments are very good in practice. In gen-
eral, the � data points occupy only a small portion of the break-
curve segment common to the pair of sherds. In some in-
stances, it may be useful to try a few starting locations for the
first point at a vertex. Note that, in our experiments thus far, a
human locates the break-curve vertices. We do have automatic
vertex-detection running, but have not yet tested it extensively.
Also, from a practical point of view, 3D scanning of sherds
takes a certain amount of time, and for a human to mark the
locations of ambiguous vertices takes comparatively negligi-
ble time.

Equation (3) has an explicit solution. This is a linear least-
squares problem, and the solution is computed at little cost.6

How much computation, then, is involved in examining data
for all pairs of sherds in a archaeology site location in order to
check for acceptable matches and alignments? Let us assume
that a sherd break-curve has � vertices on average, and that 200
sherds must be considered at a loci. Then, there are roughly� � 7 ) ) ��� ) ) break-curve segments that must be compared
for possible matches. Hence, there are roughly � � ) ) ,�� 7 � �� 7 ) � ) ) ) pairs that must be checked for matches. If each match
computation takes about one millisecond, the total of all match
checks and alignments takes about 6 minutes once the sherds
have been scanned and their 3D break-curve and outer-surface
data are available. Stored with each matched pair is the sum of
squared errors between the five pairs of corresponding points
used in the alignment computation. We denote this error ��� :

� ���
	


��� �
� � � � @ � � � � @ � � , � (4)

where
�

is the transformation that produced the best align-
ment.

3.1.1 Break-Curve and Surface-Tangent Alignment Ex-
periments

Experiments were run on a pot that we broke in order to have
sherds that we knew could be matched, and in order to have
ground truth. The pot was broken in a way to produce sherds

6It takes less than a millisecond of CPU time on our PC and UNIX work-
stations.

Figure 5: Break-curve triplet matches.

consistent with those found at archaeology sites. There are 13
sherds in the pot used in this example. Figure 4 shows matched
and aligned break-curve data for 8 pairs of sherds. The piece
of break-curve used for each matching is indicated by a pair
of numbers, one on each side of the common break-curve and
located at the vertices used. A “ � ” and a “ �! ” are the pairs of
numbers. The four examples in the first row , (a)-(d), repre-
sent correct matches with resulting alignments. The four ex-
amples in the second row, (e)-(h), are incorrect matches and
alignments. For the four incorrect matches shown, the match-
ing error is small, i.e., the five pairs of points match well.
It does occur in practice that an incorrect match may have a
smaller match-error than will a correct match. Note how in
Figure 4.(g) the break-curve data for the two sherds result in a
very good fit, even though the match is incorrect. There are at
least two ways to detect matches that should be recognized as
incorrect. First, portions of the sherd surface regions bounded
by the break-curve data overlap, as illustrated in cases (e) and
(f), and this can be detected automatically and quickly. Sec-
ond, the profile curve for the surface data for each matched
pair of sherds will not be accurate, i.e., there will be a sizable
fitting error for the estimate of the profile curve for the data
for the pair of sherds, which is also easily detected. This is
illustrated by cases (g) and (h).

7



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Break-curve pair matches.

Aligning Triplets of Sherds. Two examples of correctly-
matched triplets are shown in Figure 5. With each there are
two views of the assembled sherds in order that one be able to
visualize the quality of the sherd assembly. In these cases one
sherd is held fixed and each of the other two is transformed,
which means that two transformations must be estimated or
12 parameters. These parameters are estimated simultaneously
using all the matching data in a single cost function. Hence,
the estimate of a pair of transformations is based on the match-
ing of 15 pairs of points and associated pairs of normals. Un-
fortunately, in this case the estimation is nonlinear. Note that
the matching is not perfect, especially for the bottom of the pot
in the second triplet. The matching can be improved by using
data at the other vertices as well, by automatically adjusting
the locations of the first points at the vertices better, and, more
generally, by using points along the entire common portions of
the break-curves and using denser sets of points and dynamic
local curve-scaling during the point matching. The approach
extends immediately to four or more groups of sherds, where�����

transformations must be estimated simultaneously for
optimally matching

�
sherds.

3.1.2 Joint Estimation of ���	� and T for MLE Aligning

We show that the solution of equation (3) is the MLE for 

and ���� . Where 
 is the transformation that aligns sherd 2
break-curve data with that of sherd 1.

