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Abstract

This paper presents a comparative evaluation of methods for automated voxel-based spatial mapping in diffusion tensor imaging
studies. Such methods are an essential step in computational pipelines and provide anatomically comparable measurements across
a population in atlas-based studies. To better understand their strengths and weaknesses, we tested a total of eight methods for
voxel-based spatial mapping in two types of diffusion tensor templates. The methods were evaluated with respect to scan-rescan
reliability and an application to normal aging. The methods included voxel-based analysis with and without smoothing, two types
of region-based analysis, and combinations thereof with skeletonization. The templates included a study-specific template created
with DTI-TK and the IIT template serving as a standard template. To control for other factors in the pipeline, the experiments used
a common dataset, acquired at 1.5T with a single shell high angular resolution diffusion MR imaging protocol, and tensor-based
spatial normalization with DTI-TK. Scan-rescan reliability was assessed using the coefficient of variation (CV) and intraclass corre-
lation (ICC) in eight subjects with three scans each. Sensitivity to normal aging was assessed in a population of 80 subjects aged 25
to 65 years old, and methods were compared with respect to the anatomical agreement of significant findings and the R2 of the as-
sociated models of fractional anisotropy. The results show that reliability depended greatly on the method used for spatial mapping.
The largest differences in reliability were found when adding smoothing and comparing voxel-based and region-based analyses.
Skeletonization and template type were found to have either a small or negligible effect on reliability. The aging results showed
agreement among the methods in nine brain areas, with some methods showing more sensitivity than others. Skeletonization and
smoothing were not major factors affecting sensitivity to aging, but the standard template showed higher R2 in several conditions.
A structural comparison of the templates showed that large deformations between them may be related to observed differences in
patterns of significant voxels. Most areas showed significantly higher R2 with voxel-based analysis, particularly when clusters were
smaller than the available regions-of-interest. Looking forward, these results can potentially help to interpret results from existing
white matter imaging studies, as well as provide a resource to help in planning future studies to maximize reliability and sensitivity
with regard to the scientific goals at hand.
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1. Introduction

Diffusion MR imaging enables the quantitative measurement
of water molecule diffusion, which exhibits anisotropy in brain
white matter due to axonal morphometry and coherence [1].
The diffusion tensor [2] is a commonly used model that re-
flects aggregate properties of tissue microstructure [3] that are
relevant to the studies of brain white matter, such as normal
differences in age, sex, and cognition [4] [5] [6], as well as
neuropsychiatric conditions, such as schizophrenia, depression,
and bipolar disorder [7] [8]. Diffusion tensor imaging studies
typically make anatomically-comparable measurements across
participants through spatial normalization [9] to a template us-
ing image registration [10]. Then, a spatial mapping step is used
to probe features of white matter across the population, typ-
ically with either voxel-based or tractography-based localiza-
tion. Voxel-based analyses can either look at individual voxels
or regions-of-interest (ROIs), while tractography-based analy-
ses instead look at features of geometric models representing

large-scale fiber bundle anatomy [11] [12]. While there are
known limitations of tractography that warrant evaluation [13]
[14], we restrict the scope of this paper to the evaluation of
voxel-based methods.

This paper is motivated by the general need to better under-
stand the computational tools used in voxel-based diffusion ten-
sor imaging studies [15]. As there are numerous choices at each
step of the standard population imaging pipeline, there is value
in understanding their net effect on the results [16]. While much
is known about how data acquisition, preprocessing, and image
registration affect results, fewer studies have evaluated the spa-
tial mapping step. In this study, we examine a wide range of
choices for this step and evaluate them with respect to scan-
rescan reliability and sensitivity to normal aging.

Prior Work
Numerous studies have thoroughly examined the relation-

ship between reliability and imaging data acquisition parame-
ters. For example, several works have looked at variation across

Preprint submitted to Elsevier November 10, 2016



scanner manufacturers and imaging units [17] [18] [19] and
found acceptable reliability across sites with a common mag-
net strength. Furthermore, other studies have also shown reli-
ability across magnet strengths ranging from 1.5T to 4T [20]
[21] [22]. Studies that tested gradient strength have found re-
liable estimates of diffusion parameters in each of a variety of
gradients encoding schemes [23]; however, there is evidence of
possible bias in diffusion parameters when combining estimates
from different voxel sizes and gradient encoding schemes [24],
although bias correction [20] and covariate analysis [25] are
possible solutions. Together, these results are especially impor-
tant for conducting longitudinal and multi-center studies as well
as accommodating scanner upgrades within an imaging unit.

In addition, previous work has examined the effect of pre-
processing and image registration algorithms on reliability. Ro-
bust preprocessing that includes denoising, motion correction,
and outlier rejection has been shown to improve reliability
across scanners [26] [27]. The choice of registration algorithm
has also been shown to greatly affect reliability, specifically
when comparing linear, deformable, and tensor-based registra-
tion [20] [21] [23]. Deformable tensor-based registration has
been shown to perform better than registration with scalar maps,
especially when used in combination with study-specific tem-
plate construction [28]. Linear intra-subject registration has
also been shown to improve reliability in longitudinal studies
[26]. Overall, this indicates there is potential for significantly
different outcomes based on the choice of preprocessing and
registration, so it is important to have consistency in both appli-
cations and evaluations.

Each of these studies necessarily includes spatial mapping,
either as a single method used in the pipeline or as part of a
larger comparison of methods. The most common approaches
are global histogram analysis [17], manually drawn ROIs [24]
[23] [19], and standard atlas ROIs registered to each subject
[18] [22] [29]. In addition to these studies, others have explic-
itly evaluated methods for spatial mapping, with a similar goal
to this paper. For example, evaluations of manually drawn ROI
approaches have tested the reliability of different ROI shapes
[30] and drawing methods [31] [32], and compared to a vari-
ety of global histogram measures [25] . Voxel-based analysis
has also been evaluated to quantify the effects of filter size [33],
software package [34], and to compare results with ROI-based
methods [35] [36]. There has also been extensive testing of
skeleton-based analysis to understand its strengths and limita-
tions [28] [26] [37] as well as comparing to voxel-based analy-
sis and region-based analysis [20] [21]. Previous work has also
evaluated the choice of template type, showing the advantages
of study-specific and high-quality templates [38] [39] [40] [41].
This paper builds on these prior findings by expanding the range
of methods simultaneously compared in evaluation.

