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Abstract—We report empirical study results on the color encoding of ensemble scalar and orientation to visualize diffusion magnetic
resonance imaging (DMRI) tubes. The experiment tested six scalar colormaps for average fractional anisotropy (FA) tasks (grayscale,
blackbody, diverging, isoluminant-rainbow, extended-blackbody, and coolwarm) and four three-dimensional (3D) spherical colormaps
for tract tracing tasks (uniform gray, absolute, eigenmaps, and Boy’s surface embedding). We found that extended-blackbody,
coolwarm, and blackbody remain the best three approaches for identifying ensemble average in 3D. Isoluminant-rainbow colormap led
to the same ensemble mean accuracy as other colormaps. However, more than 50% of the answers consistently had higher estimates
of the ensemble average, independent of the mean values. The number of hues, not luminance, influences ensemble estimates of
mean values. For ensemble orientation-tracing tasks, we found that both Boy’s surface embedding (greatest spatial resolution and
contrast) and absolute colormaps (lowest spatial resolution and contrast) led to more accurate answers than the eigenmaps scheme
(medium resolution and contrast), acting as the uncanny-valley phenomenon of visualization design in terms of accuracy. Absolute
colormap broadly used in brain science is a good default spherical colormap. We could conclude from our study that human visual
processing of a chunk of colors differs from that of single colors.

Index Terms—Ensemble visualization, diffusion magnetic resonance imaging, quantitative validation, colormap.
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1 INTRODUCTION

E XPLORATORY vector and tensor field visualizations
studying regions of interest or a group of objects at

a time [1] count on the human visual system to extract
statistical information from features. Perceiving average or
other statistical features from a group of similar items, called
ensemble perception [2] [3], is a robust visual phenomenon
studied largely in vision science that operates across a host
of visual dimensions: size [4], orientation [5], position [6],
motion [7], speed [8], number [9], identities [10], struc-
tures [11], and luminance [12].

The applicability of these vision science results to visual-
izations is anecdotal because of at least two methodological
barriers between these two domains. Vision science studies
are intended to capture static views, separate perception
and cognition from interaction, and also separate domain-
specific uses from visual stimuli. In contrast, in visual
exploration these factors must be integrated. Additionally,
spatial visualization features, such as continuity, symmetry,
and clusters, may not be present in images.

Working in collaboration with brain scientists, we have
recognized two challenges for showing three-dimensional
(3D) diffusion magnetic resonance imaging (DMRI) tractog-
raphy. The first is to support univariate representations of
an ensemble of scalar values. Scalars are commonly encoded
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in one-dimensional (1D) colormaps, e.g., showing fractional
anisotropy (FA) measured at every voxel to quantify disease
states [13]. Though univariate coloring has been extensively
studied in two-dimensional (2D) data visualizations (see the
excellent reviews by Zhou and Hansen [14] and Silva et
al. [15]), 3D color ensembles may introduce constraints in
three respects. First, the univariate schemes of luminance
and hue combination that work well in 2D may not apply
in 3D, because luminance contrast can belie color constancy
and distort 3D shape perception due to lighting [16]. Second,
shading prevents the use of dark colors [17] [18], thus
reducing the number of differentiable color steps. Third,
interpreting ensembles may not require visually deriving
individual values [3]. Since scientific data are often continu-
ous, the human visual system may well optimize strategies
for efficient visual detection [19].

The second challenge is showing structural connectiv-
ities from tracts (often rendered as tubes). This task re-
quires the viewer to visually segment collections of tracts
of various orientations. Szafir et al. call this type of task
ensemble subset extraction [20]; Phadke et al. call it attribute
value exploration [1]. DMRI tracts, unlike data in these studies
are continuous in space and carry domain-specific attributes
such as symmetry and proximate regions [21] [22]. Tracts are
often colored with spherical colormaps, i.e., every point
on a sphere is assigned a color to the orientation. Novel
tract colormaps have been explored concerning tract locality
(trajectories closer in the high-dimensional space remain
close in the low-dimensional space) [23], angular uniformity
(angular difference is perceptually uniform) [21], and spatial
resolution (lines with different directions get different col-
ors) [22]. No design knowledge exists, however, to quantify
the practicality of spherical colormaps in visualization.



1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2898438, IEEE
Transactions on Visualization and Computer Graphics

SUBMITTED TO TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, DECEMBER 2017 2

A. Ensemble Identification (detection and discrimination)

Method of 

adjustment: 
Use mouse to 

adjust the 

triangle slider to 

the average color 

of the tracts.

C. Ensemble Localization (discrimination) 

Example task: 
Locate the 

ending points of 

tracts.

Example task: 

Associate tracts 

to input 

parameters or 

disease 

properties 

D. Ensemble Association (detection and discrimination)B. Ensemble Comparison (detection or discrimation)

Method of 

comparison: 
Which of these 

two samples has 

the larger 

variance?

Fig. 1: Four Types of Common Ensemble Tasks (Identification, Comparison, Localization, and Association) and Some Selected
Methods for Testing Ensemble Representations.

The present work addresses these two important chal-
lenges by first summarizing a set of ensemble tasks of
identification, localization, comparison, and association (Fig. 1).
We then examine two identification tasks, ensemble average
(Fig. 2) and orientation (Table 1 and Fig. 3), by evaluating
state-of-the-art coloring methods. Specifically, we answer
the following questions: How reliable are colormaps for deriving
ensemble averages from 3D spatially distributed tracts? Which
colormaps are applicable to ensemble average? What is the most
effective spherical colormap for presenting orientation in ensemble
representations?

Our work makes the following contributions.

• Formally proposes and expands ensemble visualiza-
tion concepts inspired by vision science.

• Establishes new measurement metrics for bias anal-
ysis and associates this bias to data distribution in
evaluation when recommending colormaps.

• Derives some design recommendations for spatially
continuous datasets for ensemble average and orien-
tation discrimination.

2 TERMS AND RELATED WORK

Our work draws upon work related to (1) ensemble color
studies in vision science and (2) univariate and spherical
representations in visualization. In this section, we broaden
the definition of ensemble representation in visualization
and connect color theory to ensembles and relevant study
results.

2.1 Ensemble Representation: Definition

The ensemble concept in visualization often refers to a collec-
tion of datasets and is perhaps best known as ensemble sim-
ulation and uncertainty quantifications [24] [25]. Ensemble
has been broadly studied in vision science (e.g., [26]), where
ensemble representation is used to explore how humans use
statistical regularities in a group of similar objects to process
information [27].