For the approach in � 3.1, we have represented break-curve
segment � �� by a sequence of � points ��� , ��� ����������� �

on ���� . Hence, for this curve-representation, ���� is the column
vector � �"! � � �#! ��������� �"!$�%�! which has &'� components.

The data generation probability model we use is the follow-
ing. Denote by ( a point on the true break-curve segment ���)� .
Denote by * a measurement of this point, and by + it’s co-
variance matrix. Then we assume * has the pdf (probability
density function):

, �-*/.0( � +1% ��-2034% ��5768 % .	+9. 5;:8 <�=?>A@ � �2 �-* � (4% ! + 5 � �-* � (4%�B �
For � 3.1, we took +C�ED FHG where G is the &JI7& identity matrix.
Then,, �-*K.H( � +1%L�M�-2N3�D F % � 5 68H% <�=O> @ � �2ND FQP * � ( P  B �

Now, fix sherd 1. It has break-curve measurement pointsR � � � �S� �'��������� � (see � 3.1). Sherd 2 has break-curve
measurement points R  � . These get transformed by Eu-
clidean transformation 
 to produce points RJT � �U
V� R  �W%L�X R  �ZYM[ , which are to align with the R � � . We assumeR �\� � �^]_� �'� 2a`b�c� ����������� �d% , are statistically indepen-
dent measurements, and that R � � and ReT � are measurements
of point R � which is on the true break-curve �4�� . Denote byf R �\�hg the set

f R �\�di ]j� ��� 2?`k�l� ����������� � g . Then,

mon , � f R �\� g . f R � gqp 
h%r� m\n �s�t203�D F % 5vu $ % �
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? �7 * ,/ F �

��� �

� � � � � @ � �
� , � � � , � @ � �

� ,�� $ (5)

The MLE of
�

and � ����� � � � $ $=$ �	� , are the values for
which (5) is maximum. These can be found by fixing

�
and

solving for the optimum � � , and then solving for the optimum�
. The values for � �
��� � � � $ $=$ � , for which (5) is

maximum are �� � � � � � � � � , � � � 7 , and then (5) becomes:

 � � � 7 8 * ,/ � ��� � � @ ? �� * ,/ F �

��� �

� � � � @ � , � � , �
 � � � 798 * ,/ � ��� � � @ ? �� * ,/ F �!� $ (6)

Finally, (6) must be maximized with respect to
�

, equiva-
lently, minimize � � with respect to

�
to obtain �� . The MLEs

�� and �� � ��� � � � $ $=$ � � are exactly those used in matching
and alignment in � 3.1.

3.2 Sherd Surface Characterization

Whereas effective algorithms have been developed for estimat-
ing the axis and associated profile curve for a sherd that com-
prises a large portion of the surface of an axially symmetric
pot, there do not appear to be effective algorithms for estimat-
ing a pot axis when the sherd is a very small portion of the
pot or when the profile curve is complicated. But these cases
are important in practice and challenging in concept. In [21],
we introduce three new approaches to estimating axis/profile-
curves, quantitatively evaluate their performances, and discuss
their relative strengths. They all are more accurate than algo-
rithms presently in the published literature. We present two
of them in � 3.2.2 and � 3.3, respectively. One estimates the
axis and profile-curve pair jointly through maximization of a
performance function which is close to MLE. The other es-
timates the axis based on local data curvature-estimates, and
then obtains a profile curve based on the estimated axis. Both
are tested on a representative spectrum of challenging outer-
surface measurement data of sherds from Petra, Jordan [7].
The algorithms of � 3.2.2 and 3.3 are the most accurate. The
third algorithm presented in [21] is less accurate, but is com-
putationally almost two orders of magnitude faster.

3.2.1 Surfaces of Revolution

Surfaces of revolution are commonly encountered in the field
of elementary differential geometry [15]. A surface of revolu-
tion � is obtained by revolving a planar curve � about a line�
. � corresponds to the previous notion of profile curve, � ,

(a) p642 (b) p654 (c) p997

(d) p1135 (e) p1313 (f) p967

Figure 6: A spectrum of archaeological sherds from the
Great Temple site of Petra, Jordan [7], used to illustrate our
axis/profile-curve estimation.

and
�

is the axis of � . When the � -axis is taken as the axis of
revolution for the profile curve the surface � may be defined
parametrically simply as:

��� � ��� � � � � � ��� � ������� � � ��� � ��� � � � � ��� $ (7)

With this parameterization, the curves � ����� � �"!$# �%! are par-
allels of � and the curves � �&��� � �"!$# �%! are meridians of � .

