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Abstract
We propose a novel approach for processing diffusion MRI tractography datasets using the sparse closest point transform
(SCPT). Tractography enables the 3D geometry of white matter pathways to be reconstructed; however, algorithms for
processing them are often highly customized, and thus, do not leverage the existing wealth of machine learning (ML)
algorithms. We investigated a vector-space tractography representation that aims to bridge this gap by using the SCPT,
which consists of two steps: first, extracting sparse and representative landmarks from a tractography dataset, and second
transforming curves relative to these landmarks with a closest point transform. We explore its use in three typical tasks:
fiber bundle clustering, simplification, and selection across a population. The clustering algorithm groups fibers from
single whole-brain datasets using a non-parametric k-means clustering algorithm, with performance compared with three
alternative methods and across four datasets. The simplification algorithm removes redundant curves to improve interactive
visualization, with performance gauged relative to random subsampling. The selection algorithm extracts bundles across
a population using a one-class Gaussian classifier derived from an atlas prototype, with performance gauged by scan-
rescan reliability and sensitivity to normal aging, as compared to manual mask-based selection. Our results demonstrate
how the SCPT enables the novel application of existing vector-space ML algorithms to create effective and efficient tools
for tractography processing. Our experimental data is available online, and our software implementation is available in the
Quantitative Imaging Toolkit.

Keywords Diffusion MRI tractography · Clustering · Simplification · Segmentation · Fiber bundles · Sparse closest point
transform · Neuroimaging

Introduction

Diffusion MR imaging provides a unique in-vivo probe of
tissue microstructure through the sensing of water molecule
diffusion patterns (Pierpaoli and Basser 1996). This tech-
nique is particularly valuable for characterizing the local
features of white matter and for reconstructing the large
scale structure of fiber bundles through tractography (Basser
and Pierpaoli 1996). The size and complexity of tractogra-
phy datasets can pose a challenge to the practical application
of tractography in neuroimaging studies, as delineating
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fiber bundle pathways from whole brain tractography often
involves expert anatomical knowledge and time consuming
manual interaction (O’Donnell et al. 2013) (Lenglet et al.
2009). Computational processing of tractography datasets
can both reduce the time invested by the human analyst and
provide highly reliable measurements in large population
studies (O’Donnell and Schultz 2015).

Tractography typically produces geometric models of
white matter pathways, or tractograms, which are a
collection of space curves that are each represented by a
sequence of 3D coordinates sampled along the route taken
through the brain. When developing algorithms to process
tractograms, two main complications arise. First, each curve
may have an arbitrary number and distribution of sampled
points along its length, e.g. doubling the sampling density
would give approximately the same pathway. Second, the
start-to-end ordering is arbitrary and may be reversed
without changing the path taken (because the diffusion
process underlying the tractogram itself has no preferred
forward-backward direction). Researchers have worked to
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address these issues by using either distance-based or
feature-based approaches to tractogram processing, which
each have their own strengths and weaknesses.

Distance-based approaches process tractogram curves
based on inter-curve proximity. A number of inter-
curve distances have been proposed, including Hausdorff
measures (O’Donnell et al. 2013), distance-based integrals
(Zhang et al. 2008), endpoint distances, and others. Pairwise
curve distances can then be used in any of number a
clustering algorithms, such as spectral clustering (Brun
et al. 2004) (O’Donnell and Westin 2007), hierarchical
clustering (Zhang et al. 2008), or Dominant Sets (Dodero
et al. 2015). These approaches can tease apart subtle
distinctions between fibers (Moberts et al. 2005); however,
the computational cost of total pairwise comparison of
curves is prohibitively expensive for full datasets. This is
usually mitigated by sub-sampling the full dataset to a
feasible size, e.g. from a million down to less than 20,000.

In contrast, feature-based approaches map each curve to
a summary coordinate representation to be more directly
compared. The simplest approach is to measure connectivity
between regions of interest (gray-matter areas or manually
drawn volumetric masks) to select curves (Zhang et al.
2010) (Yendiki et al. 2011) (Wang et al. 2011). More
sophisticated approaches have used implicit volumetric
representations of curves, for example with distance fields
(Maddah et al. 2008), spatial-angular histograms (Wang
et al. 2011), and blurred indicator function (Wassermann
et al. 2010); however, these can produce high-dimensional
representations that can exhaust system memory when used
for whole brain tractograms. Other approaches have aimed
to derive arclength parameterizations of fiber curves with
a fixed number of points (Clayden et al. 2007) (Corouge
et al. 2006) (Gerig et al. 2004) (Garyfallidis et al. 2012). The
bundles can be analyzed with respect to these points, but
such algorithms require repeated flipping of the start-to-end
orientation of each curve to reach some optimal consensus.