Our current work supports this recent broad perspective
on the role of visual statistical processing and embraces the
idea that these visualization tasks, whether from ensem-
ble simulations (e.g., statistical properties such as uncer-
tainty [28] [29]) or not (e.g., overviews and detecting global
features in flow fields [30] and areas or sets [31]), share the
property that multiple measurements are combined to give
rise to a higher-level statistical description.

Following this new human information processing per-
spective, we formalize ensemble representation as an um-
brella term encompassing existing 3D visualization methods
that demand the human visual system to derive statistical
attributes from visualization. For example, correlated tex-
tures along vector fields help humans derive ensemble pat-
terns to see flow movement; glyphs enable efficient visual
assessment of “a chunk of flow” [32].

2.2 Color Ensembles

Representing color ensembles concerns how our visual sys-
tem derives statistical information through visual process-
ing of color features. Color ensembles can facilitate scalable
visual inspection. Mauly and Franklin [33] study a series
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Fig. 2: Six Univariate Colormaps for Ensemble Average Task
(Task 1) and Their Attributes. The numbers after colormap
names are arc-lengths in the L*A*B* color space. Arc-length
is computed with CIEDE 2000 by summing the ∆E∗00 values
along the curve following the colormap in the L*A*B* color
space, where ∆E∗00 specifies the perceptual uniformity be-
tween adjacent points along the curve [41].

of uniformly colored circular elements ranging from 4 to
48 items subtended at 12, 20, and 28 just-noticeable differ-
ences (JNDs) and suggest that the accuracy is insensitive to
changes in the number of elements in an ensemble. Only
reaction time is longer for ensembles with more hues.

Dedicated human visual processing of color ensembles
may also exist [34]. Human vision can effectively discount
spectral variations and assign stable colors to objects to
achieve consistent scene [35] and color constancy [16]. In
a 2D time-varying chart visualization, Correll et al. find that
color is more effective than position for showing averages
and distributions [36]; this result is contradictory to classical
design recommendations in which position is more accurate
than color for quantitative comparisons, when ensemble is
not required [37]. Also reliable average estimates can be
made from two hues of red-blue, blue-green, and yellow-
green [38] and categorical boundaries can be accurately
labeled for greenish-blue, bluish-green [39], and gray-scale
alike textures [40].

These intriguing results on hue ensembles, mostly pre-
sented in vision science, seem to refute the idea that hues
cannot be described in terms of magnitude but only as
qualitative experiences. They may be effective for ensemble
averages and boundary detection when the data or hue
variance is localized and small. In this work, we choose
several multihue colormaps, such as extended-blackbody
and coolwarm (Fig. 2). We also use a well-designed rainbow
colormap, aka Kindlmann et al.’s isoluminant-rainbow [42].
We compare these approaches against other double- and
single-hue methods.

2.3 Univariate Coloring
The most influential color studies lie in univariate colormap
design and characterizations (e.g., color harmony and cat-
egories [43] [44], metrics [45], and modeling [46]). Silva et

TABLE 1: Four Spherical Colormaps for Ensemble Orienta-
tion Task (Task 2): Their Attributes.

Colormaps Contrast Angular Spatial
uniformity resolution

Uniform-gray Very low No Very low
Absolute [21] Low No Low
Eigenmaps [23] Medium Yes Medium
Boy’s Surface [22] High Yes High

(a) Uniform-gray (b) Absolute

(c) Eigenmaps (d) Boy’s Surface

Fig. 3: Four Spherical Colormaps for Ensemble Orientation
Task (Task 2).

al. [15] and Zhou and Hansen [14] summarize important
color characteristics in univariate colormap design, such as
ordering (colormaps must preserve the order in data), separa-
tion (different data must be perceived differently) [47], and
uniformity (perceived differences in color must accurately
reflect numerical data differences). Among these character-
istics, uniformity is believed most important for showing
quantitative data [48]. Rainbow colormap is believed to be
poor at showing quantitative data because it lacks nearly all
these attributes.

This design knowledge leads us to adopt several univari-
ate maps suggested by Moreland [18], including extended-
blackbody (monotonic luminance and multihue), blackbody
(perceptually uniform, monotonic luminance, and multi-
hue), coolwarm (perceptually uniform, two-hues and mono-
tonic on each side), and diverging (two-hues and perceptu-
ally uniform and monotonic on each side) (Fig. 2). Some
of them have also been incorporated in the popular 3D
visualization tools VTK and Paraview.



1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2898438, IEEE
Transactions on Visualization and Computer Graphics

SUBMITTED TO TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, DECEMBER 2017 4

2.4 Vector and Tensor Field Evaluation
Pioneering 3D vector and tensor field studies have largely
focused on univariate comparisons, such as vector speed
between two locations [32], tracing a single tract [49], read-
ing quantities at sampling sites [50], and showing depth
and distances between adjacent occluded tracts [51] [52].
An exception is the study by Acevedo and Laidlaw [53] in
which participants discriminate boundaries through a set of
size-varying circles and must visually derive groups from
visualization.

Borkin et al.’s work [54] closely resembles ours in terms
of colormap comparisons to support seeing in 3D. That
study compares rainbow and diverging colormaps for de-
tecting regions of heart diseases after projecting 3D artery
flow patterns to 2D and finds that a rainbow colormap
decreases detection rates [54]. The present work builds on
these studies but expands the scope in two important ways:
we measure more tasks to understand ensemble averages
discrimination and orientation detection, and our tasks are
in 3D. We further formalize the task space in Chen et al. [55]
for ensemble univariate and orientation discrimination.

2.5 Continuous Ensemble Spherical Colormaps
Knowledge about effective spherical colormap design is lim-
ited, despite their importance for showing tensor and vector
fields. To show brain connectivity through tracts, Pajevic
and Pierpaoli [21] use elegant solutions through extensive
studies on rotation and mirror symmetry. The absolute values
of the xyz-components of the principal diffusion tensor
eigenvectors are mapped directly to RGB color-triples. The
advantages of this absolute approach include: (1) user fa-
miliarity with RGB colors associated with a vertebrate di-
rection, (2) high contrast between vertebrate directions, and
(3) four-way symmetry (left-right, dorsal-ventral, anterior-
posterior, and antipodal.) Even though this absolute en-
coding approach provides a seemingly low-resolution view
of tract orientation, our brain scientist collaborators sug-
gest that this colormap dominates brain science because
it conveys most important transverse, sagittal, and coronal
directions.