Finally, the design of some of these studies not only included
scan-rescan analysis, but also tested reliability in conjunction
with applications to clinical and scientific studies. These stud-
ies have included populations consisting of aging adults and
children [30] [24] [36], as well as patients with schizophrenia
[33] [34], Alzheimer’s disease [28], and multiple sclerosis [25].
This kind of evaluation provides an additional benchmark for

comparing the practical value of such methods, which is impor-
tant, as a perfectly reliable measurement might still disregard
anatomical features that are of scientific or clinical value. In
this paper, we take a similar approach and test the sensitivity
of each method to the anatomical effects of normal aging in an
adult population.

Contributions

The main contribution of this paper is a comparative evalua-
tion of spatial mapping in voxel-based diffusion tensor imaging
studies. To avoid confounding effects, these tests were con-
ducted with a common dataset and state-of-the-art tensor-based
spatial normalization using DTI-TK. The evaluation includes
experiments that examined reliability across scans and sensitiv-
ity to normal aging in an adult population. The first experiment
characterized scan-rescan reliability across eight subjects with
three scans each using the coefficient of variation and intraclass
correlation. The second experiment characterized sensitivity to
normal aging in a population of 80 adult subjects aged from
25 to 65 years old by examining the statistical relationship be-
tween age and diffusion parameters across the brain. Both ex-
periments included a quantitative analysis of performance in the
various methods and a qualitative analysis showing the results
in relation to brain anatomy. The experimental conditions in-
cluded eight methods for spatial mapping, four commonly used
diffusion parameters, and two types of templates. The tested
spatial mapping methods included voxel-based with and with-
out smoothing, two types of region-based analysis, and combi-
nations of these with skeletonization-based analysis. The tested
diffusion parameters included fractional anisotropy (FA), mean
(MD), radial (RD), and axial (AD) diffusivity. The aging analy-
sis presented in the paper only shows effects in FA due to space
limitations; however, all results are available for download with
the link provided at the end of the paper. The experiments were
conducted using both a study-specific template and the IIT stan-
dard template. In total, this represents a total of 64 conditions
examined in each experiment.

Method Dimension Mean Volume

VBA 353903 1 mm3

SMOOTH 353903 1 mm3

JHU 48 2814 mm3

SUPER 321 1098 mm3

VBA+TBSS 76586 1 mm3

SMOOTH+TBSS 76586 1 mm3

JHU+TBSS 48 648 mm3

SUPER+TBSS 318 240 mm3

Table 1: A summary of methods for spatial mapping that are compared in the
experiments. The dimensionality of the methods in the study-specific template
are listed, as well as the average volume of the voxels/regions representing each
measurement.
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Figure 1: The left panel shows an illustration of methods for spatial mapping compared in the experiments. Smoothing was included in voxel-based and skeleton-
based analysis but is not depicted here. The right panel illustrates the two template types tested.

2. Materials and Methods

2.1. Data Acquisition

Under an IRB-approved protocol, diffusion-weighted MR
images were acquired from a population of healthy volunteers,
including a group of 80 normal aging healthy controls and eight
from a scan-rescan cohort. The 80 subjects comprised a cross-
sectional normal aging population, which consisted of nearly
equal number of each sex and roughly uniformly distributed
ages ranging from 25 to 65 years old. The data from the other
eight subjects were acquired for scan-rescan analysis and in-
cluded three repeats each, except for one subject that only had
two repeats (i.e. 23 sessions). Imaging was conducted on
a GE 1.5T scanner with 2x2x2mm voxels and image resolu-
tion 128x128x72. For each diffusion scan, seven baseline vol-
umes were acquired, and the diffusion-weighted images used a
single-shell high angular resolution diffusion encoding scheme
with 64 distinct gradient encoding directions at a b-value of
1000 s/mm2.

2.2. Image Preprocessing

The diffusion-weighted MR images were preprocessed using
FSL 5.0 [42]. The first step included motion and eddy current
correction by affine registration of each diffusion-weighted vol-
ume to the baseline volume using FSL FLIRT with the mutual
information criteria. Along with this step, the b-vectors were
reoriented to account for rotation induced by each transforma-
tion [43]. Skull stripping was performed using FSL BET with
a threshold of 0.3. For each dataset, diffusion tensors were fit
using FSL DTIFIT.

2.3. Spatial Normalization and Template Construction

Following this, a study-specific template [44] was created
from the 80 normal subjects. This was performed using the
tensor-based deformable registration algorithm in DTI-TK [45]
with finite strain tensor reorientation and the deviatoric tensor
similarity metric. Each subject’s tensor image was transformed
to atlas space using the associated deformation and resampled
to 1 mm3 isotropic voxels using Log-Euclidean tensor interpo-
lation. This process was applied to both the scan-rescan cohort
and the normal aging cohort.

In addition, the study examined the use of a standard tem-
plate. The IIT DTI template version 4.1 [46] [47] was used
for this purpose due to its high quality and use in related eval-
uation studies [40]. The imaging data was downloaded from
the publicly available distribution on NITRC [48]. To facilitate
the joint visualization and quantitative comparison of results
from both templates, an additional deformable registration was
performed between the IIT and study-specific template using
DTI-TK. The study-specific analysis was conducted solely with
the study-averaged imaging data, and the statistical results were
deformed for comparison using nearest-neighbor interpolation.
As there were shape differences between the study-specific and
standard templates, the logarithm of the Jacobian determinant
(LogJacDet) of the deformation was computed to show the spa-
tial pattern of these shape differences.