In either case, processing tractograms using distance- or
a feature-based representations leads to limited options for
segmentation and clustering. This motivated us to explore
a representation that can fit more easily into the wealth
of machine learning (ML) algorithms that already exist, as
this could greatly simplify tractography pipelines. To fit
this bill, we devised a novel feature-based representation
that puts each curve into a vector-space, that is, a fixed-
dimension coordinate system, which can plug directly into
existing ML algorithms. We designed this approach to be
sufficiently low-dimensional that entire tractograms can be
stored, while at the same time retaining relevant anatomical
information. The general idea of our approach is to use a
set of anatomical landmarks to represent each curve, where
the curve is summarized by the concatenated coordinates of
points on the curve that are closest to each of the landmarks.

For example, if there were 100 landmarks, each curve would
be represented by a 300 dimensional vector, consisting of
the 100 points on the original curve that are closest to the
landmarks. The landmarks are then defined in an atlas and
deformed to an individual, but for some tasks, it is sufficient
to define them on a subject-specific basis, as described later.

The primary goal of this paper is to investigate the gen-
eral usefulness of this approach and to determine the extent
that existing ML algorithms can be applied using it. We
explore this through experiments involving three common
tractography processing tasks: fiber bundle clustering, bun-
dle simplification, and population-based bundle selection.
The proposed fiber bundle clustering algorithm is suffi-
ciently time efficient for interactive use and includes a
mechanism to select the number of fiber bundles from the
data. The proposed simplification algorithm can reduce the
memory usage and improve performance of 3D render-
ing, while preserving the geometric structure of the full
resolution dataset. The proposed population-based analy-
sis builds a one-class classifier for each bundle, which can
be used to select bundles from whole brain tractography
without parameter tuning or manual intervention. We also
perform evaluation experiments to gauge performance with
in vivo human brain data and compare with other existing
methods.

Methods

We now describe our proposed approach in detail and
how it can be used in conjuection with several existing
ML algorithms to solve three basic tractography processing
tasks. These components are illustrated in Figs. 1 and 2.
First, we will describe our method for mapping tractogram
curves to a vector space representation using a closest point
transform. Next, we will describe how bundle clustering
and simplification can then be performed in single subjects
with the DP-means algorithm. Finally, we will describe
a population-based analysis for segmenting specific fiber
bundles across multiple subjects with a one-class classifier
and deformable volumetric registration.

In the following analysis, we make a simplifying
assumption that a tractogram consisting of 3D curves
has already been extracted, for example by streamline
integration tractography (Zhang et al. 2003). We will
then assume the curves are represented by polylines, i.e.
sequences of points and the line segments connecting
subsequent points. We will take the dataset to have N

curves, where the i-th fiber has Ni points and each curve
is denoted by Ci ⊂ R3 for i ∈ [1, N]. However, we make
no assumption about the spatial resolution or uniformity
of the points sampled along each curve, or the start-to-end
orientation.
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Fig. 1 Illustration of the major components presented in the paper. The
left panel A shows the landmark extraction and sparse closest point
transform steps, which produce a vector for each curve. The right pan-
els show how several ML algorithms that can use this representation
in several tractography processing tasks. The top right panel B shows
an application of this to fiber bundle clustering, where whole brain

tractography is decomposed into bundles using a variant of the k-
means algorithms. The middle right panel C shows an bundle sim-
plification, where redundant curves are removed to improve render
speed and reduce memory usage. The bottom right panel D shows
population-based analysis, in which a one-class-classifier is used to
segment the bundle in each case

Tractogram Curve Representation

The proposed vector-space mapping of tractogram curve
data uses the sparse closest point transform, which is a two
step procedure described as follows.

Landmark Extraction. In the first step, a set of represen-
tative landmark positions is extracted algorithmically from
the dataset. The process is illustrated in an example dataset
in Figs. 1A and 2A. When peforming group analysis, e.g.
selection of a specific bundle across a population, these

aa b

Fig. 2 Detailed illustration of the landmark extraction and closest
point transform steps with digital phantom data. Panel A shows land-
mark extraction, including steps for vertex simplification (using the
RDP algorithm) and clustering (using the DP-means algorithm). Panel

B illustrates a simple case of the closest point transform. In this par-
ticular case, a curve C is transformed using four landmarks wi , which
results in four closest points qi that are then contatenated to produce a
single 12-dimensional vector representing the curve
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landmarks should be defined in an atlas brain and then
deformed to each subject; otherwise, the landmarks may
be generated on subject-specific basis, avoiding the need
for registration. Either way, the number of landmarks deter-
mines the coverage of the bundle representation, but fewer
landmarks can reduce memory and compute time; therefore,
we aim to select a small but representative set of landmarks
to balance these two factors.