Other solutions reveal patterns and increase spatial res-
olutions. Kindlmann et al. introduced a hue-ball approach
and a barycentric map for direct volume rendering of tensor
fields by assigning color and opacity based on the direction
of the principal eigenvector and anisotropy type of the diffu-
sion tensor [56]. An attractive characteristic of this approach
is its high contrast between adjacent tracts: they are colored
with bright, saturated colors spanning from red, yellow,
green, cyan, blue to purple. Demiralp et al. [22] use Boy’s real
projective plane immersion to visualize the direction of brain
tracts. This Boy’s surface coloring possesses good locality and
contrast by showing the finest details, and has the greatest
spatial resolution of all spherical colormaps (Table 1).

Vision science has studied multihue mainly as a pattern-
segmentation mechanism for identifying structural varia-
tions. Maule et al. [57] suggest that there may be a func-
tional limit to the amount of variance that can be rapidly
encoded by summary statistics of set discriminations. Such
set discriminations, though close to our orientation discrim-
ination, can prescribe methods only for discrete clusters. No

study exists to our knowledge to explore to what extent
continuous spherical coloring of ensemble line field would
be most beneficial. Our study compares four techniques to
understand the effectiveness of ensemble orientation dis-
criminations. Our expectation is largely driven by the vision
science literature positioning that colormaps with higher
resolution could improve the orientation detection.

3 BRAIN DMRI DATA CHARACTERIZATION AND
ENSEMBLE TASKS

This section first describes the data and task characteri-
zation by following Munzner’s data and task abstraction
method [58], and then presents our measurement method.
The objective is to establish the importance of ensembles in
the different tasks inspired by real-world relevant uses in
DMRI analysis alluding to different questions that must be
answered. The data and task abstraction also helps choose
study tasks and encourages reuse of our study results.

3.1 Brain DMRI Data Characterization

DMRI measures water diffusion as a second-order positive-
definite tensor [59]. Water diffusion patterns have been ana-
lyzed comprehensively by brain scientists to study anatomi-
cal fibrous structures. Modern advances have extended to
meta-analysis of brain cohorts [60]. Visualization design
guidelines for understanding complex spatial structures
have also been a recent focus [61], albeit disproportionately
small in the amount of empirical work directly focused on
evaluation. Preim et al. [62] have surveyed perceptually-
motivated 3D visualization for medical imaging visualiza-
tion, but focused on depth and shading. This challenge in
coloring MRI datasets is often cited as a top visualization
challenge [19].

The first and most reliable benchmark measurement is
fractional anisotropy (FA) [63]. FA, a normalized scalar,
measures the water diffusion patterns: a value of zero means
that apparent diffusivities do not depend on direction, for
instance when diffusion is restricted equally in all directions
(e.g., in gray matter.) A value of one means that diffusion
occurs only along one axis and is fully restricted (e.g., in
white matter.) Brain scientists are concerned with average
FAs in regions containing a set of voxels or tracts. In this
study, FAs are in the range of [0.2, 1] and average FAs are
[0.25, 0.85].

Another important measurement is brain structural con-
nectivities [55]. A continuous diffusion tensor field is first
constructed from the measured DMRI data. Tracts are then
computed at voxel sampling locations via tractography, a 3D
technique for representing brain structural connectivity [64].
We terminate tract tracing when the FA value is less than 0.2.
The tracts are depicted to show connectivity information. A
group of tracts sharing similar orientations is called a bundle.
Some studies use template-based approaches to derive and
color tracts to show anatomical connectivity; others attempt
to visualize the structures independent of templates. Our
current work studies four major bundles labeled by our
collaborators.

Several brain analysis tools and methods have supported
colormaps. For example, DTI Studio lets users manually
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assign selected tracts a color as well as use the default
randomly assigned colors for individual tracts [65]. 3D Slicer
lets users select among a large variety of colormaps or
customize their own for visualizing variables [66]. While
these tools offer great flexibility, our results can give users
more informed design choices among techniques and tools.

3.2 Ensemble Task Characterization: Four Types
We obtain the following measurable low-level tasks (Fig. 1).
In each category, we separate detection (e.g., which is
higher?) and discrimination (e.g., how much higher?) tasks
inspired by Borgo et al. [67] and Zhao et al. [50], so as
to address the goal of design for perceptually accurate
visualizations.

1) Ensemble identification is performed when the goal
is to read mean values or estimate the probability
distributions of values from similar objects. Some
typical identification tasks are: what are the average
FA values (Fig. 1(A))? Where is the boundary be-
tween regions of different anatomical structures? Do
the two bundles belong to different groups? What is
the average brain?

2) Ensemble comparison is useful to compare multiple
ensembles or items or identify the most common
outputs. Some example tasks are: are the left and
the right hemispheres of CC different? If so, by how
much? Do the brain cortical surface shapes differ?
The task in Fig. 1(B) compares between diseases
outcomes in cohorts.

3) Ensemble localization asks the viewer to find where
a certain ensemble value or attribute (e.g., inliers
and outliers) is located within the data. Fig. 1(C)
stresses visual lookup and asks where the lesion is
in the brain. Where are regions of maximum and
minimum mean FA values?

4) Ensemble association involves determining the asso-
ciative relationships between or among related ob-
jects. Fig. 1(D) shows the average tracts computed
from ensembles. Some example tasks are: which
of these two average brains is associated with de-
mentia? And at what state of the dementia? Using
a simulator and after varying parameter A, what
are the associated brain regions sensitive to these
inputs, and what is the distribution of the changes
among these output ensembles?

Based on this task characterization, we choose to study
the first identification task in the current work because they
are most common DMRI visualization challenges.

3.3 Metric
There are several considerations in measuring the ensemble
representations. We divide the data or the colormap into
bins to represent sub-regions. This is because a region of
interest (ROI) in a spatial volume is likely to be localized
to a group of data points. Also, we can associate the data
distributions in each bin to color distributions in a colormap
to understand colormap usefulness. For example, the spread
or variance of the resulting distribution in each bin in a
colormap reflects the ensemble average performance. The

shape of the results also reflects the sensitivity of features or
dimensions to the ensembles. Robust sensitivity to summary
statistics will yield a narrow distribution. A function can
also be fitted to the data to reveal sensitivity to the dis-
criminative threshold to measure accuracy. In this work, for
ensemble average we divide the input data into 12 bins and
randomly sample the data such that the sample dataset is
a high-fidelity representation of the DMRI tract attributes.
For orientation detection tasks, we follow past practice and
measure the responses to spherical colormaps by randomly
sampling the input.