2.4. Spatial Mapping

Next, eight methods of spatial mapping were applied (Table
1 and Figure 1) using each of the two templates (study-specific
and standard) and each of four diffusion parameters (FA, MD,
RD, and AD), giving a total of 64 conditions. For consistency,
the methods shared the same white matter mask in each tem-
plate. The masks were created by applying a threshold of 0.2
to the FA volume of each template and removing all but the
largest connected component. The details of each method are
described as follows.

Voxel-based analysis was performed using the standard ap-
proach [49] [50] in all white matter voxels. This included pro-
cessing without smoothing (denoted VBA) and with smooth-
ing (denoted SMOOTH) using an isotropic Gaussian filter with
σ = 2, FWHM = 4.7, which is comparable to a previous VBA
evaluation [36]. Region-based analysis [51] was also performed
by averaging diffusion parameters within ROIs. This included
two types of region-based analysis, described as follows.

The first region-based method (denoted JHU) used manually
defined regions from the Johns Hopkins University white mat-
ter atlas [52] included in FSL. For each template type, the ROIs
were deformed to the template volume using FNIRT. This was
necessary as the JHU regions are defined in an FA atlas requir-
ing scalar-based registration; however, the rest of the experi-
ments used tensor-based registration between subject data and
the templates.



The second region-based analysis (denoted SUPER) used au-
tomatically defined “supervoxel” ROIs that were computed for
each template using a clustering algorithm [53]. The clustering
algorithm includes parameters to control the relative contribu-
tion the voxel positions (α), fiber orientations (β), and number
of clusters (λ) make to the overall optimization. The parameter
settings were α = 1, β = 15, and λ = 20, resulting in a total of
321 study-template regions and 318 standard template regions.
In addition, the supervoxel ROIs were post-processed to assign
distinct labels to topologically disconnected regions with the
same clustering label, e.g. in the cingulum, and to remove out-
lier regions less than 50 mm3 in volume.

These four methods were also each performed in conjunction
with skeleton-based analysis using Tract-Based Spatial Statis-
tics [54]. This was implemented in a custom VBA+TBSS
pipeline modified to use the tensor-based registration algorithm
in DTI-TK instead of the default scalar-based registration with
FNIRT [42] [55]. The standard template analysis used the as-
sociated skeleton available on NITRC, and the study-specific
template analysis used a study-derived skeleton. Both template
skeleton masks were created with an FA threshold of 0.2. This
resulted in four additional skeleton-based methods: voxel anal-
ysis without smoothing (denoted VBA+TBSS), voxel analysis
with smoothing (denoted SMOOTH+TBSS), JHU ROI analysis
(denoted JHU+TBSS), and supervoxel ROI analysis (denoted
SUPER+TBSS).

2.5. Scan-rescan Reliability

Next, reproducibility and reliability were tested for each con-
dition with the scan-rescan dataset, which consisted of eight
subjects with three repeated scans each. This included two
statistical evaluation metrics: the coefficient-of-variation (CV)
[56] and intra-class correlation (ICC) [57]. The CV is a nor-
malized measure of percentage change in each measurement
across scans and is considered acceptable below 10%. Given
the within-subject average µw and within-subject standard devi-
ation σw, the CV is given by σw/µw. The ICC is a measure of
reliability that gauges the fraction of variance between subjects.
It is normalized between zero and one and is considered accept-
able above 0.7. Given the between-subjects variance σ2

b and
within-subjects variance σ2

w, the ICC is given by σ2
b/(σ

2
b +σ2

w).
For each condition, CV and ICC were computed for individual
voxels/regions and then aggregated across the whole brain to
estimate mean performance and its uncertainty. All statistical
analysis was implemented using R 3.1.1 [58], with the ggplot2
package for plotting [59], and the ICC package from Wolack et
al. [60].

2.6. Sensitivity to Normal Aging

Next, the methods were evaluated with respect to their sen-
sitivity to normal aging in an adult population, a process which
has been shown to include anatomical changes in white matter
that are reflected in diffusion parameters [61] [62]. The ex-
periments investigated the localization of age-related changes
in specific areas of the brain. This was performed by fitting
linear regression models in each voxel and region to relate the

diffusion parameters to age. Sex and intracranial volume were
included as covariates to control for changes not related to mi-
crostructural decline due to aging. Specifically, this can po-
tentially avoid attributing seemingly local changes in diffusion
parameters to partial volume effects that can occur with global
volumetric changes in brain size due to age. For each model,
statistics of the regressions were retained for comparison, in-
cluding the R2, as well as the coefficient estimate, standard er-
ror, t-statistic, and p-value associated with age variable. Be-
cause the methods differ largely in their dimensions (Table 1),
they cannot be directly compared. To account for this, we used
False Discovery Rate (FDR) with the Benjamini-Hochberg pro-
cedure [63] to correct for multiple comparisons within each
method. This procedure transforms the p-values to q-values that
can be more fairly compared across methods. Volumetric maps
representing the model parameters were created to explore the
differences between methods. These images were manually re-
viewed to identify brain areas with agreement among multiple
methods. The comparison focused on FA only, which is the
most commonly analyzed diffusion parameter; however, the re-
sults for MD, AD, and RD are included as supplementary ma-
terial. When clusters of significant voxels were encountered,
the voxel with the lowest q-value was recorded to represent the
result. This process resulted in a list of brain areas with signif-
icant results for each experimental condition. The results were
also quantitatively analyzed to assess the performance across
the conditions. All statistical analysis was implemented in R
3.1.1 [58], with the ggplot2 package for plotting [59].

3. Results

3.1. Scan-rescan Reproducibility
Quantitative results of the scan-rescan experiment are shown

in Figure 2, and qualitative results showing the spatial distribu-
tion of scan-rescan reproducibility are shown in Figures 3 and 4.
For both CV and ICC, statistical tests were performed to assess
performance characteristics of the methods, including group-
ings of methods by several factors: method type, region-based,
skeleton-based, smoothed, and template type.

