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We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume
fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of
brain white matter. This is a model-based image processing technique in which representative fiber models
are estimated from collections of component fiber models in model-valued image data. This extends prior
work in nonparametric image processing and multi-compartment processing to provide computational tools
for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on
multi-compartment processing, this approach is based on directional measures of divergence and includes
data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex an-
atomical features in clinical datasets analyzedwith the ball-and-sticksmodel, and our framework's data-adaptive
extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate
our approach with both synthetic data from computational phantoms and in vivo clinical data from human sub-
jects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume
fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first
show improved scan–rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean
length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-
fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our
multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lat-
eral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fas-
ciculus I, II, and III.

© 2015 Elsevier Inc. All rights reserved.
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Introduction

DiffusionMR imaging provides an in-vivoprobe of tissuemicrostruc-
ture that enjoys numerous applications to neuroscience and clinical
studies. This is due to its unique ability to image local patterns of
water molecule diffusion, which reflect physical properties of biological
tissue (Basser and Pierpaoli, 2011). These patterns enable the quantifi-
cation of brainwhitemattermicrostructure, as diffusion exhibits anisot-
ropy due to the geometry of neuronal axon projections (Pierpaoli and
Basser, 1996). This is useful for making local measurements of fiber
orientations through diffusion modeling (Vos et al., 2013) and more
global fiber bundle reconstructions through tractography (Catani et al.,
2002; Wakana et al., 2007). In addition, atlas-based reconstructions
can reveal population-wide features of anatomy and serve as a refer-
ence for comparing individuals (Mori et al., 2009). Both tractography
and population-based atlasing are applications that depend on a number
e Department Brown University
of basic image processing tasks, including interpolation, smoothing, and
fusion (Lenglet et al., 2009). For tractography, interpolation is needed
when determining fiber orientations off the voxel grid, and smoothing
is needed to control errors due to noise and other image artifacts.
For atlas construction, interpolation is needed to resample images into
a common space, and fusion is needed to derive a composite image
from a population. This paper develops and evaluates methods for
performing these tasks with support for multiple distinct fibers, which
are important for resolving complex sub-voxel fiber configurations due
to crossings and partial volume effects (Tuch et al., 2002).

In particular, the goal of this work is to develop and evaluatemethods
for model-based image processing that are useful for interpolation,
smoothing, and fusion tasks with the multi-compartment ball-and-
sticks diffusion model. For this, we derive a kernel regression framework
for estimating fiber orientation mixtures, which represent multiple fiber
orientations per voxel and associated volume fractions. In contrast to
signal-based image processing, this approach estimates fiber models
from a collection of fiber models contained in volumetric parametric
maps. This is accomplished by extending a kernel regression image
processing framework for vector-valued images (Takeda et al., 2007)
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and building on prior work on model-based diffusion MRI processing
(Taquet et al., 2012a; Cabeen et al., 2013).We showhow this formulation
generalizes a variety of tasks and allows for simple data-adaptive exten-
sions for bilateral filtering and model-selection, which may be generally
useful for parametric model-based image processing. Our experimental
evaluation first characterizes performance with computational phan-
toms, and then explores applications to quantitative tractography-based
analysis of fiber bundles and multi-fiber atlas construction.

The rest of the paper is organized as follows. In Sections 2 and 3,
we discuss related work and background material. In Section 4, we
describe our proposed model-based estimator, outline optimization
techniques, and describe its application to streamline tractography. In
Section 5, we describe experimental evaluation of our approach with
computational phantoms and in vivo clinical data. The synthetic data ex-
periments evaluate the performance of our method in relation to fiber
orientations, volume fractions, compartment count, and tractography-
based connectivity. The in vivo data experiments first measure the
scan–rescan reproducibility and reliability offiber bundlesmetrics in in-
dividual subjects. We then build a multi-fiber tractography atlas from
80 healthy subjects to study population-wide properties of white mat-
ter. In Sections 6 and 7, we discuss our results and conclude.

Related work

In this section, we briefly review related work and outline the
distinguishing features of the present approach.

This paper examines a model-based approach for diffusion MRI
processing. This contrasts with signal-based approaches that apply
filters to the vector-valued diffusion-weighted MRIs, while accounting
for factors such as the gradients strengths, directions, and Rician noise
(Becker et al., 2012). Model-based approaches instead operate on
lower-dimensionalmathematical representations of the diffusion signal
(Lenglet et al., 2009). Previous work has developed such approaches for
single diffusion tensors (Pennec et al., 2006) and orientation dis-
tribution functions (ODFs) (Goh et al., 2011; Yeh and Tseng, 2011).
We differ by consideringmulti-compartmentmodels, which are a para-
metric alternative to ODFs with the advantage of compartment-specific
measures and isotropic diffusion modeling. However, two notable
challenges for processing multi-compartment models are model selec-
tion (to determine the number of compartments) and compartment
matching (to solve the combinatorial problem of finding corresponding
compartments among some set of voxels) (Qazi et al., 2009).

The approach is related to some prior work on multi-fiber model-
based image processing. Yap et al. (2011) proposed an approach for
multi-fiber atlas construction with fiber orientations extracted from
ODF peaks, which dealt with similar computational problems but was
not designed for parameteric models. The present work differs by con-
sidering atlas construction with the ball-and-sticks diffusion model and
by relaxing some assumptions on fiber correspondence and fiber
count. The prior work of Taquet et al. (2012a) first explored the idea of
parametric model-based interpolation of multi-tensors and its applica-
tion to tractography and atlas construction, developing a rich framework
for multi-tensor processing based on Gaussian mixture simplification
(Taquet et al., 2014). Our work differs by considering directional mea-
sures of divergence that are compatible with the ball-and-sticks model.
This is necessary because the Burg matrix divergence employed by the
full multi-tensor framework is not well-defined for the anisotropic
stick compartments, so we instead develop a divergence measure
based on the directionalWatson distribution to serve the same purpose.
We also differ by incorporating data-adaptive extensions to support both
bilateral filtering and model selection, in contrast to previous work that
employed only spatial kernel weights and local-maximummodel selec-
tion. Some of the methods presented here have been explored in previ-
ous conference work (Cabeen et al., 2013; Cabeen and Laidlaw, 2014a),
but those included neither the full data-adaptive kernel regression
estimator nor the full experimental results presented here.
Background