4 ENSEMBLE EXPERIMENT FOR BRAIN DMRI VI-
SUALIZATIONS

The objective here is to determine which ensemble col-
ormaps are more accurate for showing DMRI datasets. We
are particularly interested in the first task type, ensemble
identification (of mean and orientation) (Section 3.2).

4.1 Exploratory Study Method

Given our own experience, our collaborators’ subjective
choices, several pilot study results (see Appendix B) and
the vision science literature, we carry out an exploratory
study by comparing several scalar and spherical colormaps
in two tasks. One could use a hypothesis-driven confir-
matory analysis. However, due to the lack of visualization
literature in this ensemble visualization area, we resisted in
the beginning to pose hypotheses. Rather, the goal in this
exploratory study is to try to explore some of our initial
expectations and report many outcomes (efficacy, effective-
ness, and associations of data and result distributions) to
facilitate deeper insight into color representation and future
experiments. Some of our expectations include: (1) multiple-
hue colormaps could support ensemble average tasks; (2)
Higher spatial resolution could improve orientation accu-
racy for ensemble orientation detection; And (3) having
color may be better than no-color uniform representation
for identifying orientations.

4.2 Three-Dimensional Ensemble Tasks

4.2.1 Task 1: Ensemble Average (Discrimination task)

Figure 4a shows an example task in which participants were
asked to label the average FA values of the brain areas
sampled in a ROI. The participants indicate their answer for
each task by dragging the slider on the screen to show the
average color. The answers are evenly distributed along the
12 bins (see Section 5.3) so that participants are not biased.

4.2.2 Task 2: Ensemble Orientation (Detection task)

Figure 4b shows an example task in which participants
were asked to find the one box among three in which the
endpoints of the tracts marked by red spheres lay at one end
of the tracts. Participants were told that the marked tracts in
the same bundle followed the same orientation (anterior-
posterior, dorsal-ventral, or left-right).
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(a) Task 1: Ensemble Average

(b) Task 2: Ensemble Orientation

Fig. 4: Two Ensemble Identification Tasks in the Empirical
Study. (a) What is the average value of the tracts? This
example uses the diverging colormap. (b) Do the tubes
originating from the red spheres end in box 1, 2 or 3? This
example uses a Boy’s surface colormap.

4.3 Choosing Ensemble Colormaps
Figures 2 and 3 and Table 1 summarize the colormap
choices and their characteristics. The following two subsec-
tions give a detailed explanation of these choices. Readers
not interested in these details can go directly to Section 4.4.

4.3.1 Six Univariate Colormaps for Ensemble Average
Six univariate colormaps shown in Figure 2 are measured
in task 1 (Ensemble Average). These colormaps are chosen
due to their popularity, relevance to our collaborators’ rec-
ommendations. All color interpolation is performed using
linear interpolation in this L*A*B* color space. The dark part
is cut out to keep the arc-lengths among colormaps as close
as possible and to consider low sensitivity of human vision
to low luminance values. Appendix A shows the colormap
profile in the L*A*B* color space.

The grayscale colormap uses a single-hue and monotonic
luminance with arc-length 75.

The blackbody colormap is a double-hue and monotonic
luminance map inspired by the wavelengths of light from
blackbody radiation. We use arc-length 122 instead of 145 to
match that of the diverging map. We removed the dark end
due to the low sensitivity to low luminance values.

The diverging colormap contains two hues and in-
creases/decreases luminance monotonically with arc-length
122. The closer the color is to the center of the colormap, the
higher the luminance.

The isoluminant-rainbow colormap displays multihue rain-
bow with arc-length 160. It is isoluminant for the standard
viewer, with the luminance level of 50.

The extended blackbody colormap is a monotonic luminance
colormap and adds blue and purple hues to the blackbody
map described above with arc-length 200.

The coolwarm colormap has monotonically increased and
decreased luminance. This colormap has the same lumi-
nance range and variations along the luminance direction
as the diverging map; it adds yellow and cyan hues to
the diverging map because these two hues are common
transitions in coolwarm colormaps that use red and blue.

4.3.2 Four Spherical Colormaps for Ensemble Orientation
The four spherical colormaps shown in Figure 3 are used in
task 2 (ensemble tract tracing).

Uniform gray is used as a control condition.
Absolute RGB color-triples uses Pajevic’s approach [21]

in which the three different orientations (left-right, dorsal-
ventral, anterior-posterior) are represented as red (R), green
(G), and blue (B). Each tract uses a constant color indicating
its global orientation. This is a most popular spherical
colormap applied in brain science.

Eigenmap embedding implements the method of Brun et
al. [23]. It assigns colors to tracts based on the similarities
among tracts. The tracts become points in the embedded
low-dimensional space [68] and the similarity of tracts is
measured using the closeness of these points and a similar-
ity matrix. The 3D coordinates of the points are normalized
to fit into the displayable range of the L*A*B* color space
and the corresponding colors are used for the tracts.

The Boy’s surface embedding implements the method of
Demiralp et al. [22], a one-to-one mapping between an
orientation and a location in a color space based on a Boy’s
surface immersion in the color space. The embedding is
also angular uniform, i.e., the larger the difference in tract
orientations, the larger the perceptual difference in their
colors.

4.4 Diffusion MRI Datasets

For ensemble average tasks, the average FA values were
in the range [0.25, 0.85]. We evenly divided this range
into 12 bins and the step size was 0.05. We randomly
sampled within the four brain regions (here corpus callosum
(CC), cortical spinal tracts (CST), inferior frontal occipital
fasciculus (IFO), and inferior longitudinal occipitotemporal
fasciculus (ILF)) by randomly placing boxes in these regions.
We then took an equal number of samples in each bin from
these samples. Fig. 5 shows the variance of the data in these
12 bins. We see that the lower and higher mean FA would
have narrower spread (smaller variance) than those in the
middle; this is the unique domain-specific data attribute.

Because ensemble mean is affected by variance [33], one
way to conduct a study is to control the variance in each
bin and measure the color effectiveness in each bin. We did
not do this in order to retain a high-fidelity representation of
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Fig. 5: Domain-Specific Data Attribute: The spreads (vari-
ances) of all AverageFA data in the 12 bins in our random
samples are smaller in the lower bins (≤ 5) and become
most spread (with larger variances) when the bins ids in
bins [7, 9]. From bin 1 to bin 12, the average FAs are 1: [0.25,
0.3), 2: [0.3, 0.35), 3: [0.35, 0.4), ......, 12: [0.8, 0.85] respectively.

tractography features; otherwise, we would have to produce
artificial data to control the spread in each bin.