To extract an optimal set of landmarks, we first sub-
sample the curves through random selection to obtain a
small number of fibers, e.g. less than 5,000 (note: the
full dataset is still retained for later analysis). These sub-
sampled curves are then geometrically simplified using the
Ramer-Douglas-Peucker (RDP) algorithm (Saalfeld 1999)
to reduce the complexity of the curve vertices. The RDP
procedure works by removing redundant points from the
polyline while keeping the maximum simplification error
below a given threshold, e.g. 2 mm. The vertices of the
remaining simplified fibers are then taken together and
further reduced by clustering. This clustering can include
a specific number of points M by using the k-means
algorithm, or alternatively determine the number of points
M based on a spatial threshold by using the DP-means
algorithm, which is described in detail later in the paper. In
practice, we use the DP-means approach with a threshold
of λ = 5.0. This produces a collection of landmarks that
tend to be placed at salient features, such as points of high
curvature and termination. We will denote the j -th landmark
by wj ∈ R3 for j ∈ [1, M].

Sparse Closest Point Transform. In the next step, a vector-
space representation of the tractogram curve dataset is
produced by applying the sparse closest point transform rel-
ative to the extracted landmarks. We refer to this approach
as “sparse” to distinguish it from related approaches that
densely sample closest points on a pixel or volumetric
grid (Mauch 2000). The goal of using sparse landmarks
is not only to reduce the dimensionality of the resulting
representation but also to allow landmarks to be placed at
salient points of the dataset to be emphasized, which may
not otherwise be well aligned with a dense volumetric grid.
The process is illustrated in Figs. 1A and 2B.

The closest point transform represents each tractogram
curve by the positions along its length that are nearest
to each of M reference landmarks. Given a curve C, the
transformed curve is given by Q = (q1, ..., qM) ∈ R3M ,
with the j -th closest point qj given by:

qj = argmin
p∈C

‖p − wj‖2 (1)

Note that with the polyline representation, this minimiza-
tion can be performed not just over vertices but also along

the connecting segments. This allows the algorithm to be
applied to irregularly sampled curve data, such as those pro-
duced by the RDP algorithm. This can potentially reduce
time and memory requirements compared to the uniform
sampling typically required by other approaches.

Finally, the M closest closest points qj are concatenated
to produce a 3M dimensional vector for each curve, which
is suitable to be used in vector-space ML algorithms. In
the following sections, we describe how such an approach
enables the novel application of existing ML algorithms
to tractography processing tasks including fiber bundle
clustering, simplification, and population-based analysis.

Fiber Bundle Clustering and Simplification

Based on this representation, fiber bundle clustering and
simplification can be readily performed with an ML
algorithm known as DP-means, which was introduced by
Kulis et al. (Kulis and Jordan 2012) as a variant of the k-
means algorithm. These steps are illustrated in Fig. 1B and
C. As with k-means clustering, the goal here is to group
vectors according to spatial proximity; however, the DP-
means variant has the benefit of learning the number of
clusters from the dataset. In comparison to other clustering
algorithms, the k-means and DP-means algorithms are both
notable for their efficient performance, which allows them
to be applied to large datasets. This is a significant issue for
clustering whole brain tractography, as the typical dataset
size is far larger than is practical with O(n2) distance-
based clustering algorithms. Past approaches have used
subsampling to work around this problem, but the method
proposed here is possible without subsampling.

This DP-means clustering algorithm can be defined by
a minimization problem similar to the standard k-means
algorithm with an additional regularization term. Prior
work has shown this extension is theoretically related to
Dirichlet Process mixture modeling with Gibbs sampling,
through small-variance asymptotic analysis. This provides
the algorithm a mechanism to choose the number of clusters
in the dataset with the regularization term added to the
typical k-means objective. When applied to a tractography
dataset with the above fiber curve mapping, this process
decomposes the set of curves into K bundles, where the k-
th bundle is represented by a prototype Bk ∈ R3M , and
the optimal partitioning π is found by solving the following
minimization problem:

π = argmin
π

N∑

i

‖Qi − Bπ(i)‖2 + λ2MK (2)

where π(i) ∈ {1, ..., K} encodes the label for the i-th
curve. This objective can be optimized with an efficient
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algorithm that is described in detail in the referenced related
work (Kulis and Jordan 2012). Since this method estimates
the number of clusters, no user-defined value of K is
explicitly specified. Instead, a regularization parameter λ

is chosen, which can be interpreted as the largest average
distance allowed between each curve Qi and its associated
bundle Bπ(i). When used for extracting bundles from whole
brain tractography, a relatively large threshold can be used,
e.g. λ = 20 mm. When used for simplification, a smaller
threshold can be used, e.g. λ = 2 mm, and then each cluster
is inspected to select the curve closest to the cluster centroid.