The results in CV show reliability varies significantly across
methods (one-way ANOVA, p< 1 × 10−15, η2 = 0.78). Smooth-
ing was found to have a significant effect on CV (t-test,
p < 1 × 10−15, d = 0.75, ∆CV = 3.3), with higher CV
without smoothing (CV = 7.6 ± 1.0) than with smoothing
(CV = 4.2 ± 0.5). Region-based analysis was also found to
have a significant and large effect on CV (t-test, p < 1 × 10−8,
d = 2.0, ∆CV = 3.4), with higher CV when analyzing single
voxels (CV = 5.9 ± 0.8) compared to regions (CV = 2.5 ± 0.24).
Template type was found to have a significant but small effect
on CV (paired t-test, p < 1 × 10−7, d = 0.18, ∆CV = 0.44) with
higher CV in the standard template (CV = 4.4 ± 0.9) compared
to the study template (CV = 4.0 ± 0.8). From additional tests
within each method, JHU, VBA+TBSS, and JHU+TBSS were
not significantly different in CV between template types, unlike
the main effect. Skeletonization was not found to have a signifi-
cant effect on CV (paired t-test, p = 0.29). In reviewing the spa-
tial distribution of CV across the brain, VBA and VBA+TBSS



showed the greatest spatial variability, with better CV scores in
deep white matter and worse CV in superficial and periventric-
ular white matter. Smoothing tended to also smooth this spatial
distribution of CV scores. Region-based analysis showed more
spatially uniform CV results than voxel-based analysis, particu-
larly in superficial white matter with supervoxel-based analysis.

The results in ICC also show reliability varies significantly
across methods (one-way ANOVA, p < 1 × 10−15, η2 = 0.90).
Smoothing was found to have a significant effect on ICC (t-test,
p < 1 × 10−15, d = 0.61, ∆ICC = 0.15), with lower ICC
without smoothing (ICC = 0.50 ± 0.04) than with smooth-
ing (ICC = 0.66 ± 0.04). Region-based analysis was also
found to have a significant and large effect on ICC (t-test,
p < 1 × 10−9, d = 2.1, ∆ICC = 0.17), with lower ICC when
analyzing single voxels (ICC = 0.58 ± 0.04) compared to re-
gions (ICC = 0.74 ± 0.02). Template type was found to have a
significant but small effect on ICC (paired t-test, p < 1 × 10−4,
d = 0.17, ∆ICC = 0.02) with lower ICC in the standard tem-
plate (ICC = 0.65 ± 0.04) compared to the standard template
(ICC = 0.67 ± 0.04). From additional tests within each method,
JHU, VBA+TBSS, and JHU+TBSS were found not to have
a significant difference in ICC between template types, un-
like the main effect. Skeletonization was found to have a sig-
nificant but small effect on ICC (paired t-test, p < 1 × 10−12,
d = 0.66, ∆ICC = 0.07) with a lower ICC with skeletonization
(ICC = 0.62 ± 0.04) than without (ICC = 0.70 ± 0.03). In re-
viewing the spatial distribution of ICC across the brain, VBA
and VBA+TBSS showed the greatest spatial variability, with
a distinct pattern from CV and a more heterogeneous spatial
distribution. Smoothing tended to also smooth this spatial dis-
tribution of ICC scores. Region-based analysis showed more
spatially uniform ICC results than voxel-based analysis, partic-
ularly in superficial white matter with supervoxel-based analy-
sis, although there was more variation than in CV.

3.2. Sensitivity to Normal Aging
The following nine brain areas were found to have a sig-

nificant relationship between FA and age: right anterior per-
icallosal white matter (R PERI), the fornix (FORN), the left
superior cerebellar peduncle (L SCP), left uncinate (L UNC),
middle cerebellar peduncle (MCP), splenium (SPLN), right
posterior thalamic radiation (R PTR), right superior frontal
white matter (R SUPF), and right inferior frontal white mat-
ter (R INFF). To varying extents, there were bilateral effects in
the superior cerebellar penduncles, inferior frontal white mat-
ter, and percallosal white matter, but the hemisphere with the
larger effect is reported for brevity.

Among these regions, the qualitative results (Figure 5) show
agreement with respect to the general location of the effects, but
some variation was found with respect to the fine anatomical
differences. In pericallosal white matter, voxel-based analysis
exhibited a cluster that extended into the genu, an aspect that
was not typical of most TBSS conditions. In the fornix, the
study-specific results tended to show significant effects along
the length of the bundle; however, most standard template con-
ditions instead showed distinct clusters located at anterior and
posterior positions along the visible portion of the bundle. In

the middle cerebellar peduncle, there was high anatomical vari-
ability across methods, where some methods showed lateral
concentrations of significant results. In the uncinate, the models
were less sensitive in the SUPER conditions, but the spatial pat-
terns were similar across methods. Across all regions, smooth-
ing was found to generally increase the size of the cluster of sig-
nificant voxels. Regarding the direction of the change with age,
the following areas showed decreased FA with age: R PERI,
FORN, R PTR, R INFF, and the following areas showed in-
creased FA with age: L SCP, MCP, L UNC, SPLN, R SUPF.

A comparison of the study-specific and standard templates
showed shape differences that varied with respect to anatomi-
cal location (Figure 6). The LogJacDet maps were reviewed to
determine the magnitude of local volumetric changes, where a
negative value indicates that a contraction was required to de-
form the standard template to the study template, and positive
indicates that an expansion was required. The fornix showed
the greatest difference between the template types, where the
study-specific template had a substantially thinner fornix than
the standard template (LogJacDet ≈ -1.5). The following re-
gions also exhibited smaller local volumes in the study-specific
template: genu of the corpus callosum (LogJacDet ≈ -1.0),
splenium of the corpus callosum (LogJacDet ≈ -0.5), poste-
rior limb of the internal capsule (LogJacDet ≈ -0.5), superior
cerebellar peduncle (LogJacDet ≈ -0.5), and middle cerebel-
lar peduncle (LogJacDet ≈ -0.4). Conversely, the following re-
gions showed greater local volume in the study-specific tem-
plate: body of the corpus callosum (LogJacDet ≈ 0.5) and pal-
ladium (LogJacDet ≈ 0.5).