For orientation tasks, tractography data were computed
from source DMRI images captured from a normal human
brain at resolution 0.9375mm× 0.9375mm× 4.52mm. Data
are also sampled from four major bundles, CC, CST, IFO,
and ILF. All tracts are rendered using tubes.

4.5 Experimental Design

Within-participant design was used for both tasks: i.e., each
participant examined all colormaps. The independent vari-
able is colormap. The dependent variables are completion
time, accuracy, and subjective ratings. For task type 1 of
ensemble average with 6 colormaps, each participant per-
formed 12 instances (evenly distributed in the 12 bins) using
the 6 colormaps (72 trials). Six instances of data (two CST,
two CC, one ILF, and one IFO sample) and the six colormaps
form a Latin square. No data was repetitively used by the
same participant.

For task type 2 of the ensemble orientation using four
colormaps, each participant performed eight instances of
every colormap (32 trials). Again, datasets were not reused
by the same participant. We ordered the four bundles and
the four colormaps by a 4× 4 Latin square. The order of the
trials for each colormap was randomized.

Each participant performed 72 + 32 = 104 sub-tasks.

4.6 Participants, Apparatus, and Environment

A total of 24 participants (17 male and 7 female) took part
in the study: two medical professionals, seven computer
science students, and 15 students from other disciplines
(mechanical engineering, math, and global studies). Their
average age was 27.8 years with standard deviation 4.0.

The program runs on a Linux desktop with a 27” mon-
itor (BenQ GTG XL 2720Z, pixel resolution 1920 × 1080).
Gamma was adjusted daily to ensure uniform perceived
brightness: the gamma value used for the display was 2.2.

The lighting used fixed-pipeline OpenGL rendering with
per-vertex lighting and Gouraud shading. We used a tradi-
tional three-point lighting scheme. Key and fill lights were
placed in relation to a preset camera with 35mm focal
length and the key light is at the top left of the scene,

TABLE 2: Main Effects of Colormap on Accuracy and Task
Completion Time. Here Avg. stands for ensemble average
task, Ori. for ensemble orientation task, C for color, and P
for participant. The large effect sizes are in bold and the
medium ones in italic.

Avg. C on error F(5,1728) = 0.98, p=0.43 d=0.16
C on time F(5,1728) = 6.23, p<0.0001 d=0.31
P on error F(23,1728) = 2.77, p<0.0001 d=0.71
P on time F(23,1728) = 50.24, p<0.0001 d=3.72

Ori. C on accuracy χ2
(3,768)

=13.94, p=0.0030 V=0.13
C on time χ2

(3,768)
=0.67, p=0.57 d=0.13

P on accuracy χ2
(23,768)

=2.35, p=0.43 V=0.17
P on time χ2

(23,768)
=4.35, p<0.0001 d=1.56

the location assumed by most human observers. Lighting
placement and intensity were chosen to generate images
with contrast and lighting properties appropriate for the
data and human assumptions. For example, the key and
fill lights were elevated and slightly to the left and right of
the observer. All lights were white. The screen background
color was white.

4.7 Procedure
Participants were tested for normal vision and passed the
Ishihara Color Vision test. They received general informa-
tion about brain structure and about DMRI techniques and
their medical uses. The training session, which lasted about
15 minutes, ensured that the participants understood the
coloring and tasks.

Task completion time was recorded from the time when
the visualization was shown on the screen to the time when
the final answer button was clicked. Participants were told
to be as accurate and as fast as possible, and that accuracy
was more important than time. They were also told to rotate
the data to better interpret the structures. They had to finish
a task in order to go to the next one. No time limit was set
on each task. They could take a break at any time. After fin-
ishing all sub-tasks using each colormap, they selected from
a 7-point scale (1 (worst) to 7 (best)) on the computer screen
to rate the map they just used. Finally, participants were
interviewed for their comments. Participants took about an
hour on average to finish this study and received monetary
compensation. No fatigue was reported.

We conducted three pilot studies comparing perfor-
mance with a total of 50 participants (including three brain
scientists) to refine our experimental procedure. These pilot
study participants were not used in the formal study. We
recruited brain scientists to collect some domain-specific
comments related to brain sciences on the color encoding
methods. The main difference between expert and novice
groups, as observed in our previous studies, was that
experts took longer to complete task because they were
more interested in examining the data. Our pilot studies
revealed no significant difference in task completion time
and accuracy between medical school students and other
college students without medical backgrounds.

5 RESULTS

We collected 1728 and 768 data points for the ensemble
average and orientation tasks accordingly. To summarize, we
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(a) Colormap vs. Absolute Error (=
|participant′s answer − ground truth|)

(b) Colormap vs. Absolute Task Completion
Time

Fig. 6: Ensemble Average Tasks: Mean Absolute Error and
Task Completion Time. The gray bars are the means and
blue the 95% confidence intervals. (A). Absolute error
= |participant′s answer − ground truth|. (B). Colormaps
labeled with the same letter belong to the same group in
the post-hoc analysis.

found that the rainbow colormap was as accurate as other
colormaps for ensemble average. The extended-blackbody,
blackbody, coolwarm are the most accurate colormaps. Hav-
ing some colors in the spherical colormap choices is always
better than not.

5.1 Overview of Analysis Approaches and Summary
Statistics

Results were analyzed by tasks. Table 2 shows the statistical
analysis of accuracy and task completion time measured
using the following statistical approaches. For both tasks,
we examine the main effect of colormap on error and task
completion time using the SAS GLM procedure. A post-hoc
analysis using the Tukey Studentized Range test (HSD) is
performed when we observe a significant main effect.

Task 1 (average tasks) performance is analyzed us-
ing several methods. Task completion time is converted
to log-based to obtain a close-to-normal distribution. We
compute error by the distance from the participants’ an-
swers to the ground truth and use the formula error =
log2 |participant′s answer − ground truth| + 8, following
Cleveland and McGill [37]. We explore the accuracy of these
ensemble colormaps using two additional measurements.