Fiber Bundle Selection

Next, we focus on a way to select a fiber bundle from a novel
dataset based on an example bundle in a brain atlas. This
is an important task for population-based analysis, where
a brain structure is matched across a group. Our approach
requires an atlas bundle, which can be generated in any
way, e.g. by manual tractography seeding or by clustering
whole brain tractography in an population average dataset.
The process is illustrated in Fig. 1C. In our tests, we created
a tractography bundle atlas using tensor-based deformable
registration and selected several well known bundles from
among the clusters. The goal is then to match curves from
each subject to the bundles in the atlas. We accomplish this
using an ML approach known as one-class classification,
described as follows.

For a particular bundle, we build a statistical model based
on the transformed space representation of a collection of
fiber curves Q̂ = {Q̂1, ..., Q̂C} by a multivariate Gaussian
G with mean μ and covariance �. We fit the mean and the
covariance using maximum likelihood (ML):

μML = 1

C

C∑

i

Q̂i (3)

�ML = 1

C

C∑

i

(Q̂i − μ)(Q̂i − μ)T (4)

Maximum likelihood estimation of covariance matrices
can suffer from a number of problems, such as ill-posedness
and overfitting for small sample sizes, so we regularize the
model with a shrinkage estimator:

�Shrink = ωDiag(σ 2
0 ) + (1 − ω)�ML (5)

given a shrinkage coefficient ω and prior spatial vari-
ance σ 2

0 . The shrinkage estimator not only ensures � is
well-defined but also incorporates prior knowledge about
expected misregistration errors, e.g. typical performance of

the atlas registration process as measured by the distance of
misalignment. In practice, we used ω = 0.3 and σ 2

0 = 80
mm.

The fitted model G can then be used to segment a bundle
in a particular subject by first deforming the subject trac-
togram to the atlas, taking the sparse closest point transform
(relative to atlas space landmarks), and then finding the
subset of curves that are sufficiently close to the modeled
bundle. This last step is accomplished with a one-class
classifier (Moya and Hush 1996), and we use a special case
with a Gaussian distribution (Tarassenko et al. 1995). This
approach is useful for classification tasks when only posi-
tive examples are available or when out-of-class examples
are particularly complex (Tax 2001). To evaluate the classi-
fier, we define a bundle-to-fiber distance d(G, Q) with the
squared Mahalanobis distace (Barnett and Lewis 1994):

d2(G, Q) = (Q − μ)T �−1(Q − μ) (6)

This has the benefit of measuring the statistical distance
to known fibers in the bundle, as opposed to a spatial
distance, whose optimal threshold would instead depend
on the bundle size. By calculating the distance relative
to the bundle covariance �, the distance can also reflect
anisotropic spread along the bundle’s length, for example
due to fanning. This also provides a test statistic that can be
used to decide if a given fiber is included in the bundle, i.e.
if d2(G, Q) < τ for some threshold critical value τ . Given
that the Mahalanobis distance is Chi-squared distributed
as d2 ∼ χ2

3M−1, we can look up such a value τ where
p(d2(G, Q) < τ) = 0.99; using this threshold will retain
99% of fibers sampled from the distribution G. As long
as the same number of landmarks are used, this threshold
requires no tuning, and the same value can be used for all
subjects, as well as other bundles.

Experiments and Results

We evaluated the proposed approach using in vivo and
population-averaged human brain datasets in five exper-
iments that examine the following: first, the inter-curve
distance of our proposed representation; second, bundle
clustering; third, bundle simplification; fourth, reliability of
the automated bundle extraction; and fifth, an application to
age-related neurodegeneration. All statistical analysis were
implemented using R 3.1.1 (R Core Team 2015) with the
ggplot2 package for plotting (Wickham 2009).

Datasets

Data Acquisition. Imaging data included diffusion-weighed
MRI data acquired from healthy volunteers with a GE 1.5T
scanner with a voxel size of 2 mm3 and image size 128x128
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and 72 slices. For each volunteer, a total of 71 volumes
were acquired, with seven T2-weighted volumes (b-value =
0 s/mm2) and 64 diffusion-weighted volumes with distinct
gradient encoding directions (b-value = 1000 s/mm2). 80
volunteers were scanned with ages ranging between 25 and
65 years old and equal numbers in each sex; an additional
five volunteers were scanned with three repetitions each to
assess scan-rescan reliability (Cabeen et al. 2013).

Data Preprocessing. Diffusion-weighted MR image data
was preprocessed using FSL (Jenkinson et al. 2012) as
follows. First, the diffusion-weighted MR images were
corrected for motion and eddy current artifacts by affine
registration to the first T2-weighted volume using FSL
FLIRT with the mutual information cost function. The
gradient encoding directions were rotated to account for
the alignment (Leemans and Jones 2009), and non-brain
tissue was removed using FSL BET. A diffusion tensor atlas
was constructed from the 80 subjects. This was done by
first fitting single tensor models using FSL DTIFIT and
then constructing a population-specific atlas by deformable
tensor registration using DTI-TK (Zhang et al. 2007). The
3x5 scan-rescan volumes were registered to the atlas, and
the deformation fields were retained for each case.