Statistical tests were performed to assess performance char-
acteristics of the methods according to R2 with groupings by the
following factors: method type, region-based, skeleton-based,
smoothed, and template type (Figure 7, Table 2). The results
show significant variation across methods (one-way ANOVA,
p < 1 × 10−10, η2 = 0.38). Smoothing was not found to have
a significant effect on R2 (t-test, p = 0.43). Region-based
analysis was found to have a significant effect on R2 (t-test,
p < 1 × 10−13, d = 1.50, ∆R2 = 0.10), with higher R2 when an-
alyzing single voxels (R2 = 0.22 ± 0.01) compared to regions
(R2 = 0.11 ± 0.01). Template type was found to have a small
but statistically significant effect on R2 (paired t-test, p = 0.01,
d = 0.18, ∆R2 = 0.016). When compared across methods, the
difference in template type was significant only in SMOOTH
(paired t-test, p = 0.02), VBA+TBSS (paired t-test, p = 0.05),
and SMOOTH+TBSS (paired t-test, p = 0.01). When com-
pared across anatomical region, the difference in template type
was significant only in the superior cerebellar peduncle (paired
t-test, p = 0.02) and left uncinate (paired t-test, p = 0.02).
Skeletonization was not found to have a significant effect on
R2 (paired t-test, p = 0.60 d = 0.03, ∆R2 = 0.01).

4. Discussion

Scan-rescan Reliability
The first main finding in scan-rescan reliability was large

variability in the overall reliability across methods despite us-
ing identical data, preprocessing steps, and registration. The
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Figure 2: Results from the scan-rescan experiment in Sec. 3.1 showing reliability across methods and between the major factors among the methods. Panel A
shows the coefficient of variation (CV), which indicates the percentage of variation across scans of the same subject (smaller is better). Panel B shows the intraclass
correlation, which indicates what proportion of variance is between subjects (larger is better). Panel C shows the relative performance of study-specific and standard
templates in each of the tested methods. The results show high variation across methods. Among the major factors, smoothing and region-based analysis had large
effects related to reproducibility, while template type and skeletonization had smaller effects. Statistically significant differences (p ≤ 0.05) are marked with an
asterisk.
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Figure 3: Results from the scan-rescan experiment in Sec. 3.1 showing the spatial distribution of the reliability an axial slice. The background image shows the
template T1-weighted map. The left panels show the coefficient of variation (CV), and the right panels show the intraclass correlation (ICC). Within each side, the
slices are organized to show a different method in each row and a different template type in each column. The results generally show large spatial variation across
methods, with higher variation in voxel-based than region-based methods. Voxel-based analysis tended to have higher reliability in deep white matter and lower in
superficial white matter. Region-based analysis tended to have more uniform error rates than methods analyzing individual voxels.
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Figure 4: Results from the scan-rescan experiment in Sec. 3.1 showing the spatial distribution of the reliability a sagittal slice. The background image shows the
template T1-weighted map. The left panels show the coefficient of variation (CV), and the right panels show the intraclass correlation (ICC). Within each side, the
slices are organized to show a different method in each row and a different template type in each column. The results generally show large spatial variation across
methods, with higher variation in voxel-based than region-based methods. Voxel-based analysis tended to have higher reliability in deep white matter and lower in
superficial white matter. Region-based analysis tended to have more uniform error rates than methods analyzing individual voxels.
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Figure 5: Results from the aging analysis in Sec. 3.2 showing the spatial patterns of age-related change in FA for each method. The background shows the template
FA map, and the foreground shows the FDR q-value. Four areas are shown: right anterior pericallosal white matter (R PERI), the fornix (FORN), the superior
and middle cerebellar penduncles (SCP/MCP), and left uncinate fasciculus (L UNC). The plots are colored to show FDR q-value, with redness indicating greater
significance. Note that there is transparency to show the FA map, which may slightly change the perceived q-value. The results show general agreement among
methods, although several differences can be noted. VBA, SMOOTH, and SUPER analysis of R PERI showed a greater extent of significant voxels than other
methods. The fornix showed distinct spatial patterns for each template type, namely a greater concentration of significant results in the anterior and posterior
portions in the standard template conditions.
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Figure 6: Results from aging analysis in Sec. 3.2 showing the structural differences between the study and standard templates. Eight regions are shown: right
anterior pericallosal white matter (R PERI), the fornix (FORN), the superior and middle cerebellar penduncles (SCP/MCP), left uncinate fasciculus (L UNC),
splenium (SPLN), right superior frontal white matter (R SUPF), right posterior thalamic radiation (R PTR), and right inferior frontal white matter (R INFF). The
top row shows the standard template FA map, and the second row shows the study template FA map, which has been deformed to the standard template. The
third row depicts the deformation field between the templates, with coloring to indicate the logarithm of the Jacobian determinant (LogJacDet). The LogJacDet
measures the local volumetric changes induced by the deformation, where blueness indicates that contraction was required to match the standard template to the
study template and redness indicates that expansion was required. The results show the greatest differences were in the region of the fornix, which was smaller in
the study template.

0

2

4

6

8

sm
oo
th.
0.s
ub
vo
x

sm
oo
th.
2.s
ub
vo
x

sm
oo
th.
0.l
ab
els

sm
oo
th.
0.s
up
er

ske
let
on
.0.
su
bv
ox

ske
let
on
.2.
su
bv
ox

ske
let
on
.0.
lab
els

ske
let
on
.0.
su
pe
r

g

standard

study

0

2

4

6

8

sm
oo
th.
0.s
ub
vox

sm
oo
th.
2.s
ub
vox

sm
oo
th.
0.l
ab
els

sm
oo
th.
0.s
up
er

ske
let
on
.0.
su
bvo
x

ske
let
on
.2.
su
bvo
x

ske
let
on
.0.
lab
els

ske
let
on
.0.
su
pe
r

g

standard

study

Standard

Study

Template Type:

0.0

0.1

0.2

0.3

sm
oo
th.
0.a
llvo
x

sm
oo
th.
2.a
llvo
x

sm
oo
th.
0.l
ab
els

sm
oo
th.
0.s
up
er

ske
let
on
.0.
allv
ox

ske
let
on
.2.
allv
ox

ske
let
on
.0.
lab
els

ske
let
on
.0.
su
pe
r

0.0

0.1

0.2

0.3

FO
RN

L_
SC
P

L_
UN
C

MC
P

R_
INF
F

R_
PE
RI

R_
PT
R

R_
SU
PF

SP
LN

R2

Age Modeling Performance By RegionAge Modeling Performance By Method

Figure 7: Results from the aging analysis in Sec. 3.2 showing a quantitative comparison of the methods. The plots show the R2 of linear regression models relating
age to FA. The left plot shows results aggregated for each method and template type. The right plot shows results aggregated for each region and template type. Nine
areas are shown: right anterior pericallosal white matter (R PERI), the fornix (FORN), the superior and middle cerebellar penduncles (SCP/MCP), left uncinate
fasciculus (L UNC), splenium (SPLN), right superior frontal white matter (R SUPF), right posterior thalamic radiation (R PTR), and right inferior frontal white
matter (R INFF). Statistically significant differences (p ≤ 0.05) are marked with an asterisk. The results show that single voxel analysis performed better than
region-based analysis. Skeletonization and smoothing did not significantly change performance, but the standard template performed better than the study template
when used in conjuction with single voxel-based TBSS. There was moderate variability in performance across regions, and models of L SCP and L UNC were
found to perform better with the standard template.



Standard Template Study Template

Region Method R2 t-value q-value R2 t-value q-value

R PERI VBA 0.28 −5.3 0.0049 0.26 −5.0 0.016
R PERI SMOOTH 0.32 −5.8 5.5 × 10−4 0.27 −5.2 0.0027
R PERI JHU 0.10 −2.9 0.037 0.096 −2.8 0.075
R PERI SUPER 0.15 −3.4 0.047 0.14 −3.4 0.041
R PERI VBA+TBSS 0.16 −3.9 0.077 0.17 −3.8 0.073
R PERI SMOOTH+TBSS 0.19 −4.1 0.027 0.20 −4.2 0.022
R PERI JHU+TBSS 0.077 −2.4 0.10 0.095 −2.8 0.087
R PERI SUPER+TBSS 0.14 −3.0 0.096 0.14 −3.5 0.031

FORN VBA 0.25 −5.0 0.0077 0.21 −4.4 0.041
FORN SMOOTH 0.32 −5.9 4.4 × 10−4 0.28 −5.4 0.0021
FORN JHU 0.14 −3.3 0.022 0.22 −4.3 7.9 × 10−4

FORN SUPER 0.20 −4.1 0.0078 0.24 −4.8 0.0029
FORN VBA+TBSS 0.24 −4.7 0.019 0.17 −3.9 0.068
FORN SMOOTH+TBSS 0.33 −5.9 0.0013 0.28 −5.4 0.0040
FORN JHU+TBSS 0.13 −3.0 0.041 0.21 −4.2 0.0010
FORN SUPER+TBSS 0.17 −3.7 0.026 0.18 −3.9 0.016

L SCP VBA 0.24 4.8 0.012 0.22 4.5 0.036
L SCP SMOOTH 0.23 4.7 0.0068 0.21 4.5 0.011
L SCP JHU 0.30 5.1 6.4 × 10−5 0.29 4.7 2.6 × 10−4

L SCP SUPER 0.16 3.8 0.017 0.13 3.3 0.044
L SCP VBA+TBSS 0.25 4.8 0.017 0.20 4.2 0.035
L SCP SMOOTH+TBSS 0.25 4.8 0.0065 0.23 4.7 0.0093
L SCP JHU+TBSS 0.33 5.5 1.1 × 10−5 0.34 5.8 6.1 × 10−6

L SCP SUPER+TBSS 0.19 4.1 0.012 0.15 3.5 0.031

L UNC VBA 0.22 4.5 0.022 0.22 4.3 0.045
L UNC SMOOTH 0.23 4.6 0.0074 0.18 3.8 0.039
L UNC JHU 0.13 3.1 0.031 0.086 2.4 0.16
L UNC SUPER 0.16 2.8 0.20 (n.s.)
L UNC VBA+TBSS 0.25 4.8 0.017 0.24 4.8 0.018
L UNC SMOOTH+TBSS 0.21 4.3 0.017 0.18 3.9 0.036
L UNC JHU+TBSS 0.14 3.1 0.041 0.087 2.4 0.16
L UNC SUPER+TBSS 0.14 2.6 0.17 (n.s.)

MCP VBA 0.25 4.4 0.024 0.21 4.3 0.045
MCP SMOOTH 0.19 4.0 0.025 0.18 3.9 0.030
MCP JHU 0.11 3.0 0.031 0.11 2.7 0.078
MCP SUPER 0.16 3.0 0.16 0.16 2.8 0.15
MCP VBA+TBSS 0.23 4.5 0.026 0.19 4.3 0.035
MCP SMOOTH+TBSS 0.22 4.6 0.0098 0.18 3.8 0.037
MCP JHU+TBSS 0.13 2.8 0.059 0.14 2.6 0.12
MCP SUPER+TBSS 0.12 2.9 0.11 0.12 3.1 0.079

SPLN VBA 0.22 4.4 0.025 0.27 5.1 0.015
SPLN SMOOTH 0.23 4.7 0.0068 0.13 2.8 0.18
SPLN VBA+TBSS 0.26 4.8 0.017 0.27 5.1 0.013
SPLN SMOOTH+TBSS 0.24 4.8 0.0068 0.22 4.5 0.012
SPLN JHU+TBSS 0.13 2.7 0.072 0.083 2.2 0.19
SPLN SUPER+TBSS (n.s.) 0.11 3.0 0.099