• Accuracy. Accuracy is percentage of correct an-
swers. We threshold the error to measure whether

Fig. 7: Ensemble Average Tasks: Colormap Accuracy. An
answer is considered correct if the absolute error (=
|participant′s answer − ground truth|) is less than the er-
ror threshold (the X axis).

an answer is correct, where the threshold δ
∈ [0.01-0.1], with step size 0.01 and error is
|participant′s answer − ground truth|. An answer
is considered correct when error falls in δ.

• Directional bias. We compute whether or not the
colormaps bias observers towards values larger or
smaller than ground truth.

The accuracy data in orientation tasks are binary and are
analyzed using logistic regression and reported using the
p value from the Wald χ2 test. When the p value is less
than 0.05, variable levels with 95% confidence interval of
pairwise difference of odds ratios not overlapping are con-
sidered significantly different. The χ2 test with the “freq”
procedure is used to examine whether or not there is a
significant correlation between the main effect (the colormap
or participant) and accuracy.

We measure effect sizes using Cohen’s d for time and
task type I error and Cramer’s V for correctness to un-
derstand the practical significance [69]. We used Cohen’s
benchmarks for “small”(0.07-0.21), “medium” (0.21-0.35),
and “large” (> 0.35) effects.

5.2 Average Tasks: Summary Statistics

For ensemble average tasks, colormap was not a significant
main effect on error (Table 2 and Fig. 6a). A general trend
was that extended blackbody had the least error and gray
had the most. Two-way interaction between participant and
colormap on error was not significant.

Colormap and participant were significant main effects
on time (Table 2 and Figure 6b). The post-hoc analysis sug-
gests three Tukey groups: (gray), (blackbody, isoluminant-
rainbow, extended-blackbody, and coolwarm), and (black-
body, diverging, extended-blackbody, and coolwarm). The
extended-blackbody and coolwarm maps led to the longest
task completion time and the gray, though efficient, had the
highest error. Two-way interaction between participants and
colormaps on time was not significant.



1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2019.2898438, IEEE
Transactions on Visualization and Computer Graphics

SUBMITTED TO TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, DECEMBER 2017 9

Fig. 8: Directional Biases by Colormap. More participants
tend to overshoot (report larger than the ground truth
in green) when using isoluminant-rainbow. Using the di-
verging colormap, more participants underestimated the
ensemble average (in blue). Gray, extended-blackbody, and
coolwarm had the minimum directional biases.

Fig. 9: Directional Biases by Colormap and Bin. More than
50% larger-than-ground-truth answers appeared in all 12
bins for isoluminant-rainbow.

5.3 Average Tasks: Color Sensitivity and Directional
Bias

We computed the colormap sensitivity by measuring the
percentage of correct answers or accuracy (Fig. 7). We first
computed the mean absolute error. Fig. 7 showed that gray
had on average the lowest accuracy among all colormaps
(Fig. 6a). Gray-scale had similar accuracy to other colormaps
when the error threshold was as low as 0.01. A general trend
was that the slope of improvement was least for gray-scale
to improve colormap accuracy (Fig. 7).

Directional bias measures if observers consistently chose
larger or smaller values than the ground truth using a
colormap. We found that more answers using isoluminant-
rainbow were biased towards higher values, while the
diverging color slightly towards lower answers (Fig. 8).
All other colormaps of blackbody, extended-blackbody, and
coolwarm showed about even distributions between higher
and lower participants’ answers.

We further analyzed the bias distribution in the 12 bins
(Fig. 9). We found that more than 50% of the answers
overshoot (selected larger than ground-truth) when using
isoluminant-rainbow in all bins. Correlations between the
data variance and colormap absolute error showed that
these two variables were statistically significantly correlated
for all but isoluminant-rainbow. This result may indicate
that the ensemble behaviors of isoluminant-rainbow might
not be as predicable, despite its accuracy for ensemble
average was comparable to other colormaps.

(a) Absolute Accuracy

(b) Absolute Task Completion Time

Fig. 10: Ensemble Orientation Tasks: Mean Time and Accu-
racy. The color schemes connected by the orange line are
significantly different.

5.4 Orientation Tasks: Summary Statistics

The second row in Table 2 shows the statistical results.
Fig. 10a shows mean accuracy (percentage correct answers)
and time and 95% confidence intervals from the mean.
Colormap had a significant main effect on accuracy but not
on task completion time. The Boy’s surface embedding and
the absolute embedding led to most accurate answers for
following tracts and were among the most efficient (Figs. 10a
and 10b). It was also noticeable that Boy’s surface and
absolute improved accuracy by 15% and 14% respectively
compared to the gray.

5.5 Subjective Ratings and Comments

Participants’ ratings and comments provide useful insights
into how the usefulness of the colormaps was perceived.
Participants’ subjective rating of the usefulness of these
colormaps, from high to low are: average tasks: coolwarm
(5), extended-blackbody (4.96), blackbody (4.96), diverging
(4.75), isoluminant-rainbow (4.4), and grayscale (3.7); Ori-
entation tasks: absolute (5.3), eigenmaps (5.3), Boy’s sur-
face (4.8), and uniform-gray (2). Grayscale in task 1 and
uniform-gray in task 2 were rated least useful.

The interviews revealed that those who liked the absolute
method found it the simplest to understand and easiest for
following the tracts because of its symmetry. In addition,
the less chaotic color changes helped them recognize the
orientations better. Those who disliked absolute thought
that tracts looked too similar to differentiate, showing the
tradeoffs between colormap similarity and resolution. Most
participants were relatively neutral on the Boy’s surface,
considering it similar to the eigenmaps method in terms of
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Fig. 11: Ranking of Colormaps for Ensemble Average and
Orientation Tasks. Colormaps in the same gray boxes are in
no particular order in our recommendations.

hue uses (spatial resolution). Participants commented that
“it (Boy’s surface) was useful to have some different hues, but too
many hues made the visualization less intuitive”, while others
stated that the “right amount of hues of eigenmaps provided
enough discriminations between values without overloading one’s
perception capability.”

6 DISCUSSION

This section discusses our results. Fig. 11 shows our recom-
mendations for choosing colormaps for the two ensemble
tasks studied here.

6.1 isoluminant-rainbow Does Not Decrease the Mean
Accuracy, but Introduces Biases

The most interesting result may be that the isoluminant-
rainbow does not introduce greater error on average tasks
(Fig. 7). This efficiency result may agree with those in vision
science because humans can average hues [57]. However,
none of the vision science studies to our knowledge drills
down to the empirical study results to examine whether
or not participants would be biased towards higher or
lower than ground truth. The fact that isoluminant-rainbow
introduces higher overshooting needs to be further studied,
perhaps by explicitly controlling the variance in data for
us to learn the colormap behaviors. Rainbow colors are
known to be poor for univariate encoding due to the lack of
uniformity and ordering and because they produce artificial
boundaries in data. We could conclude from our study that
human visual processing of a chunk of colors for quantita-
tive discrimination tasks differs from that of single colors.