Tractography. We generated tractography curves through
the standard deterministic streamline approach imple-
mented in the Quantitative Imaging Toolkit (QIT) (Cabeen
et al. 2018), in which fiber trajectories are considered a 3D
space curves whose tangent vector is equated with the fiber
orientation of the voxelwise diffusion models (Zhang et al.
2003). This process proceeds by evolving a solution to a
differential equation with some initial condition at a given
seed position. During tracking, we computed fiber orienta-
tions from the principal tensor direction, estimated from the
tricubicly interpolated diffusion-weighted image. We used
the following tracking parameters: an angle threshold of
45◦, step size of 1.0 mm, minimum fractional anisotropy
0.15, and 2 seeds per voxel. Whole brain tractography was
performed in both the population atlas and each individual
subject.

Experiment: Evaluating Inter-Curve distances

Design. This experiment evaluated how well several inter-
curve distances reflect the structure of manually selected
fiber bundles, comparing to the proposed fiber curve repre-
sentation described in “Tractogram Curve Representation”.
We manually selected eight bundles from the atlas tractog-
raphy dataset using a multiple region of interest approach
with two inclusion and one exclusion mask. This included
the anterior thalamic radiation, arcuate fasciculus, cingulum
bundle, corticospinal tract, inferior longitudinal fasciculus,

forceps minor, forceps major, and uncinate fasciculus. The
Dunn Index (DI) was used to measure the ability of a
given inter-curve distance to distinguish between bundles.
Given a distance measure d(x, y) and manual labels π , this
index measures the ratio of the minimum distance between
clusters to the largest distance within clusters:

DI = minπ(a)!=π(b) d(Ca, Cb)

maxπ(c)=π(d) d(Cc, Cd)
(7)

A higher score implies that clusters are well separated
relative to the spread within the clusters, suggesting the
given distance measure is useful for distinguishing the
given bundles. We applied this test to the Euclidean
distance in the feature space described in “Tractogram
Curve Representation”. For comparison, we also computed
the Dunn Index for numerous other inter-curve distances,
including the minimum endpoint distance, the Chamfer
distance, and the Hausdorff distance. We also symmetrized
the Chamfer and Hausdorff measures with the minimum,
maxmum, and mean of the left and right oriented distances.
We also included two variants on the closest point transform
approach in which the landmarks are either chosen at
random or placed on a volumetric grid. Each experiment
was repeated with 30 resampling iterations to obtain an
estimate of the expected Dunn Index and its uncertainty.

Results. We found the proposed vector-space Euclidean
distance using the sparse closest point transform to have the
highest Dunn Index of 0.95 (Fig. 3). However, performance
depended on the number of landmarks included, with
a critical number of landmarks being 15, afterwhich
performance increased little. We also found runtime costs to
increase linearly with the number of landmarks. Among the
other distance measures, we found the mean-symmetrized
Hausdorff distance performed best with a Dunn Index
of 0.8. In comparison to other approaches to landmark
selection, random landmarks performed worst, and gridded
landmarks performed second best.

Experiment: Evaluating Fiber Bundle Clustering

Design. This experiment examined the clustering algorithm
described in “Fiber Bundle Clustering and Simplification”
and tested its ability to recover labels from manually
delineated bundles. We used several test cases of varying
difficulty, that is, varying degrees of bundle separation and
overlap. We first manually delineated bundles similarly
to the previous experiment, which represent somewhat
idealized bundles without the heterogeneity of individual
subjects. We also made an additional “harder” set of bundles
with overlapping and continguous pathways, including
three segments of the body of the corpus callosum,
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Fig. 3 Results from the first experiment described in “Experiment:
Evaluating Inter-Curve distances”, showing the Dunn Index for several
inter-curve distance measures. A higher score indicates a closer
relationship between the distance measure and manual bundle labeling.
This shows that the Euclidean distance with the sparse closest point
transform performs well relative to other options, although we found
performance was dependent on the number of landmarks (not shown).
In this dataset, the performance leveled out at 15 landmarks; however,
we found that more complex datasets require more landmarks to see
similar convergence. We also found runtime costs were also linearly
related to the number of landmarks (not shown)

fornix, superior thalamic radiation, and posterior thalamic
radiation. We further created a pair of easy and hard bundles
for an individual subject, which includes more anatomical
detail than the atlas. Together, this resulted in four test cases,
which we refer to as easy atlas, hard atlas, easy subject, and
hard subject.