Our work focuses on image analysis with multi-fiber ball-and-sticks
diffusion models, which falls into themulti-compartment class of diffu-
sion models (Behrens et al., 2007). This is a multi-tensor constrained to
include an isotropic “ball” compartment and a number of completely
anisotropic “stick” compartments. These constraints allow the model
to achieve good performance for single shell gradients with low b-
value acquisitions at intermediate field strengths (Wilkins et al.,
2015), which are common in clinical applications. The ball compart-
ment can account for isotropic diffusion, and the volume fractions asso-
ciated with each compartment can account for partial volume effects
and mixtures of bundles at crossings. There is also evidence that the
volume fractionmaps provide a quantitativemeasure for clinical studies
(Jbabdi et al., 2010). With this model, the predicted diffusion-weighted
signal S is given by:

S ¼ S0 f 0 exp −dbð Þ þ
XN
j¼1

f j exp −bd g!T
v j

� �2
� �0

@
1
A ð1Þ

for a particular gradient encoding direction g!, b-value b, and baseline
signal S0. This includes N fiber compartments with fiber orientations
‖vj‖=1, fiber volume fraction 0 ≤ fj ≤ 1,∑j = 0

N fj =1, and shared diffu-
sivity d N 0. It's important to note that there is no sign associated with
fiber orientations, so there is an equivalence vj ~ − vj. We use the fol-
lowing parameterization to denote a fiber orientation mixture M with
N compartments: M = {(fj, vj)}j = 1

N . In our experiments, we fit the
model to the diffusion signal with the Bayesian approach of Behrens
et al. implemented in the FSL software library (Jenkinson et al., 2012).

Methods

In this section,we present ourmodel-based kernel regression estima-
tor for fiber orientationmixtures, followed by a description of extensions
for data-adaptive processing. We then outline the necessary optimiza-
tion routines and practical implementation details. Finally, we describe
how this can be applied to deterministic streamline tractography.

Kernel regression estimation

We now formulate our approach for kernel regression estimation of
fiber orientation mixtures, which is the main contribution of the paper.
This builds on the prior work of Takeda et al. on kernel regression image
processing for scalar and vector data (Takeda et al., 2007) and prior
multi-compartment processing (Cabeen et al., 2013; Taquet et al.,
2014). The general idea of kernel regression, however, has also been
proposed in several other contexts as the moving average, kernel
smoothers, etc. (Lehmann et al., 1999). The simplest of such is the
Nadaraya–Watson estimator (NWE) (Watson, 1964), which we focus
on here. Given a collection of data {(xi, yi)}i = 1

C and a desired regression
function ŷ(x0) evaluated at point x0, the NWE assumes a product kernel
density distribution for observed data and takes the regression function
to be the conditional expectation ŷ = E(y|x0). This can be simply
expressed by the following least-squares problem:

ŷ x0ð Þ ¼ argmin
β

XC
i¼1

K xi; x0ð Þ yi−βk k2 ð2Þ

K xi; x0ð Þ ¼ exp − xi−x0k k2=h2
� �

ð3Þ

with a kernel function K and bandwidth parameter h. In practice, larger
values of h produce a smoother estimate. The kernel K can be chosen
from a variety of options, but we use the standard Gaussian. The advan-
tage of this approach is that it makes few assumptions about the
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structure of the data and consequently generalizes well to a number of
tasks. In particular, Takeda et al. (2007) presented a general framework
for image processing based on this approach, showing it can be used for
interpolation, smoothing, and fusion. The goal here is to further extend
this approach to model-based estimation of fiber orientation mixtures
(Fig. 2).

The primary limitation of the standard kernel regression approach is
the assumption of vector-valued images, for which the Euclidean dis-
tance ‖x − y‖ is a reasonable measure of discrepancy. This assumption
breaks down for diffusionmodel-valued image data due to various con-
straints and the non-Euclidean geometry of the models, e.g. fiber vol-
ume fractions and orientations. This issue can be addressed by instead
considering a model-based measure of discrepancy dm

2 and by
performing optimization over the constrained space of models. Given
an input position p0 and local neighborhood of data {(pi, Mi)}i = 1

C with

Mi ¼ fð f i j; vi jÞgNi

j¼1 , we formulate this extended estimator M̂ðp0Þ as

follows:

M̂ p0ð Þ ¼ argmin
M

XC
i¼1

Kp pi;p0ð Þd2m Mi;Mð Þ ð4Þ

Kp pi; p0ð Þ ¼ exp − pi−p0k k2=h2p
� �

ð5Þ

given a positional bandwidth parameter hp. We denote the neighbor-
hood size here as C, and in practice, we choose a neighborhood suffi-
ciently large to include three standard deviations of the Gaussian
kernel, e.g. a 7 × 7 × 7 window of 1 mm3 voxels for hp =1mm.We de-
fine the model-based discrepancy dm

2 for fiber mixtures as follows:

d2m M; M̂
� �

¼ min
π

X
j

f jd
2
f v j; v̂π jð Þ
� � ð6Þ

given a single fiber distance df
2:

d2f v; v̂ð Þ ¼ 1− v � v̂ð Þ2 ¼ sin2 θð Þ: ð7Þ

The above definition of dm2 is a matching-based distance that accounts
for the combinatorial structure of the model by minimizing the sum-
squared distances across all possible matching functions π between com-

partments inM and those inM̂. This formulationhappens to allowefficient
optimization and makes no assumptions on compartment ordering or
total count. Both dm

2 and df
2 also have interesting relationships to statistical

measures of divergence, which are discussed in the Appendix A.

Data-adaptive extension: model selection

The estimator puts no constraints on the complexity of the estimat-
ed model, so some mechanism is needed to perform model selection.
One solution is to choose a fixed number of compartments; however,
this can overestimate in some areas and underestimate in others.
Data-driven approaches can instead use the fiber counts from the local
neighborhood to estimate the model complexity, e.g. the local-
maximum estimator used in prior work (Taquet et al., 2014). Another
more conservative data-driven approach is to use the average fiber
count (rounded to the nearest integer). We propose another data-
driven approach that works by extending the estimator in Eq. (4) to in-
clude a regularization term for the number of compartments N:

M̂ p0ð Þ ¼ argmin
M

XC
i¼1

Kp pi;p0ð Þd2m Mi;Mð Þ þ λN ð8Þ

given a regularization parameterλ. Thegoal of this approach is to choose
the fiber count that best supports the fiber orientation data in the local
neighborhood, rather than just the counts. In later experiments, we
compare these different model selection approaches to assess their
strengths and weaknesses.