R PTR VBA 0.19 −4.0 0.053 0.17 −3.7 0.085
R PTR SMOOTH 0.21 −3.5 0.058 0.18 −3.1 0.12
R PTR SUPER (n.s.) 0.17 −2.7 0.20
R PTR VBA+TBSS 0.17 −3.9 0.077 0.14 −3.3 0.15
R PTR SMOOTH+TBSS 0.14 −3.2 0.11 0.12 −3.0 0.14

R SUPF VBA 0.26 4.7 0.014 0.29 5.2 0.013
R SUPF SMOOTH 0.23 4.6 0.0083 0.25 4.7 0.0063
R SUPF SUPER 0.25 4.7 0.0025 (n.s.)
R SUPF VBA+TBSS 0.33 5.5 0.0045 0.26 4.7 0.019
R SUPF SMOOTH+TBSS 0.29 4.9 0.0059 0.28 5.2 0.0040
R SUPF SUPER+TBSS 0.19 3.8 0.023 0.15 2.9 0.10

R INFF VBA+TBSS 0.13 −3.2 0.18 0.14 −3.1 0.19
R INFF SUPER+TBSS 0.11 −2.7 0.15 0.11 −2.5 0.18
R INFF SMOOTH+TBSS 0.13 −3.1 0.13 (n.s.)
R INFF VBA 0.19 −3.8 0.075 0.14 −3.0 0.19
R INFF SMOOTH 0.14 −3.2 0.094 (n.s.)

Table 2: A summary of findings from the evaluation in normal aging. The following regions had variation in FA that was related to age: right anterior pericallosal
white matter (R PERI), fornix (FORN), left superior cerebellar peduncle (L SCP), left uncinate (L UNC), middle cerebellar peduncle (MCP), splenium (SPLN),
right posterior thalamic radiation (R PTR), right superior frontal white matter (R SUPF), right inferior frontal white matter (R INFF). If a method is not shown or
marked (n.s.), it had q > 0.2. For comparison, each test is represented by the R2, t-value, and FDR q-value of the regression with age.



most readily observed pattern was that methods looking at sin-
gle voxels, e.g. VBA and VBA+TBSS, were less reliable than
region-based methods, e.g. JHU and SUPER, as measured with
both CV and ICC. Previous work has demonstrated a trade-off

in spatial specificity between these methods [36], and the re-
sults of this study further support a trade-off in reliability be-
tween voxel-based and region-based analysis. This difference
is perhaps due to the voxelwise averaging used in region-based
analysis, which could also tend to average out the effects of
noise. Smoothing is perhaps another way to accomplish this,
but it includes a greater risk of mixing different tissues. Past
work has also found that the results of voxel-based analysis de-
pend greatly on the filter parameters and implementing package
[34] [33], and the results of this study show related changes in
reliability. Specifically, reliability in voxel-based and skeleton-
based analysis tended to improve with smoothing, while per-
formance depended on the particular diffusion parameter be-
ing tested, which supports previous findings [36]. Regarding
region-based analysis, the results were also comparable to pre-
vious findings of intra-rater variability less than 3% in manually
drawn ROIs [30] [17] [21], which is perhaps evidence that de-
formable tensor-based registration is comparable in quality to
anatomical matching of manually drawn region masks.

The second main result was that all methods exhibited spa-
tial variability in CV and ICC estimates of reliability. This rein-
forces similar results demonstrated in prior work that examined
the spatial distribution of reliability estimates [18] [22] [35],
although these studies were typically limited to tests of only
one or two methods for spatial mapping each. The results of
this study show voxel-based methods tended to have the most
spatial variability and had concentrated high reliability in deep
white matter, similar to previous work [20]. This could be re-
lated to higher registration accuracy in deep white matter, as
seen in fiber coherence maps derived form population data [45].
However, it could also be that reliability is highest where the
tensor model is most representative of the underlying diffusion
process, i.e. predominantly single fiber regions in deep white
matter [64]. This could be more thoroughly studied by examin-
ing reliability of multi-fiber extensions of TBSS [65], possibly
with multi-compartment model smoothing [66]. Voxel-based
analysis had low reproducibility in superficial and periventric-
ular white matter, with CV above 7% and ICC below 0.5 in
some cases; however, region-based analysis was found to have
lower spatial variability and better performance in these areas.
This is likely due to the variance reducing effects of averaging
within each supervoxel, perhaps also indicating that the regis-
tration quality in these superficial areas is at least as accurate as
the supervoxel size. In general, ICC had more spatial variability
than CV with a different spatial distribution. This demonstrates
how CV and ICC reflect different aspects of reliability, as CV
directly represents error, while ICC depends on the variation
across subjects. For this reason, results in ICC may be more
specific to the populations and datasets used for evaluation.

Sensitivity to Normal Aging
The first main result in aging was a substantial agreement of

significant effects among methods, despite the differences in re-

liability found in the previous experiment. However, there were
differences in sensitivity between methods warranting discus-
sion. The most prominent factor was whether individual voxels
were analyzed, as most region-based conditions were less sen-
sitive. An inspection of the spatial distribution of effects shows
the significant clusters to be small and locally restricted effects
not well characterized by the relatively larger ROIs available in
the JHU atlas and supervoxels. This shows a major limitation of
ROI analysis, as small local effects may be washed out by other
voxels when the ROI is larger than the extent of the effect. One
possible solution is to explore regions in a hierarchical way at
varying levels of detail. Supervoxel-based analysis may offer a
way to implement this by algorithmically varying the size of ex-
tracted regions. However, there were also brain areas in which
region-based analysis performed best. These might represent
anatomical changes that are more distributed and characteristic
of disconnection [67].

Another main result was the negligible effect of skeletoniza-
tion and smoothing. Previous evaluations have found skele-
tonization to improve performance in deep white matter ROIs
[37]; however, the improvement in models with FA here were
not significant. This may support other results showing that
high quality registration is as important as skeletonization in
improving sensitivity [68] and related findings showing more
heterogeneous results [37]. Smoothing tended to increase the
size of the significant clusters, although the effect size did not
change. Related to this, it is worth noting that the VBA and
VBA+TBSS conditions still include smoothing to some extent,
as the native data is interpolated to a considerably smaller tem-
plate voxel resolution. While this may help to avoid possibly
missing a small effect, it may also introduce further smoothing
and spatial correlations of noise.