3.2.2 Mathematical Models

We have parameterized the axis of symmetry,
�
, using the stan-

dard parametric equation of a 3D line:

� �'�)( � �+* (4�
� �'�), � �-* , $ (8)

These equations contain four unknown parameters. Two of
these, �.( and �., , describe the slope of the line when it is pro-
jected onto the � � -plane and the � � -plane, respectively. The
remaining two parameters, * ( and * , , specify where the line
intercepts the � � -plane at � � ) .

The profile curve model for the pot surface must be gen-
eral enough to represent a wide variety of possible shapes.
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Figures 1 and 6 illustrate the range of geometric complexity
which pottery sherds from only a single site may exhibit. It is
important to note that some of the pot sherds shown cannot be
represented by explicit functions with respect to the axis. For
example, ��� ��� is multivalued for values of � near the top of
the sherd in Fig. 6.(d). Consequently, we propose to use im-
plicit polynomial models, rather than explicit profile models,
to represent the profile curve in the approach described in this
section. The approach in � 3.3 can also handle these multi-
valued radius situations because it does not use a profile-curve
model in the axis estimation.

Implicit polynomial surfaces and curves are very powerful
shape models which are capable of representing the wide va-
riety of geometries involved in this problem [17, 16, 3]. The
general form of an implicit curve of degree

�
has

� � � � � � � � �7 � � 7 � unknown coefficients and takes the following form:

��� ��� � ��� � 
��� ����� � �
	 � ( ��� � # �� � � � � � ) $ (9)

Here,
�

is a parameter which is related to the geometric com-
plexity of the pottery sherd to be estimated. Typically one as-
signs a value to

�
which is large enough to represent all objects

of interest. In this way, objects which may have little geomet-
ric complexity are described as degenerate cases of the more
complex model. For the artifacts in this paper, all experiments
are performed with

� ��� .
To estimate the polynomial model, the ��� � ��� component of

the spatial data and the normal data are computed. Note that
this can also be viewed as an orthogonal projection of the
data from � � � � � ��� to ��� � ��� . This projection into � � -space
preserves the distance relationship between the axis and each
point � � in � � � -space, but discards the component of the sur-
face normal in the � direction. Hence, for any 3D normal, � � ,
the corresponding projected normal, ��� � , may not be of unit
length, i.e.,

�
� � �
��� � . These parameters define the objective

function (10) below, which is a modified version of the energy
function in [16], for estimating the profile curve coefficients:

������ � � �

��� � � � ,� ��� � � � � � ��� �

� � �
@�� � � � � � � � � � � , � � (10)

where

� � � � � � � � � � � A ������ �
� �����! D � denotes the gradient.

Note that,
� ,� ��� � � � � � is the data fitting error in (10). The re-

maining portion of the summation is relatively small and is for
the purpose of regularization in the minimization.

Model Estimation Algorithm This method utilizes a two-
step iterative algorithm to estimate the axis and associated pro-

file curve which best describes the observed 3D data. The non-
linear iterative minimization is:

1. Based on the value of the objective function after the pre-
ceding iteration, choose a new value for the parameter
vector � � ( ��� , � * ( � * , � specifying the pot axis.

2. Minimize � ���� � in eqn. (10) by solving for the optimum
profile-curve polynomial coefficients # �� (see eqn. (9)).
This is a linear least-squares problem and there is a fast-
to-compute explicit solution.

3. Return to 1 or stop.

Since the surface model depends on the axis, the resulting ob-
jective function is highly non-linear. Consequently, conver-
gence to a local minimum may occur if minimization is started
far from the true parameter value. The estimation algorithm
needs only a hypothesized axis of symmetry in order to begin.
In practice, we begin with the axis estimate provided by an
improved version [21] of the Plücker coordinates method as
described in [14, 20] (some additional information is given in
� 3.3). This initial estimate is very fast — probably less than
a millisecond. The total computation time7 is of the order of 1
to 3 minutes for roughly 3,000 data points.