We do not recommend this isoluminant-rainbow map
for ensemble average tasks. Instead, we propose to further
explore how and why multihue works for limited capacity
ensemble processing. This is mainly because the biases in
isoluminant-rainbow are consistently independent of the
variances in data (Figs. 5 and 9). The rainbow map certainly
uses a set of semantically meaningful colors that would ease
human understanding and our brain scientist collaborators

particularly love rainbows; however, rainbow maps may
still violate Trumbo’s color design heuristics that “the basic
information should be displayed in a clear and logical fashion
so that it may be decoded with precision and without continual
references to the key (labeled scheme)” and “if small neighboring
regions produce illusion of color over larger map areas, these
illusions should not give misleading information” [47].

6.2 Multihue Maps Improve Ensemble Accuracy
We ran a statistical analysis to examine whether or not
hue or luminance affected error or task completion time.
We found that hue had a significant main effect on time
(F (2, 1728) = 4.99, p = 0.0069). The post-hoc analysis
showed that multihue colormaps led to statistically signif-
icantly longer task completion time than single-hue (gray)
colormaps.

The multihue extended-blackbody and the coolwarm
colormaps had the lowest absolute error. This accuracy
result of extended-blackbody agreed with 2D study results,
though we did not observe significant differences. There
may be at least two reasons for the benefits. First, one
might think these two colormaps had the largest arc-length
and thus yielded slightly better results than other maps.
The other, perhaps primary reason for the benefits is that
the multihue lets participants quickly determine the target-
region first before formulating their answers. This conjecture
may be supported by visual inspection of three cases of
different FA distributions (Fig. 12): mid-average FA with
large variance, high-average FA with mid-variance, and
low-average with small variance. We may observe in all
three cases that the many-hue colormaps in the last three
columns help quickly locate the target regions on the col-
ormap into which the answers fall.

6.3 That Many Colormaps Work Well Also Shows the
Power of Human Visual Systems in Judging Ensemble
Averages
We did not observe differences in accuracy among col-
ormaps when measuring the distance of participants’ an-
swers from the ground truth. This result suggests the power
of visual ensembles for quantitative estimates.

Since the application domain is in neuroscience, it would
be reasonable to assume accuracy and error reduction are
more important than time. Balancing all considerations of
error, correctness, and bias in these colormaps, we rank
them in the order shown in Fig. 11, where extended-
blackbody, coolwarm, and blackbody seem to work well.
Isoluminant-rainbow and diverging are worth further in-
vestigations. Grayscale is not recommended because of their
higher absolute error. Though we cannot say whether the
poor performance of grayscale was caused by its simultane-
ous contrast or its sole luminance channel, the result indeed
is in agreement with the literature on 2D colorization.

6.4 Local Contrast and Resolution Together Might Be a
Decisive Property for Ensemble Orientation
Our results present an uncanny valley effect where the
highest and lowest resolution maps (Boy’s surface and
absolute) are better than the mid-resolution (eigenmaps).
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Fig. 12: Example Dataset Distribution and Their Colormaps: top: high-variance; middle: higher mean FA and narrow
long-tail; bottom: low mean FA and narrow variance.

Fig. 13: An example from the empirical study in which all participants got correct answers using absolute and Boy’s surface
but only half of the participants got correct answers with eigenmaps. Red dots are sources. The correct answer is Box 2.
Eigenmaps tend to show similar colors while the other two methods produce visually distinguishable ones. All three boxes
looked pinkish using eigenmaps and are more visually distinguishable when using absolute and Boy’s surface.

All colormaps with colors improve accuracy compared to
the uniform-gray.

Overall, our results did not suggest that resolution con-
tributes to higher accuracy in 3D space, since both Boy’s
surface and absolute reduced errors. The eigenmaps had rea-
sonable resolution, as does Boy’s surface, but lowered accu-
racy. We inspected specific examples to understand when
Boy’s surface and absolute succeeded and eigenmaps failed.
Fig. 13 shows one of these examples for which participants
achieved 100% accuracy using Boy’s surface and absolute but
50% when using eigenmaps. We see that, while eigenmaps
provided regional coloring, the adjacent regions had rela-
tively lower contrast than other two approaches. This obser-
vation may suggest that the combination of local contrast
and spatial resolution might be a decisive property.

Absolute colormap was commonly used in brain science
and worked well in our study. Boy’s surface generates colors

that seem to strike the right balance in the spatial resolution
and contrast for this spatial structure determination. Finally,
the data sample varies so no dataset is seen twice by the
same participants. For the eigenmaps, this setting means
that the colors for the same tracts in different datasets would
change, while the same tube would always be given the
same color with the other maps.

We therefore recommend absolute as a good default; Boy’s
surface shows similar performance to absolute for coloring
DMRI ensemble, as shown in Fig 11.

6.5 Reuse of Our Results to Ensemble Representations

We sought to further our understanding of the color ensem-
bles to generate concrete implications for visual analysis of
brain DMRI tractography datasets. In general, both tasks
suggest that high-contrast localized colormaps may have
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helped both ensemble average and orientation tasks. Reuse
of our results in other domains would have to take into ac-
count domain specificities of data, task (e.g., [70]), and user.
Several areas could benefit from our work, such as weather
forecasting [29], hurricane track prediction [71], and motion
or movement trajectories [72] [73], because direct trajectory
depiction has been informative. The most suitable reuse
would be when the datasets have relatively low variance,
so that colormaps can be localized to a smaller region scalar
data visualizations. Similarly, the spherical colormap for
line field visualizations might also be domain-dependent.
In our case, the tracts are following three major orienta-
tions. We also did not consider other tract shapes, when
appropriate distance measures were needed for maximal
performance.

6.6 Participants’ Experiences

Participants in this study have different backgrounds, and
an ideal condition might be to use only brain scientists,
clinicians, or medical school students. One major reason for
the background differences was that we had access to only
a few brain scientists. We used as many as possible in the
study because we wanted to collect their comments related
to the brain science domain.