In relation to template type, the observed differences are of
interest, as previous findings have shown that study-specific
templates provide greater sensitivity and accuracy than standard
templates [39]. The results in this study show a slight improve-
ment in reliability when using a study-specific template; how-
ever, in three methods and two regions, age modeling slightly
improved with the standard template. This perhaps supports
previous findings that a high quality standard template com-
bined with low-artifact data can provide comparable results to
a study-specific template [40], unless a disease group is being
studied [41]. However, we also found that the standard template
was much sharper than the study template, so the consequent
differences in white matter masks may have also been a fac-
tor. Furthermore, there were significant structural differences
between the template that may have influenced the results, for
example, in the pattern of significant results in the fornix. The
study template results in the fornix were perhaps more anatom-
ically plausible, as they followed the trajectory of the bundle,
while the standard template results were not significant in those
voxels with the largest magnitude deformation.

The biological significance of the results can also be related
to previous studies of white matter aging. The pattern of the re-
sults supports the anteroposterior gradient and frontocerebellar
synergism hypotheses of aging [69]. The specific findings in the
genu, anterior pericallosal white matter, fornix, and spelenium



are consistent with previous work [70] [71] [72]. The results in
the cerebellum also support recent findings in the superior cere-
bellar peduncles [73], perhaps adding related findings in the
middle cerebellar peduncle. One general concern with the re-
sults, however, is the effect of partial voluming, which may con-
found microstructural changes with volumetric changes, partic-
ularly in the fornix [74] [75]. Another consideration is the lim-
itations of the aging population, specifically, the maximum age
of 65 years, which is less than some previous studies [69].

Limitations and Open Problems
It is also worth discussing the design of the study. In par-

ticular, the experiments were designed to control for a number
of potential biases that could severely effect the results, such as
dataset, preprocessing steps, and registration algorithm. This
allows us to more certainly attribute the observed differences
in reliability and predictive modeling to the choice of spatial
mapping algorithm and not to other factors. This is a some-
what stronger result than could be gained by summarizing the
results of multiple studies, which inevitably have major differ-
ences in data and implementation. However, the major limita-
tion of this design is that only one factor of the pipeline was
studied, and the results possibly depend on variation in these
other factors, e.g. registration algorithm. A full factorial design
is quite challenging due to the increasing number of choices
available at each step of the pipeline; however, it is likely a fruit-
ful avenue of research to pursue. Looking beyond voxel-based
analysis, it would also be tremendously valuable to expand this
kind of evaluation to include tractography-based spatial map-
ping. However, a similar challenge is posed by the vast number
of methods currently in use, as each tractography reconstruc-
tion is a complex product of diffusion modeling, image interpo-
lation, seed and selection masks, and termination criteria.

The results of this study are also somewhat limited with re-
spect to the VBA smoothing step. Only a single bandwidth and
smoothing technique were tested, but a variety of approaches
can be found in the literature [76] [77] [78]. While the effect
of smoothing bandwidth has been well studied [33] [34], a rel-
atively less understood aspect is the effect of filter type and the
filtering domain. For example, smoothing can be done with
a variety of types of filters, including Gaussian, median, and
anisotropic filtering, and unlike some other modalities, there
are several possible filtering domains, such as the diffusion-
weighted signals, the diffusion models fitted to the signal, or
scalar features derived from the models. Smoothing in the sig-
nal domain is attractive for the theoretical guarantees of lin-
ear systems and sampling theory, but it not commonly used in
VBA, perhaps due to challenges inherent to reorienting q-space
data after registration. Model-based smoothing of tensors can
possibly preserve anisotropy and fiber orientation [79]; how-
ever, the most common approach is to smooth in the feature
domain [80]. Previous work has also shown that anisotropic
smoothing in particular can offer improved accuracy and sen-
sitivity [81]. This study aimed to represent the most common
technique of feature-domain Gaussian smoothing with a band-
width that is comparable to previous studies with comparable
voxel size [82] [83] and recommended in a previous evaluation

[36]; however, there remain many questions to answer related
to these aspects of smoothing in VBA.

5. Conclusion

In conclusion, this paper presented a comparative evalua-
tion of methods for voxel-based spatial mapping as measured
by scan-rescan reliability and sensitivity to normal aging. The
results show reliability depends greatly on the method of spa-
tial mapping, as well as anatomical location. The largest dif-
ferences were found when adding smoothing and comparing
single voxel and region-based methods. In contrast, skele-
tonization and template type were found to have either a small
or negligible effect on reliability. The aging results showed
agreement among the methods in nine brain areas, although
some methods were more sensitive than others. Skeletoniza-
tion and smoothing were not found to change sensitivity to ag-
ing; however, template type had a small but significant effect.
In comparing templates, the results show how a standard tem-
plate can provide acceptable performance compared to study-
specific templates when analyzing a healthy population, but
also, how structural differences between the them can may be
reflected in the patterns of significant results. The results also
show how sensitivity to aging is limited by the spatial extent
of the method, and whether these effects are small and local-
ized or distributed in nature. These reliability results may help
in the design and interpretation of future studies, as they in-
dicate care must be taken to establish baseline reliability and
statistical power of a study based on the specific anatomical
hypotheses and method of spatial mapping. The results of the
aging application may also help to understand how the choice
of spatial mapping method affects sensitivity in white matter
imaging studies. To further this goal, the complete results of
this study are available for download from the following link:
https://doi.org/10.7301/Z0ZC80SW
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P. B. Barker, S. Mori, A. Horská, Diffusion tensor imaging in children and
adolescents: reproducibility, hemispheric, and age-related differences,
NeuroImage 34 (2) (2007) 733–742.

[31] U. Hakulinen, A. Brander, P. Ryymin, J. Öhman, S. Soimakallio,
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[83] R. Pérez-Iglesias, D. Tordesillas-Gutiérrez, G. J. Barker, P. K. McGuire,
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