Data-adaptive extension: bilateral filtering

In addition to performingmodel selection, the estimator can be sim-
ply modified to allow for bilateral filtering. The goal here is to avoid
blurring interesting features at boundaries of anatomical structures.
This issue has been studied for standard kernel regression estimators,
and one solution is to include additional weights that reflect similarity
between data values (Takeda et al., 2007; Hamarneh and Hradsky,
2007).We include this idea by adding a data-adaptive factor as follows:

M̂ p0;M0ð Þ ¼ argmin
M

XC
i¼1

Kid
2
m Mi;Mð Þ þ λN ð9Þ

Ki ¼ Kp pi;p0ð ÞKm Mi;M0ð Þ ð10Þ

Km Mi;M0ð Þ ¼ exp −d2m Mi;M0ð Þ=h2m
� �

ð11Þ

given a bandwidth parameter hm and a reference model M0.
This can be optimized with the same routines as Eq. (8); however,

it is more computationally costly because the adaptive kernel weights
Km cannot be precomputed like the spatial kernel weights Kp. For
voxelwise smoothing, the reference can be the original input model;
for tractography, it can be themodel from the previous step in tracking;
for interpolation, it can be the estimate without the bilateral factor Km.

Optimization

Next, we describe optimization routines for the proposed estimator
and outline some practical issues for implementation.

The estimator in Eq. (8) involves an optimization problem in which
theweighted sumofmodel-based distancesmust beminimized, subject
to a regularization term for model selection. Substitution of dm and df
gives a simpler form:

M̂ pð Þ ¼ argmax
M;π

XC
i

XNi

j

ki f i j vi j � v̂π i jð Þ
� �2 þ λN ð12Þ

given the kernel weights ki in Eq. (10). This is equivalent to solving the
weighted axial DP-means clustering problem (Cabeen and Laidlaw,
2014b), which is similar to the k-means algorithmwith two extensions.
First, clustering is performed with axial variables (Sra et al.), which are
equivalent to fiber orientations. Second, the number of clusters is
estimated from the data as in the DP-means algorithm, a name derived
from its relation to Dirichlet Process mixturemodels (Kulis and Jordan).
An iterative algorithm for solving this is presented in Algorithm 1, and
further discussion is in the Appendix A.

The full procedure for using the estimator is summarized in Fig. 1
and detailed in Algorithm 2. This process proceeds by first collecting
fiber models in a local neighborhood of the point of estimation, then
kernel weights are computed by the product of spatial and data-
adaptive factors. These weights are normalized to sum to one and
then distributed among the fiber compartments of each model. The
above clustering problem is then solved to estimate the output number
of compartments, fiber orientations, and volume fractions. A summary
of the algorithms parameters is shown in Table 1.

There are also some practical issues to note when implementing
this. First, the procedure is only guaranteed to find a local minima,
which depends on the starting conditions. This can be helped by
performing several random restarts and taking the solution with the
overall minimum, e.g. 10 restarts with shuffling in our implementation.
Theremay be some rare configurationswhere theminimum is notwell-
defined, e.g. strictly orthogonal fibers. If this occurs, the known model
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Fig. 1.A flowchart illustrating the steps in the proposedmethod, detailed in Algorithm 2. The input is a position for estimation andmodel-valued volumetric data. Then, kernel weights are
computed from the product of spatial and data-adaptive factors and normalized to sum to one. Then, weights are distributed among the fiber compartments and multiplied by volume
fraction. Finally, the estimated model is found by a clustering-based optimization procedure, detailed in Algorithm 1.
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with highest weight can be chosen; however, we check for this condi-
tion and never encountered it in practice. Finally, the kernel weights
must be normalized by their total sum, as this ensures that the total vol-
ume fraction of the fiber compartments is conserved and the estimated
model volume fractions also sum to one.
Tractography

We applied the above estimator to deterministic tractography using
a generalization of the standard streamline approach to account for
multiple fibers. In the standard approach, a fiber trajectory is considered
a 3D space curve whose tangent vector is equated with the fiber orien-
tation of the voxelwise diffusion models. This process proceeds by
evolving a solution to a differential equationwith some initial condition
at a given seed position. Typically, some geometric criteria are also used
to stop and exclude fibers, including angle threshold andminimum and
maximum length (Zhang et al., 2003).

This approach must be adapted when multiple orientations are
present (Qazi et al., 2009), andwe use the followingmodifications. Dur-
ing tracking, one of the N possible fiber compartments must be chosen
for the next step, sowe choose thefiberwith the smallest angular differ-
ence to the previous step, among those below a given angle threshold.
We also incorporate additional volume fraction termination criteria,
where tracking is stopped if the volume fraction of the chosen fiber
compartment is below a given threshold. Finally, we use the proposed
model-based estimator for interpolation and smoothing during track-
ing. We also retain the volume fraction parameter during tracking in
order to estimate statistics across fiber bundles.
Experiments and results

This section describes the evaluation of ourmethodwith four exper-
iments, including a discussion of the datasets, experimental design,
evaluation metrics, and results in each experiment. Two synthetic data
experiments were conducted with computational phantoms to assess
the ability of clustering-based optimization to match compartments
and also to measure performance of our proposed model selection and
bilateral filtering extensions. Two in vivo data experiments were con-
ducted with clinical scans to assess the practical benefits of our ap-
proach in modeling human brain white matter fiber bundles. The first
investigated scan–rescan reliability of quantitative fiber bundlemetrics,
Table 1
A summary parameters used for estimation, including a range of values found in our evaluatio

Symbol Name Description

hp Spatial bandwidth Specifies the
hm Data-adaptive bandwidth Specifies the
λ Regularization Specifies how
Kmax Maximum complexity Specifies an u
and the second investigated population-level features of white matter
by constructing a multi-fiber tractography atlas from 80 subjects.

All statistical analysis was performed using R 3.1.1 and ggplot2
(Wickham, 2009). Unless stated otherwise, the estimation parameters
were hp = 1.5 mm, hm = 0.5, λ = 0.99, and the kernel support radius
was 5 voxels. All experiments fit two-fiber compartment ball-and-
sticks diffusion models with the Markov-Chain Monte-Carlo procedure
implemented in FSL XFIBRES (Behrens et al., 2007).

Datasets and preprocessing

Synthetic datasets
We generated datasets from two types of computational phantoms,

which were defined and synthesized with the ball-and-sticks diffusion
model as follows.