We tested the proposed clustering algorithm by remov-
ing the bundle labels from each case, applying the clustering
algorithm, and measuring agreement between the segmenta-
tion results and the original bundles labels with the Adjusted
Rand Index (ARI) (Hubert and Arabie 1985). The Rand
Index measures similarity between clustering labels, as rep-
resented by the proportion of label pairs that either agree or
disagree among two datasets. The ARI gives a high score
to labels that agree and includes an “adjustment” to give an
expected score of zero to uniformly random labels. This was
repeated with 30 resampling to obtain a the mean ARI and
its uncertainty. We also ran this experiment over a range of
λ threshold values, and performed similar experiments with
spectral (O’Donnell and Westin 2007), hierarchical (Zhang
et al. 2008), and quickbundles (Garyfallidis et al. 2012)
clustering for comparison. We used the mean-symmetrized
Hausdorff distance with spectral and hierarchical clustering,
as it was the best performing in the previous experiment.

Results. We found that the best performing method
depended on the dataset (Fig. 4). For the easy atlas dataset,
all methods performed nearly perfectly (ARI > 0.98). For
the easy subject dataset, spectral clustering performed worst

(ARI = 0.87), with the rest performing very well (ARI >

0.95). For the hard atlas dataset, hierarchical performed
worst (ARI = 0.65), quickbundles was best (ARI = 0.82),
and the proposed method (ARI = 0.77) was comparable
to spectral (ARI = 0.77). For the hard subject dataset,
hierarchical performed worst (ARI = 0.32), spectral was
third from best (ARI = 0.54), and quickbundles (ARI = 0.60)
performed slightly worse than the proposed method (ARI =
0.69).

Experiment: Evaluating Bundle Simplification

Design. The goal of this experiment was to evaluate the
performance of the simplification algorithm on several
fiber bundles in comparison to random resampling. The
experiment was conducted with four bundle datasets
selected from a single subject: forceps minor, forceps major,
arcuate fasciculus, and uncinate fasciculus. The proposed
simplification algorithm was applied with λ ranging from
zero to five, and each condition was repeated 10 times
to estimate stability. To provide a baseline comparison,
we also tested a simple subsampling procedure was also
tested: for given threshold from 0 to 100% a subset was
randomly chosen and removed from the bundle. To evaluate
performance, 2 mm3 volumetric masks were created from
the simplified bundles in each condition, and the Dice
coefficient (Dice 1945) was measured between each of these
masks and that of the full resolution bundle. Performance
was plotted in relation to the percentage of curves retained
from simplification.

Results. We found the proposed simplification algorithm to
perform better than random subsampling (Fig. 5) across all
tested bundles. The performance difference of the methods
was greatest when 10 to 25% of the fibers were retained,
in which case, the difference in Dice coefficient was
greater than 0.05, representing about 15% improvement in
performance relative to the low end dice score. Looking at
aggregated runtime across datasets and parameter settings,
subsampling was found to take 16.92 ± 0.63 ms, and
the proposed method took 1179.87 ± 25.32 ms, which is
practical for interactive usage.

Experiment: Evaluating Reliability

Design. This experiment applied the population-based
analysis described in “Fiber Bundle Selection” to scan-
rescan data and tested its ability to produce similar
fiber bundle metrics across multiple in vivo scans of the
same individual. We used 50 landmarks created from
the full atlas tractography dataset to construct one-class
classifiers for each bundle. For each of the 3x5 scan-
rescan subjects, we followed the process described in
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Fig. 4 Results from the second experiment described in “Experiment:
Evaluating Fiber Bundle Clustering”. The proposed clustering algo-
rithm was applied to four datasets, which include atlas and subject data
with a small (eight) larg number (fifteen) of bundles, as shown in the
top left. We compared this approach to quickbundles clustering and
spectral and hierarchical clustering with the mean symmetrized Haus-
dorff distance. The bottom four plots show performance as a function
of clustering threshold, and the best case performance is shown in
the bar chart at the top right. It should be noted that the behavior of

the threshold depends on the algorithm, so the peaks should not be
expected to align, but the height of the peaks can be compared. The
results show the performance varied across datasets. All methods per-
formed well in the easy atlas and easy subject datasets. The hard atlas
dataset showed quickbundles performed best, the proposed method
showed performance that was comparable to spectral, and hierarchical
performed the worst. The hard subject dataset showed the proposed
method to outperform all others

“Fiber Bundle Selection” to segment fiber bundles with a
threshold probability of τ = 0.99. For each bundle, we
computed five fiber bundle metrics: mean bundle length,
and bundle-averaged fractional anisotropy, mean diffusivity,

radial diffusivity, and axial diffusivity (Correia et al. 2008).
For comparison, we also performed bundle selection with a
manual region-of-interest based approach described in the
previous experiment.
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Fig. 5 Results from the third experiment described in “Experiment:
Evaluating Bundle Simplification”. This shows performance of the
simplification algorithm in several bundles. Each plot shows the sim-
plification error measured with the Dice coefficient. The proposed

method was compared to random sampling, and both methods are
plotted by the percentage of curves retained from simplification. The
results show the proposed method produces more accurate simplified
bundles in nearly all cases
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Fig. 6 Results from the fourth experiment described in “Experi-
ment: Evaluating Reliability” testing the scan-rescan reliability of the
proposed population-based analysis. Performance was compared to
manual region-based selection measured according to six fiber bun-
dle metrics: fractional anisotropy (FA), mean diffusivity (MD), radial
diffusivity (RD), axial diffusivity, bundle length, and bundle volume.