Also, we followed Munzner’s approach [58] of abstract-
ing tasks into a level suitable for empirical study. In other
words, these tasks could be performed by a trained partici-
pant. This may explain why we did not observe differences
in task completion time and accuracy between students with
and without medical backgrounds. Several user studies in
flow visualization have used non-domain experts, suggest-
ing that non-domain-expert is a viable option in empirical
studies [74].

6.7 Using Ensemble for Visualization Design

It is intuitive to think that hue, due to its categorical effect
(e.g. yellow or red), would interfere with the ensemble color-
ing, thus making representing a multihue average difficult.
However, this turns out not to be the case. In vision science,
ensemble is believed to be used by the human visual system
to address our severely limited visual working memory.
We can quickly derive patterns that guide our attention
towards the most useful information. Scientific data is of-
ten highly structured and may carry redundant structures.
When there is redundancy, it is possible to sample and
filter to produce optimal views. For example, a handful of
past visualization work has shown that implicit or explicit
representation of sets of objects as groups or ensembles can
guide observers’ attention to process only the most relevant
incoming information (e.g., explicit depiction of a group
of objects in clusters [75], grouping interfaces to augment
exploration workflows [76] [77] or using spatial patterns to
form texture pattern to guide observers’ behavior [40]). We
believe there will be an opportunity to create a compressed
and efficient ensemble representation of information, such
as ensemble overviews, to guide visual attention to the
areas more relevant to the targets. Our design guidelines can
perhaps be used in devising algorithmic colormaps, similar
to that of [78].

6.8 Limitations and Future Work

Our study is only a first step towards understanding ensem-
ble tasks in visualizations. Although this study can suggest
what colormap to choose for ensemble representation, we
may need to build computational models or isolate factors
(e.g., hue and luminance for ensemble average and reso-
lution and uniqueness for ensemble orientation) to explain
how these colormaps are used by our visual system. Effec-
tiveness of these coloring approaches needs to be studied
further for other discrimination and detection tasks.

Our study would suggest further work. Since multihue
colormaps in general improved ensemble average accuracy,
one could run studies to systematically control the mean and
variance of the ensemble datasets to model the ensemble
performance. Viewers make a two-alternative forced-choice
judgment about which visualization method contains the
larger average value. Sensitivities are measured based on
the differences between the values. A psychometric function
fitted to the data reveals sensitivity to the discriminative
threshold to measure accuracy. Using this method, we could
answer questions about why and when multihue average will
be effective and how variance influences the effectiveness
and efficiency.

7 CONCLUSION

This study is the first (to our knowledge) to define and
compare color ensembles for 3D DMRI tractography visu-
alizations. Results from the study provide the following
insights for choosing 3D tube ensemble coloring.

• The most interesting result was that the isoluminant-
rainbow performed reasonably well, though it did
lead to more reporting bias towards higher-than-
ground-truth values than other colormaps.

• Extended-blackbody, coolwarm, and blackbody are
reasonably accurate for ensemble average in 3D. Our
analysis showed that hue had much larger influence
on error than luminance.

• Our study on the ensemble orientation discrimina-
tion supports the proposition that having some col-
ors is better than no color at all.

• Colormaps with better local contrast and resolution
together (e.g., Boy’s surface and absolute) are most
desirable for orientation discrimination tasks such as
ensemble tract tracing.

APPENDIX A
THE UNIVARIATE COLORMAPS IN THE L*A*B* COL-
ORSPACE

Fig. 14 shows the scalar colormaps in the L*A*B* color space.
The curve in each figure shows the trajectory of colormaps
and their three projections in the color space. All color
interpolation is performed using linear interpolation in this
space.

We used the Rogowitz-Kalvin [79] and Kindlmann-
Reinhard-Creem approaches [42] to help visually inspect
colormaps to test their luminance profile. This method uti-
lizes our sensitivity to luminance variations in human faces
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Gray Blackbody Divering

Isoluminant-rainbow E-blackbody Coolwarm

Fig. 14: Colormap Profile for Showing Scalars in Task 1 (AverageFA tasks) in the L*A*B* Color Space. L-planes from bottom
to top are L=5, 20, 40, 60, 80, and 95.

Fig. 15: Using Faces to Examine the Luminance Profile of Colormaps (from left to right): original image, gray, blackbody,
diverging, isoluminant-rainbow, extended-blackbody, and coolwarm colormaps.

to select colormaps. Fig. 15 shows samples of faces gener-
ated by these six colormaps with our online tool. The faces
with isoluminant-rainbow and diverging colormaps are less
recognizable than all others. The rainbow and coolwarm
colormaps help distinguish different values: one can clearly
see red (high) values around the nose and under the eyes.

APPENDIX B
PILOT STUDIES

A set of preparatory pilot studies was designed to test
the performance characteristics and capabilities of study
designs, measures, and procedures under consideration for
use in this and subsequent studies. These pilot studies
help identify relevant factors that could create barriers to
subsequent study completion. Each study involves 12-24
participants depending on the experimental setting.

The first study compared multiple visual marks of color,
size, and texture to measure what visual variables would
be suitable for ensemble representations, as estimated by
their potential effectiveness relative to 2D visualization. We
observed the benefits of coloring over size and texture in
ensemble accuracy in that study. The second study com-
pared several colormaps generated using the algorithmic

approach in Wijffelaars et al. [78]. A distinct observation
in both studies was that multihue colormaps did not down-
grade ensemble average accuracy. These results differ from
our current knowledge of multihue rainbow colormap for
continuous quantitative data visualization. The third pilot
study used the same conditions as those reported here so
that we could refine the procedure.

Our pilot study on ensemble orientation studied col-
ormaps of absolute, hue-ball, similarity, and Boy’s surfaces.
In general, we observed that the similarity method did not
improve task performance, and we subsequently removed
this method from our study. Hue-ball, absolute, and the
Boy’s surface achieved similar accuracy and were among the
best. After considering these design choices in conjunction
with vision science literature, we decided to use eigenmaps,
gray, absolute, and Boy’s surface in our study to have a
meaningful range of variation of color attributes in the
current study.

APPENDIX C
COLORING TOOL WEBSITE

Our own tool (Fig. 16) is hosted at
http://wchiou1.github.io/colorTool/(Fig. 16). During
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Fig. 16: Exploratory Color Comparison Tool.

the evaluation process, we found that using a coloring
tool to quickly provide side-by-side comparison made
our discussion with the brain scientists very effective
and efficient. The direct manipulation interface lets users
directly drag and drop plain-text colormaps. It can display
both 2D image and 3D geometry examples.
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