The first type of phantom represents a complex boundary between
fiber bundles for voxel-based analysis. The phantom included two fibers
per voxel and represented two adjacent and perpendicular bundles
with a fixed volume fraction of 0.4 with a third bundle that crosses
bothwith a volume fraction varied between 0.2 and 0.4. This left an iso-
tropic volume fraction of 0.2 to 0.4, depending on the condition.
Diffusion-weighted images were synthesized with with S0 = 10,000,
d = 0.0017 mm2/s, 1 mm3 voxels, and dimensions 30 × 30 × 5.

The second phantom represents a more complex set of bundles for
both voxel-based and connectivity-based analysis. This included three
bundles with a crossing and branching structure. Diffusion-weighted
images were synthesized with S0 = 10,000, d = 0.0017 mm2/s,
1 mm3 voxels, and dimensions 71 × 71 × 15, as described in Leemans
et al. (2005).

All images were synthesized with seven baseline volumes, 64
diffusion-weighted volumes with b-value 1000 s/mm2 to match the
clinical imaging data. Rician noise was introduced by adding Gaussian
noise with standard deviation σsynth to the complex signal and taking
the modulus, using Camino (Cook et al., 2006). Noise level is reported
by the signal-to-noise ratio in decibels, SNR(dB) = 20 log10(S0/σsynth).

Human brain datasets
Clinical data included diffusion-weighed volumes acquired from

healthy volunteers with a GE 1.5 T scanner with a voxel size of 2 mm3

and image size 128 × 128 and 72 slices. For each volunteer, a total of
71 volumes were acquired, with seven T2-weighted volumes (b-
value = 0 s/mm2) and 64 diffusion-weighted volumes with distinct
n and experiments.

Range

size of the region used for estimation 1.0–3.0 mm
sensitivity to local data structure 0.3–0.6
conservative the model selection should be 0.99–0.9999
pper bound on the number of fiber compartments 2–3

Image of Fig. 1
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Fig. 3. The phantom used in the first experiment in the section on Synthetic data experi-
ment with boundary phantom. This represents a complex boundary between fiber bun-
dles and includes “off-boundary” and “on-boundary” regions-of-interest.
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Fig. 2. Example uses of the proposed estimator for interpolation, smoothing, and fusion
tasks. Slices were taken from average human brain data at the junction of the corpus
callosum (pink), corona radiata (blue), and cingulum(green). Fibers are colored according
to their orientation, and thickness encodes volume fraction. The top panel shows interpo-
lation at twice the original resolution, demonstrating continuity of both fiber orientations
and volume fractions. The middle panel shows smoothing to reduce noise-induced angu-
lar error. The bottom panel shows fusion of 80 aligned subjects to produce an atlas
representing the population.
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gradient encoding directions (b-value = 1000 s/mm2). 80 volunteers
were scanned with ages ranging between 25 and 65 years and roughly
equal numbers between sexes. An additional five volunteers were
scanned with three repetitions each to assess scan–rescan reproducibili-
ty and reliability. The noise level was estimated to be 22.05 dB using two
manually drawn regions-of-interest and the Rician corrected method in
Dietrich et al. (2007), SNRstdvðdBÞ ¼ 20 log10ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−π=2

p � μ̂ tissue=σ̂airÞ.
Diffusion-weightedMRI datawas preprocessed using FSL (Jenkinson

et al., 2012) as follows. First, the diffusion-weighted MRIs were
corrected for motion and eddy current artifacts by affine registration
to the first T2-weighted volume using FSL FLIRT with the mutual infor-
mation cost function. The gradient encoding directions were rotated
to account for the alignment (Leemans and Jones, 2009), and non-
brain tissue was removed using FSL BET.

The 3 × 5 scan–rescan volumes were used for assessing reproduc-
ibility and reliability in the third experiment. For the fourth experiment,
a diffusion tensor atlas was constructed from the other 80 subjects. This
was done by first fitting single tensor models using FSL DTIFIT and then
constructing a population-specific template by deformable tensor regis-
tration using DTI-TK (Zhang et al., 2007a, 2007b). The resulting defor-
mation fields were retained for creation of the multi-fiber atlas, and
the single tensor atlas was retained for comparison.
Fig. 4. Qualitative results from the first experiment described in the section on Synthetic
data experiment with boundary phantom. The first panel shows the ground truth phan-
tom at the boundary voxels. The second panel shows fibers fit after adding Rician noise
at SNR = 21.5. The third and fourth panels show smoothing results using linear (Eq. (4))
and bilateral (Eq. (9)) kernel weights. The results show that both estimation techniques re-
duce noise-induced angular error; however, adaptive estimation can avoid the orientation
blurring at the boundary voxels, due to the inclusion of the Km kernel weights.
Synthetic data experiment with boundary phantom

Design
The first experiment was conducted with the boundary phantom

(shown in Fig. 3) and was designed to test the fiber matching and
bilateral filtering features. For this, we defined two regions of
interest: an “on-boundary” two-voxel window, and the remaining
“off-boundary” voxels. The proposed estimator was compared to a so
called “rank-based” estimator, which is meant to serve as a point of
comparison to evaluate compartment matching. This rank-basedmeth-
od sorts fibers in each model based on their volume fraction, and then
each compartment is processed independently as if it were a multi-
channel volume. We hypothesized that this rank-based approach
would introduce greater angular errors than our approach. To test per-
formance relative to previous work, we also compared the bilateral
estimator (Eq. (9)) to one with only spatial weights (Eq. (4)), which
we will refer to as “linear”. We hypothesized that the bilateral factor
would have lower error at the boundary between bundles. In each con-
dition, we introduced noise and measured deviation from the ground
truth with evaluation metrics similar to Ramirez-Manzanares et al.
(2011). For this, fibers were matched to the ground truth, and the
total angular error and volume fraction error was computed in each
voxel and averaged within each region of interest. SNR was varied
from 15 to 25, the data-adaptive bandwidth parameter hm was varied
from 0.1 to 1.0, and crossing bundle volume fraction was varied from
0.2 to 0.4. Each condition was repeated 20 times to obtain the sample
mean and uncertainty. To exclude effects related to model selection,
the number of fiber compartments was assumed to be known and
fixed at two; however, the next experiment investigates performance
of the model selection component.