The experiment included five subjects and three repeated scans, and
the results showed comparable reliability between the manual and
proposed automated approaches. The left and right plots report the
coefficient of variation (lower is better) and intraclass correlation
(higher is better) with 95% confidence intervals, respectively

We measured scan-rescan reliability of the fiber bundle
metrics with the coefficient of variation (CV) (Hendricks
and Robey 2008) and the intraclass correlation coefficient
(ICC) (Bland and Altman 1990). The CV was measured
for each subject from mean μs standard deviation σs ,
CV = σs/μs . A lower CV score indicates higher reliabil-
ity with units that are normalized to lie roughly between
zero and one. The ICC was measured using the between-
subjects variance σ 2

b and within-subjects variance σ 2
w, with

ICC = σ 2
b /(σ 2

b + σ 2
w) A larger ICC indicates there is

more variance between than within subjects. This takes a
maximum value of one and values above 0.75 indicate high
reliability. Our implementation used the R ’ICC’ package
(Wolak et al. 2012).

Results . Our findings are summarized in Figs. 6 and
7. We generally found the bundles segmented with the
proposed method to agree qualitatively with those found
with the manual region-of-interest approach. However,
quantitatively, the bundle metrics were not significantly
different between the proposed and manual region-of-
interest conditions. The bundle-averaged diffusion indicies
were highly reliable with a CV of 2% and an ICC of above
0.7. The bundle-average length had a slightly higher CV of
5% and comparable ICC.

Experiment: Evaluating Sensitivity to Sging

Design. This experiment applies the proposed population-
based analysis to the study of normal age-related neu-
rodegeneration. The experiment was designed to examine
the age associations of fiber bundle metrics, specifically,
to compare our approach to a manual region of interest
approach. The methods were applied to the 80 subject
normal population to obtain five fiber bundle metrics of

the forceps minor, which traverses the anterior portion
of the corpus callosum and has well-documented changes
with age (Cabeen et al. 2017). This experiment compares
linear regression models of subject age based on fiber
bundles metrics, with intracranial volume included as a
covariate. The performance in each condition was assessed
using R2 to indicate the total variance accounted for by
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Fig. 7 Results from the fifth experiment described in “Experiment:
Evaluating Sensitivity to Sging” testing the sensitivity to normal
aging in a population of 80 subjects. The analysis focused on the
forceps minor, which traverses the anterior portion of the corpus
callosum and has well-documented changes with age (Cabeen et al.
2017). The proposed population-based analysis was compared to
manual region-based selection according to six fiber bundle metrics:
fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity
(RD), axial diffusivity, bundle length, and bundle volume. For each
bundle measure and method, multiple linear regression models were
fit to model age with respect to intracranial volume, sex and each
tractography-based metric. The plot shows the resulting R2 of each
model (bigger is better), showing comparable performance in bundle
volume, MD, and RD, improved performance in bundle length, and
AD, and slightly worse performance in FA
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the model, and normalized coefficient β to indicate the
effect size.

Results. The results support previous findings of age-
related changes in prefrontal white matter (Fig. 6). Both
manual region selection and the proposed method showed
sensitivity of diffusion tensor measures to age, but several
measures showed different performance characteristics.
Three bundle metrics showed comparable performance:
bundle volume (R2 = 0.21, β = -4.35), RD (R2 = 0.13, β =
2.46), andMD (R2 = 0.13, β = 2.315). FA performed slightly
better using manual selection (R2 = 0.12, β = -1.98) than
the proposed method (R2 = 0.10, β = -1.43). AD performed
slightly better with the proposed method (R2 = 0.12, β =
2.07) than manual selection (R2 = 0.11, β = 1.63). Bundle
length performed significantly better using the proposed
method (R2 = 0.16, β = -3.28) than manual selection (R2 =
0.11, β = -2.39).

Discussion

Our results generally indicate that the sparse closest point
transform enables the novel applications of existing ML
algorithms for tractography processing tasks, specifically
for clustering large datasets, simplifying bundle geometry,
and segmenting similar bundles across a population.
The key component is that the resulting representation
reduces the curves to vectors that retain geometric
information and can be directly used with many ML
approaches. Furthermore, it does this without introducing
a prohibitively high dimensionality in the transformed
space, due to the sparseness of the landmarks used in
the transform. This contrasts with the standard dense
volumetric grid representation of distance and closest point
transforms, which require a regular sampling as dense as
the smallest discriminative feature, e.g. the voxel size.
Higher dimensionality can reduce the performance of
learning algorithms, i.e. the peaking phenomenon (Sima and
Dougherty 2008), which is another benefit of using this
lower dimensional sparse representation.