3.2.3 Results on Archaeological Data

Figure 6 shows a set of six sherds from the Brown University
archaeological dig at Petra, Jordan [7], which were used to
evaluate the algorithm above. For each of the data-sets the pa-
rameters, i.e., axis and profile curve coefficients, of the surface
of revolution were estimated. These parameter values were
then used to generate the portion of axially-symmetric pot sur-
face over the extent of the sherd-axis covered by the data, and
the sherd surface-data is overlaid in white on this slab of es-
timated pot-surface. Also, upon rotating the estimated sherd
data-axis to coincide with the � -axis, the distance of each 3D
surface data-point is plotted as a function of � . These points
would lie exactly on the sherd profile-curve if the sherd-axis
were estimated without error and if the data-points were noise-
less. However, since the data-points are not noiseless and the
true axis estimate is not without error, the plotted points lie
in a swath about the true profile curve. In general, increas-
ing error in estimated axis position results in increasing data-
swath spread about the true profile curve. The narrowness of
the swathes of data in Figure 7 are indicative of the accuracy
of our estimates for axes for these difficult examples. Covari-
ances for the axis parameters appear in [21]. Note that, some
of the sherds shown are very small, e.g., Figures 6.(b),(f), and

7Implemented using the C programming language.
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(e) p1313

(f) p967

Figure 7: Axis/profile-curve estimates for the sherds of Fig-
ure 6, and visualization of these estimated 3D pot models over
the associated � -axis intervals.

it is agreeably surprising that useful axis/profile-curve pairs
can be found for these. Sherd 6.(b) appears to be from the
same pot as is 6.(a), and though the two sherds do not share a
common break-curve segment, 6.(b) appears to cover the same
axis height-range as does the portion of 6.(a) from the surface-
ridge down. Also, 6.(d) is an example of a small sherd having
a somewhat complicated multi-valued radius function ��� � � .
3.3 Extracting the Axis of Revolution and Pro-

file Curve via Spheres of Curvature

This section describes an approach to estimating the pot axis
directly. Given a perfect surface of revolution, one of the two
families of lines of curvature are circles of revolution (paral-
lels of the surface) with centers on the axis and the other are
the generator curves (meridians of the surface), lying in planes
containing the axis. But, unfortunately, pot sherds are far from
perfect, e.g., due to imperfections in the modeling process and
subsequent erosion. They are noisy surfaces of revolution.

We define spheres of curvature to be the spheres centered
at one of the principal centers of curvature and having radius
equal to the corresponding radius of curvature. These spheres
are tangent to the surface. It is easy to show that for each point
on the surface, the center of the sphere of principal curvature
corresponding to the parallel circles is on the main axis (or rev-
olution). By finding the line which minimizes the least squares
distance from the estimated centers to it, we can find the main
axis and its profile curve.

One useful feature of a surface of revolution is that the prin-
cipal curvature corresponding to the parallel circles does not
depend on second derivatives; we denote this principal curva-
ture ��� . Given a set of � 3D data-points from a surface of
revolution, let � � and � � be the � 3D data points and their
corresponding normals. Suppose the axis of revolution is the
line

�
. This axis can be specified by a point � � on

�
and a unit

vector � corresponding to the direction of
�
. We make the

point ��� unique by requiring �1���C� � ) . For any point � on
the surface, suppose the normal at that point is � . It can be
shown that

��� � �
� � � �� � � @ ���5� � � � $

All the centers of the sphere of curvature corresponding to ���
should be on the axis of revolution, hence we can minimize
following function:

� � ��� � � � �
� �
� � � ��� � � � @ � � � � � @
	���

�
���������		�������	 � � � � � � ��� , $
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There are six parameters in the function
�

, which are not inde-
pendent. They satisfy the following constraints:� � � � � ) and

� � � � � $
We want to reduce the six dependent parameters to four inde-
pendent parameters. Define the matrix

�
as following:� � � ������� � � ��� � ����� ������� � � ���@

� � ��� ������� ) 	 �
then the vector � can be represented as:� � A @

������� � ����� @
� ����� � � ��� ��� �
� D�� $

Define � � � ��� � � � � � � � � � ��� . Then the function
�

can be
represented as a function of four parameters, � � � � � � � � � :

� � � � � � � � � � � � �
� �
��� �

���� � � � � � @ � � � @ � ���� 
�
 �� � �	��� ��� 	 � � � � � � ���� ,

Potmann et al. [14] proposed a direct solution to recon-
struct helical surfaces or surfaces of revolution using line ge-
ometric concepts. Their algorithm is based on the fact that
the normals of these surfaces lie in linear complices. Using
normalized Plücker coordinates, the least squares distance be-
tween a line and the set of normals can be represented by a
positive semidefinite quadratic form. Minimizing that form is
then reduced to a generalized eigenvalue problem. We use this
solution as our initial starting point. After we get the axis of
revolution, we can calculate the distance from each data point
to the axis, and do a cubic spline fit to get the profile curve.