Image of Fig. 4
Image of Fig. 3
Image of Fig. 2
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Results

Results are shown in Figs. 4 and 5. We found that isotropic and fiber
volume fraction errorwas similarly lowered in allmethods; however the
rank-based method had slightly lower error on-boundary. We found
rank-based orientation error to be significantly higher than the other
methods in all cases. We found both linear and rank-based to introduce
Fig. 5. Results from thefirst experiment in the section on Synthetic data experimentwith bound
each plot shows either orientation or volume fraction error rates. The plot titles also show the
from15 to 25, comparing the noisy, rank-based, linear, and adaptive estimation conditions (with
with rank-based estimation performing slightly better with on-boundary fiber fractions.We see
bundle volume fractions are within 0.05 apart. We also see that linear estimation introduces hig
sweeping across the data-adaptive parameter hm, we see that a local minima in orientation err
significant orientation error at the boundary, exceeding that of noise for
SNR N 20. Bilateral filtering significantly reduced the error on-boundary
with a negligible increase elsewhere. Upon varying the adaptive band-
width,we founderror had a localminimawith goodoverall performance
from0.3 to 0.5, depending on the SNR. Upon varying the crossing bundle
fraction,we found rank-based estimation to introduce very high orienta-
tion error when the bundle volume fractions were within 0.05.
ary phantom. The labels on the left indicate the regionwhere results were aggregated, and
volume fraction of the compartments (f1 and f2). The top two rows show results with SNR
hp=1.5 and hm=0.5).We see that allmethods performwell at reducing volume fraction,
that rank-based estimation rates poorly in orientation error, particularly in regionswhere
h orientation error in on-boundary voxels, while adaptive estimation avoids this issue. By
or occurs between 0.3 and 0.5, depending on the SNR.

Image of Fig. 5
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Synthetic data experiment with bundle phantom

Design
The second experiment was conducted with the bundle phantom

(shown in Fig. 6) andwas designed to test themodel selectionmethods
and to assess performance in connectivitymapping. The adaptivemodel
selection (Eq. (8)) techniquewas compared with the following alterna-
tives: “fixed” (always two fibers), “mean” (rounded local average num-
ber of fibers), and “max” (local maximum of fiber count, like (Taquet
et al., 2014)). We tested both voxel-wise errors and tractography-
based connectivity errors. Voxel-wise conditions measured orientation
error, volume fraction error, and also “missing” and “extra” fibers
error (Ramirez-Manzanares et al., 2011). We also tested connectivity
measures derived from deterministic streamline tractography. For this,
we manually delineated volumetric masks representing “white matter”
along bundle trajectories and “gray matter” regions at bundle end-
points. These gray matter masks were used to seed deterministic
tractography, and the resulting tracks were then compared to theman-
ually delineated ground truth. For each bundle, we assessed perfor-
mance by measuring the valid fiber rate (fraction of seeds that reach
their intented target) and the Dice overlap coefficient D(A, B) =
2(A ∩ B)/((A) + (B)), given bundle mask A and ground truth B (Dice,
1945). Tractography was performed with 5 seeds per voxel, step size
0.5 mm, 45° angle threshold. Noise was varied from 15 to 25, and the
regularization parameter was varied across seven levels, which are
listed in Fig. 8. Tractography was performed with nearest-neighbor
interpolation as a baseline, and rank-based esimation was also per-
formed in all conditions for comparison.Wehypothesized thatmean se-
lection would be most conservative and adaptive selection would
improve connectivity mapping and help control extra fiber error while
Rank-based

Region of Interest

Fig. 6.Results from the second experiment in the section on Synthetic data experimentwith bun
three panels show tractography using nearest-neighbor, rank-based, and adaptive estimation (
entation error and compartment count error.We also compare to the rank-based approach,whi
ing region. Adaptive estimation can improve both of these issues through smoothing and clust
not significantly increasing missing fiber error. All conditions were re-
peated twenty times to measure the sample mean and uncertainty.

Results

Results are shown in Figs. 6, 7, and 8. We found similar results for
isotropic volume fraction as Exp. 1. Volume fraction error was signifi-
cantly higher in fixed and max selection, with linear and adaptive
performing best. Orientation error was reduced in all conditions with
adaptive selection performing best by a small margin. Fixed and max
selection showed very high extra fiber error with linear and adaptive
performing best. Fixed and max selection had the lowest missing fiber
error, with adaptive selection being slightly higher. For tractography-
based measures, rank-based estimation performed poorly, and nearest
and linear selection were better and comparable to each other. We
found adaptive, max, and fixed to perform very well, with adaptive
performing slightly better in most cases. Upon varying the regulariza-
tion parameter, we found orientation error, fraction error, and
tractography performance to be rather stable, but the extra andmissing
fiber error varied somewhat. This variation, however, was small com-
pared to the errors introduced with max and fixed selection. After
inspecting the results, we found max and fixed selection to be sensitive
to noise and problems in model fitting, resulting in over-estimated
model complexity such as “fiber splitting”, shown in Fig. 7.

In vivo data experiment for individual subjects

Design
The third experiment tested the reproducibility and reliability of

quantitative tractography metrics obtained with the proposed
Nearest-neighbor

Adaptive

dle phantom. The first panel shows the phantomand region-of-interest, and the following
SNR= 14). We see that that nearest neighbor includes early terminations due to high ori-
ch createsmany spurious connections due to poormatching of compartments in the cross-
ering-based compartment matching.

Image of Fig. 6
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Fig. 7.Results from the second experiment in the section on Synthetic data experimentwith bundle phantom. The first panel shows the phantomand region-of-interest, and the following
three panels show tractography results using nearest neighbor interpolation, local-maxmodel selection, and adaptive model selection (Eq. (8)). This shows how local-max selection can
sometimes introduce “fiber splitting” due to noise (SNR 16.5 shown). Adaptive selection can reduce this effect, resulting in smoother streamline curves and lower orientation and volume
fraction errors (see Fig. 8).
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method in in vivo human brain data. For this, we extracted fiber bun-
dles from the scan–rescan dataset, including the following struc-
tures: anterior thalamic radiation (atr), cingulum bundle (cing),
inferior longitudinal fasciculus (ilf), and uncincate fasciculus (unc)
in each hemisphere. Fiber bundles were selected from whole-brain
streamline tractography using a multiple region-of-interest ap-
proach guided by anatomical references (Catani and De Schotten,
2008; Zhang et al., 2010). For each bundle, three masks (two inclu-
sion, one exclusion) were manually delineated in the population
specific atlas with ITK-SNAP (Yushkevich et al., 2006) and then
deformed to each subject. Tractography was performed with the
following methods: nearest-neighbor interpolation, rank-based
estimation with fixed selection, linear estimation with fixed selec-
tion, linear estimation with max selection, and our proposed adap-
tive kernel-based estimation. Tracking parameters included two
seeds per voxel, and angle threshold 45°, step size 1.0 mm, minimum
volume fraction 0.1, and minimum length 10 mm.