Our first experiment suggests that careful selection
of landmarks through geometry processing can improve
performance compared to random or coarse regular
sampling. This is likely because it can place landmarks
near groups of endpoints and areas of high curvature,
which are also likely to be the most discriminative
features when comparing curves. The second experiment
also indicated strengths of the proposed clustering method
relative to the hierarchical, spectral, and quickbundles
clustering algorithms. Because the proposed method avoids
computing the full pairwise similarity matrix, it can
be applied to large whole brain datasets without the

typical subsampling used in the pairwise approaches,
unlike distance-based clustering. The tests showed some
advantages over quickbundles, which is possibly due to the
distribution of samples along the curve. In quickbundles,
these are equally spaced along the curve, while the proposed
method tends to place samples near discriminative features.
Another strength of the proposed clustering algorithm is the
DP-means algorithm, which provides the efficient runtime
and ability to select the number of clusters from the data
while not requiring flipping of curves during optimization.
Our third experiment shows how the same clustering
algorithm is useful for simplifying fiber bundles, which can
speed up 3D renderings and reduce disk space required for
storing tractograms.

Our fourth and fifth experiments showed that the
proposed population-based analysis is reliable across scans
and also useful for mapping age-related change in white
matter. This transform-based approach succeeds because
it retains pose and shape information of the original
curves, while being compatible with a simple segmentation
algorithm using a Gaussian model. Furthermore, the
proposed method compared favorably to manual bundle
selection, which can be costly in time and require expert
knowledge. It also outperformed the manual selection
approach in the normal aging modeling based on fiber
bundle length. This suggests that manual region-based
selection perhaps excludes short fibers in the bundle
that do not reach the regions, but are nevertheless
related to age-related decline. Another interesting result
was the good performance of the simple one-class
classifier. The reliability and sensitivity were comparable to
manual segmentation, making it preferable when analyzing
datasets large enough to preclude manual intervention. An
interesting open question for future work is whether there
is a benefit to using more complex one-class classifiers,
e.g. using support vectors (Tax 2001) or neural networks
(Bishop 1994).

In general, this approach also has potential for broader
application, beyond tractography processing. For example,
curve clustering can be a useful tool for analyzing trajectory
datasets, e.g. to better understand traffic flow or the
behavior of particles in physical simulations. The bundle
segmentation approach could also be useful in these other
areas for categorizing incoming data or detecting anomalies.
However, there are several limitations of the proposed
method to note. First, the representation obtained from
the sparse closest point transform is necessarily lossy, and
there is a tradeoff between fidelity and runtime based on
the number of landmarks. Our design attempted to address
this by determining landmarks in a data-driven approach.
The experiments here examined single fiber reconstructions,
but multi-fiber tractography should be explored as well
(Cabeen et al. 2016), as it is important to understanding
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the performance of tractography processing algorithms in
brain areas with crossing fibers. It also does not account
for any time-domain information, but this could possibly be
treated as a fourth dimension with appropriate scaling to be
contatenated with the spatial coordinates.

In conclusion, we proposed a novel tractography curve
representation using the sparse closest transform, and our
experiments show how this enables the novel application
of a variety of existing vector-space ML algorithms
to tractography processing tasks. Looking forward, this
approach is potentially useful for neuroimaging studies,
such as anatomical localization in surgical planning and
population studies that aim to quantify anatomical variation
in white fiber bundles in relation to health and disease.

Information Sharing Statement

We have made our data and software implementation
available online 123. This work is included in the Quan-
titative Imaging Toolkit (QIT) 4 in the following modules:

CurvesLandmarks: A module for extracting landmarks,
as described in “Tractogram Curve Representation” and
Figs. 1A and 2A.

CurvesClosestPointTransform: Amodule for computing the
sparse closest point transform, as described in “Tractogram
Curve Representation” and Figs. 1A and 2B.

CurvesClusterSCPT: A module for curve clustering using
the DP-means algorithm, as described in “Fiber Bundle
Clustering and Simplification” and Fig. 1B and C.

CurvesSegmentBundleFitSCPT: A module for estimating
one-class classifier model parameters given an example
bundle, as described in “Fiber Bundle Selection” and
Fig. 1D.

CurvesSegmentBundlesApplySCPT: Amodule for segment-
ing a bundle given a one-class classifier model, as described
in “Fiber Bundle Selection” and Figure 1D.

CurvesOutlierSCPT: A module for detecting and removing
outlier curves using the Mahalanobis distance, in a variation
of the method described in “Fiber Bundle Selection”.

1DOI:https://doi.org/10.35092/yhjc.12441953
2http://cs.brown.edu/research/mri/mri repository.html
3https://resource.loni.usc.edu/resources/downloads
4https://cabeen.io/qitwiki
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