Experiments were run on the dataset used in � 3.2.3. The
data for each sherd is a dense set of unorganized 3D points
and their estimated normals. Figure 8 is an example of exper-
imental results. The statistics shown and others were gathered
for the sherds in � 3.2.3. The accuracy (covariance matrix) of
this axis estimator is very good – comparable to that in � 3.2.2
– better in some cases and not as good in others. See [21] for
a quantitative comparison of these and another algorithm.

We use the global features of the surface of revolution, and
avoid computing high order derivatives, hence this method is
robust to noisy data. Due to its least squares nature, it may be
sensitive to outliers in the current format. This can be over-
comed by weighted least squares. The goal function is easy to
calculate, and the minimization can be carried out by general
iterative methods. In its present implementation, the compu-
tation time is a few minutes for a dataset of a few thousand
points.8

8Implemented in the MATLAB R
�

software environment.

Figure 8: On the left is the profile curve for sherd 642 (see
Figure 6.(a)); on the right is the standard deviation of the es-
timated profile curve as a function of height along the sherd
axis, based on axis estimates using 500 independent bootstrap
samples.

3.4 Aligning Sherd-Data for Pairs by MLE of
Break-Curves and Axis/Profile-Curves

Our approach to estimating the optimum joint geometry of a
pair of sherds based on their break-curve and surface data-
sets jointly is described in this section. In � 3.1 we described
sherd-pair alignment based on break-curve data alone. In
� 3.2 and 3.3 we described sherd-surface model estimation,
i.e., axis/profile-curve estimation based on surface data only.
Hence, the approach in this section is to minimize a cost func-
tion which is the sum of the costs functions discussed in the
aforementioned sections.

Denote (all) the available geometric data by � ��( � , the break-
curve data by � � ( � and the surface data by � ��( � , this for sherds
�

and 	 . Then alignment and pot model estimation for sherd
�

and 	 data sets jointly, is done by the minimization over all
geometric parameters, i.e.:

��� � � @  ��� 2 ! � ��( � 3 
 ��� � � ��� � � ��� � � ��� " � ���� � � @  ��� 2 ! � ��( � 3 � ��� " @  ��� 2 ! � � ( � 3 � ��� � � ��� � � ��� " � �� � � ������ � � constant �
where the two energies, � � and ��� � � � , are defined in equations
(4) and (10), respectively.

The implemented algorithm uses approximations for doing
the minimization, is computationally fast, and is reasonably
accurate for the few examples tried. Figures 9 and 10 are re-
sults for one such experiment. This algorithm is presently un-
dergoing refinement.
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(a) p11 (b) p12

Figure 9: Two of the 13 sherds comprising a broken pot. Some
of these sherds also appear in Figure 7. Breaking a pot pro-
vided sherds that shared common boundaries. The 1 and 1’
denote break-curves that are common to the pair of sherds.

(a) (b)

Figure 10: Estimated joint geometry. The sherd data fits to-
gether well, (a), the projected-data scatter about the estimated
profile curve is small, (b).

4 Conclusion

A Bayesian approach has been outlined for the estimation of
mathematical representations for pots based on sherds found
at archaeology sites. The key algorithms for implementing the
approach have been developed, and experimental results from
applying these algorithms to real sherd 3D data have been pre-
sented and discussed. At this time, experiments have been run
on automatic matching and aligning pairs and triples of sherds.

Work remaining in this project is basically to speed-up some
of the algorithms by carrying along and using extracted geo-
metric shape information and its covariances, rather than us-
ing the sherd raw measurement-data each time two groups of
sherds are aligned to form a possible larger group of assembled
sherds toward constructing a virtual pot. The virtual-pot esti-
mation is realized as a bottom-up merging of sherds through
minimization of a cost function for aligned groups of sherds.
This search algorithm is also in a state of refinement. If the
pot has a spout and/or handles, the associated sherds must be
included in the assembly.

The framework discussed in this paper is for estimating arbi-
trary a priori unknown axially-symmetric pot models. Hence,
it is unsupervised pot geometry-learning from sherd data. If
instead we know a priori that the pot sherds present are not
arbitrary but rather that each belongs to one of a group of
10 known pot shapes, the problem is computationally much
easier because the sherd alignment problem is then more of a
pot shape-recognition problem and less of a shape-estimation
problem.

The framework presented can accommodate additional ge-
ometric and pattern information which should result in doing
the pot estimation faster, or with fewer sherds, or estimating
models for more complex ceramic objects.
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