We computed four metrics for each bundle: the mean length, mean
volume fraction, total volume, and streamline count. Reproducibility
and reliability were measured with the coefficient of variation (CV)
and the intra-class correlation coefficient (ICC). The CV was measured
by σs/μs and averaged across subjects, given the within-subject mean
μs and standard deviation σs. A lower CV score indicates higher repro-
ducibility and has units that are normalized to allow comparison across
bundle metrics. The ICC was measured by σb

2/(σb
2 + σw

2), given the
between-subjects variance σb

2 and within-subjects variance σw
2. A larger

ICC indicatesmore variance between subjects thanwithin subjects. This
takes a maximum value of one, and values above 0.75 indicate high re-
liability. The implementation used the R ‘ICC’ package (Wolak et al.,
2012).
Results

Results are shown in Fig. 9. We found that linear and adaptive
kernel-based estimation generally had lower or roughly equal scan–
rescan error (CV) compared to other methods. With adaptive estima-
tion, bundle length had a CV of 3.56%, streamline count had a CV
of 10.37%, total volume had a CV of 8.01%, and mean volume frac-
tion had a CV of 2.3%. We found that linear and adaptive estimation
had the highest reliability (ICC) in all cases. With adaptive estimation,
total volume had an ICC of 0.88, fiber count had an ICC of 0.88, bundle
length had an ICC of 0.84,and mean volume fraction had an ICC of
0.72. Mean volume fraction had good and similar performance across
all methods. We also found that given the same number of seed points,
linear and adaptive estimation both had a much greater number of
surviving streamlines than either nearest-neighbor or rank-based
estimation.

In vivo data experiment for atlas construction

Design
The fourth experiment examined the construction of a multi-fiber

tractography atlas with the 80 subject population. For this, we used
the deformation fields computed with DTI-TK to resample the multi-
fiber models to diffusion atlas space. Interpolation was performed
using our approach, and fibers were reoriented by the local Jacobian
and normalized to unit length, i.e. Jv/‖Jv‖ given Jacobian J and fiber ori-
entation v. Multi-fiber fusion was then performed with our method to
produce an average volume to represent the population. For compari-
son, standard single tensor tractographywas performed in the diffusion
tensor atlas with a minimum fractional anisotropy of 0.15. The single

Image of Fig. 7


Fig. 8. Results from the second experiment in the section on Synthetic data experiment with bundle phantom using the phantom shown in Fig. 6. Evaluation was first performed bymea-
suring voxel-wise orientation error, volume fraction error, missing fiber error, and extra fiber error (lower is better). Tractography-based evaluation was performed to evaluate perfor-
mance in connectivity mapping using the Dice coefficient and fraction of valid connections (higher is better). Several methods for model selection were compared including: fixed
count, local-max selection, mean selection, and our proposed adaptive selection. We also included rank-based estimation and nearest neighbor interpolation to serve as a baseline. The
top two rows show performance across noise levels from SNR 15 to 25. We see that adaptive estimation provided significantly lower orientation error than other methods. Across all
noise levels, fixed and local-max selection introduced a high volume fraction error and extra fiber error, due to “fiber-splitting”. Adaptive performance significantly reduced these errors
with a slight increase inmissing fiber error.We also varied the regularization parameter and plottedwith semilog axes, x= log10(1− λ).We found performance to be acceptable between
λ = 0.99 and 0.9999, with a tradeoff between extra and missing fiber error.
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tensor atlas was created with the deformable registration algorithm in
DTI-TK using finite strain tensor reorientation and the deviatoric tensor
similarity metric (Zhang et al., 2007a, 2007b). In both atlases, major
fiber bundlesweremanually delineated fromwhole brain tractography.
For the multi-fiber atlas, the corpus callosum and superior longitudinal
fasciculus I, I, and III were interactively tracked andmanually delineated
with guidance from atlas-space averaged Freesurfer gray matter labels.
The lateral projections of the corpus callosum were selected based on

Image of Fig. 8
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Fig. 9.Quantitative results from the third experiment described in the section on In vivo data experiment for individual subjects. Scan–rescan reproducibility and reliabilityweremeasured
for fiber bundlemetrics of eight fiber bundles. Reproducibility wasmeasuredwith the coefficient of variation (CV), which gives a normalizedmeasure of error across scans. Reliability was
measuredwith the intra-class correlation (ICC), which indicates the proportion of total variation that exists between subjects. A lower CV and a high ICC are preferable, with an ICC above
0.75 being highly reliable. The top row shows reference visualizations of the bundles. The middle row shows results by bundle type, with aggregation across bundle measures and hemi-
sphere. The bottom row shows results by bundle measure, with aggregation across bundle type.We found linear and adaptive estimation to show an improvement in nearly all cases by
the ICC metric and improvement in most cases by the CV metric.
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left and right lobular regions. The superior longitudinal fasciculus I, II,
and III were delineated by selecting connections between parietal cor-
tex and superior, middle, and inferior subdivisions of frontal cortex,
respectively.

Results

Visualizations of the results are shown in Figs. 10 and 11. We found
the multi-fiber atlas to include nearly all features of the major bundles
in the single tensor atlas. In addition, the multi-fiber atlas included
more complete anatomical features of several bundles. In particular,
the arcuate fasciculus included projections to inferior frontal gray
matter, and the corpus callosum included lateral projections connecting
the left and right hemispheres of frontal gray matter. We also found
reconstructions of the three portions of the superior longitudinal fascic-
ulus (De Schotten et al., 2011),which included crossingswith numerous
other bundles. We found the superior longitudinal fasciculus I crossed
the corona radiata and superior projections of the corpus callosum.
The superior longitudinal fasciculus II was found to cross the frontal lat-
eral projections of the corpus callosum. Slice-based visualizations in
Fig. 11 show examples of other crossings found in the multi-fiber
atlas, including an axial slice of the brainstem and a sagittal slice of the
corona radiata.

Discussion

In two synthetic data experiments, we evaluated the major features
of our approach, including compartment matching, model selection,

Image of Fig. 9
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Fig. 10. Results from the fourth experiment described in the section on In vivo data experiment for atlas construction, which included the construction of a multi-fiber atlas of 80 normal
human subjects. Our proposedmethod was used for interpolation and fusionwith deformation fields computed by DTI-TK. The top panel (A) shows a comparison ofmajor bundles in the
standard single-tensor atlas and our proposed the multi-fiber atlas. Bundles include the corona radiata (green), inferior longitudinal fasciculus (blue), inferior fronto-occipital fasciculus
(orange), uncinate fasciculus (pink), corpus callosum (red), and the arcuate fasciculus (yellow). We found that the multi-fiber atlas included nearly all features found in the single tensor
atlas andmore complete reconstructions of the frontal projections of the arcuate and lateral projections of the corpus callosum. The bottom panels show tractography results for complex
fiber bundles including the lateral projections of the corpus callosum (B) and fronto-parietal connections of the superior longitudinal fasciculus I, II, and III (C). The detailed view in panel B
also shows a triple crossing inferred at the intersection of the corona radiata, superior longitudinal fasciuculus, and corpus callosum. The three portions of the superior longitudinal fas-
ciculus are also shown in panels A and C and include crossings with the corona radiata and corpus callosum. These reconstructions compare favorably to related work that examined
these bundles in single human diffusion MRI reconstructions, dissection, and tracing studies in non-human primates.
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and bilateralfiltering. To assess performance in compartmentmatching,
we compared our method to the “rank-based”method, which matches
solely based on volume fractions. The first experiment showed how our
approach can avoid large errors that occur with the rank-based estima-
tor when crossing bundles have similar volume fraction. The second ex-
periment showed how this problem arises during tractography, and
how clustering-based matching can avoid the invalid connections of
the rank-based approach. We also showed how orientation blurring
can occur at bundle boundaries when using kernel weights derived
only from spatial information. The first experiment showed how the bi-
lateral filtering extension can reduce this effect by incorporating the
structure of the data into the kernel weights.We also evaluated the pro-
posed data-adaptive approach formodel selection and compared itwith
previously proposed alternatives. We found “max” selection to always
out-perform “fixed” selection and good performance in some cases;
however, we found that both fixed andmax selection can overestimate
the number of fibers in even low noise conditions. These extra fibers
give rise to compartment splitting, which both reduces the expected
volume fraction and introduces orientation errors that are visible in
tractography. We found the data-adaptive approach to reduce this ef-
fect, with only a small increase in missing fiber error. In general, these
synthetic data experiments also showed our approach to significantly
reduce noise-induced errors in fiber orientation and volume fraction
and to improve connectivity mapping.

In the first in vivo data experiment, we examined the practical ben-
efit of our approach for fiber bundle modeling in individual subjects.
We found our approach provided reliable and reproducible results for
quantitative fiber bundle metrics, includingmean length, mean volume
fraction, total volume, and streamline count. Among the measures,
mean length and mean volume fraction performed best. Streamline
count and total volume are perhaps less reliable due to their depen-
dence on the pose and sampling resolution of the voxel grid. While
past work has evaluated length-based measures (Correia et al., 2008),
it is less clear how volume fraction can be used as an index of white
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Fig. 11. Results from the fourth experiment described in the section on In vivo data experiment for atlas construction, which included the construction of a multi-fiber atlas of 80 normal
human subjects. The top row shows principal tensor orientations overlaid on fractional anisotropy, and the bottom row shows fibers from themulti-fiber atlas overlaid on total fiber vol-
ume fraction. Fiber tube thickness reflects fractional anisotropy and per-fiber volume fraction in the top and bottom rows, respectively. The left column (A) shows an axial slice of the
brainstem, demonstrating crossing fibers of cerebellar and pyramidal tracts. The right column (B) shows a sagittal slice demonstrating crossing fibers of the corona radiata and superior
longitudinal fasciculus I.

169R.P. Cabeen et al. / NeuroImage 127 (2016) 158–172
matter (Jbabdi et al., 2010; Jeurissen et al., 2013). The results provide
evidence that fiber bundle volume fraction may be a clinically useful
measure in terms of reproducibility; however, it remains unclear exact-
ly how thismeasure relates to others, such as fractional anisotropy,fiber
orientation dispersion, and apparent fiber density (Raffelt et al., 2012;
Riffert et al., 2014). The scan–rescan results can also serve as a reference
for gauging the significance of group differences of fiber bundle metrics
in clinical imaging studies.

In the second in vivo data experiment, we examined an application
to multi-fiber atlas construction, using our approach for interpolation
during image resampling and fusion.We found the resulting atlas to in-
clude complex fiber bundle features not found in single tensor atlases
(Zhang et al., 2007a). In particular, the results included atlas-based
reconstructions of the superior longitudinal fasciculus I, II, and III, all of
which compare favorably to prior work on single subject reconstruc-
tions, post-mortem dissection, and tracing studies in non-human pri-
mates (De Schotten et al., 2011, 2012; Schmahmann et al., 2007). This
method is potentially useful for constructing population-specific brain
atlases, where it can be used to examine population-wide features of
anatomy or serve as a reference for mapping bundles in individual
subjects.

The software implementation consisted of custom Java code with
experiments run on a Sun Grid Engine to allow for parallelized process-
ing of simulation and human subject data. The fusion algorithm ran on a
single Intel 2.8 GHz Core i5 processor and took 30min for the 80 subject
population. The primary computational bottleneckof this stepwasmain
memory usage, which required 6 GB total. If applied to a larger popula-
tion or with a higher sampling resolution, this issue could be addressed
by decomposing the co-registered volumes into a number of overlap-
ping blocks, performing fusion of each block, and then reconstructing
the full atlas from the results.
There are a number of limitations and interesting open issues
to note. First, we make use of tensor-based registration; however,
some work has found multi-compartment registration to be beneficial
(Taquet et al., 2012b, 2014; Du et al., 2012). Note, however, that dm
is more of a divergence than a strict distance as it is not symmetric,
so this may not be suitable for registration, where inverse-consistency
is desirable. Second, it may be beneficial to investigate applica-
tions to other parametric diffusion models. The bilateral filtering and
adaptive model selection techniques could be similarly applied to the
full multi-tensor framework by substitution of df. The kernel regression
framework could also be applied tomodels that incorporatemicrostruc-
tural information, such as NODDI (Zhang et al., 2012) and ball-and-
rackets (Sotiropoulos et al., 2012). This could be accomplished either
by extending the proposed divergence measure to include variable
Watson κ parameters or perhaps by a more general formulation with
a Bingham divergence. Finally, there is a variety of applications to
which this approach could be applied and further evaluated. Here we
looked at fiber bundle mapping, but this could also be useful for brain
network construction and visualization for surgical planning and
guidance.

The approach is also related to more general image processing
with orientation data, which touch research areas outside of MRI.
Early approaches in directional statistics examined methods for dealing
with axial data, a term more common in the statistics literature that
applies equally well to fiber orientations (Watson, 1982). In computer
vision and graphics, filtering (Aach et al., 2006; Muhlich and Aach,
2009;Westin and Knutsson, 2012; van Vliet and Faas, 2006), anisotrop-
ic diffusion (Perona, 1998) and bilateral filtering (Paris et al., 2004)
have beendeveloped for orientationfields, e.g. in analyzingfingerprints,
hair, or textures. In the diffusion MRI literature, methods for fiber
orientation regularization have also been proposed using Markov

Image of Fig. 11
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random fields (Poupon et al., 2000), variational methods (Coulon et al.,
2004), and cohelicity (Savadjiev et al., 2005). The present work may
have applications to those other areas, but this paper is limited to appli-
cations to neuroimaging with diffusion MRI and the ball-and-sticks
model.

Conclusion

In this paper, we presented and evaluated a model-based kernel re-
gression framework for estimating fiber orientation mixtures from
model-valued image data. This framework generally supports image in-
terpolation, smoothing, and fusion with the ball-and-sticks diffusion
model and is compatible with scanner protocols with standard clinical
field strengths, single shells, and low b-values. The kernel regression
formulation also allows for simple and efficient data-adaptive exten-
sions formodel selection and bilateralfiltering, and these general design
of these components may potentially be applied to image processing
with other multi-compartment parametric models. We experimentally
evaluated our approach with synthetic data from computational phan-
toms and in vivo clinical data from human subjects. First, we showed
that our approach can address issues related to compartment matching
and model selection, and can avoid orientation blurring at bundle
boundaries and fiber splitting due to noise. The evaluation showed sig-
nificant reductions in noise-induced orientation and volume fraction er-
rors and improved reliability in connectivity mapping. Through in vivo
data experiments, we tested the practical value of our approach in ana-
lyzing individual subjects, showing improved scan–rescan reproducibil-
ity and reliability of quantitative fiber bundle metrics. We then
demonstrated the creation of a multi-fiber tractography atlas from a
population of 80 human subjects. In comparison to single tensor
atlasing, our results show more complete features of known fiber bun-
dles and include reconstructions of lateral projections of the corpus
callosum and complex fronto-parietal connections of the superior longi-
tudinal fasciculus. This atlas-based approach could be used to either
study population-wide features of anatomy or to aid fiber bundle map-
ping in individual subjects.
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Appendix A

In the above analysis, we employ df
2(a, b) (Eq. (7)) as a measure of

discrepancy between fiber orientations. This turns out to have some
useful geometric and statistical properties. For example, given an orien-
tation v, consider themappingϕ(v)= vvT, also known as the Veronese–
Whitney embedding, the dyadic product, or Knutsson mapping
(Knutsson et al., 2011; Bhattacharya and Patrangenaru, 2003; Rieger
and van Vliet, 2003). This can be imagined to take points on the sphere
to a higher dimensional sphere and to fold its antipodes to give ϕ(v) =
ϕ(−v). The Euclidean distance under thismapping is then equivalent to
df
2 up to a scalar factor: ‖ϕ(a)−ϕ(b)‖2=2(1− (a ⋅ b)2)=2df2(a, b) The

extrinsicmean is then given byμ ¼ ∑
i
wiϕðviÞ, whichmust be projected

to the nearest orientation by argminv‖ϕ(v)− μ‖2. This can be solved in
closed form by finding the principal eigenvector of μ (Bhattacharya and
Patrangenaru, 2003). This formulation also has a statistical interpreta-
tion, as df2 is equivalent to the Bregman divergence between Watson
distributions of equal dispersion (Garcia and Nielsen, 2010; Cabeen
and Laidlaw, 2014b), and the weighted average is equivalent to the
maximum likelihood estimate of the direction of a Watson distribution
(Sra and Karp, 2013). These results support prior work suggesting a re-
lationship between extrinsic means andmaximum likelihood estimates
for data in ℝℙn (Brun et al., 2007).

A connection can also be drawn between df and prior work using
Gaussian mixture simplification with the Burg matrix divergence,
dburg(A, B) = tr(AB−1)− log(det(AB−1))− 3. While dburg cannot be di-
rectly applied to the sticks due to their low rank, it can be applied to
sticks that are approximated by an “inflated” positive definite tensor
with δ added to the second and third eigenvalues. If this approach is ap-
plied to a pair of stick orientations a and b to produce inflated tensors
Ainf and Binf, then dburg can be reduced to dburg(Ainf, Binf) = (δ + 1/δ −
2)sin2(θ), given angle θ between a and b. If δ ¼ ð3−

ffiffiffi
5

p
Þ=2 , then

dburg(Ainf, Binf) = df
2(a, b), so the use of Gaussian mixture simplification

with inflated sticks is then equivalent to the “linear” and “max” condi-
tions in the experiments.We ran a simulation experiment to numerical-
ly verify this and also found the “inflated stick” Burg divergence
implementation to take 40 times longer on average.

For multi-fiber analysis, we employ dm2 (Eq. (6)) to measure discrep-
ancy betweenmixtures of fiber orientations, and this too has useful geo-
metric and statistical features. The form of dm allows the kernel
regression estimator in Eq. (8) to be algebraically reduced to the simpler
form in Eq. (12), which is equivalent to a clustering problem. The first
sum-of-squares term has a statistical interpretation as hard clustering
with a mixture of Watsons (Sra et al.), and the additional regularization
term has a statistical interpretation as the small-variance asymptotic
limit of a Dirichlet process mixture, as in the DP-means algorithm
(Kulis and Jordan). Taken together, these make up the axial DP-means
clustering problem in Eq. (12). This is theoretically well-grounded be-
cause theWatson distribution is an exponential family, and df is the as-
sociated Bregmandivergence (Cabeen and Laidlaw, 2014b). Thework of
Jiang et al. also demonstrates that the general form of Algorithm 1 con-
verges, albeit to a local minima (Jiang et al., 2012). To avoid instability
due to local minima, we use random restarts with shuffling of the
order of the input and take the solution with the overall minimum of
Eq. (12).

Algorithm 1. Axial DP-means clustering

Unlabelled image
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Algorithm 2. Fiber orientation mixture estimation
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