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Abstract. The reconstruction of the corticospinal tract in the human
brain is a clinically important task for both surgical planning and popula-
tion studies. Diffusion MRI tractography provides an in-vivo and patient-
specific technique for mapping the tract’s geometry; however, its rela-
tionship to other bundles, such as the superior longitudinal fasciculus,
presents issues for the standard tensor model, as it cannot represent their
crossing fibers. We explore multi-fiber models that have been shown to
overcome some of these issues, and evaluate methods for improving on
previous work with model-based filtering of orientations. We conduct ex-
periments with real clinical data including normal and tumor-infiltrated
corticospinal tracts and compare the single tensor, multi-tensor, and fil-
tered multi-tensor approaches. We found the multi-fiber approach to al-
low for lateral projections of the tract to be reconstructed and found the
addition of orientation filtering to reduce outlier fibers and increase the
number of lateral projections. Our results suggest this approach could
be considered for clinical applications of corticospinal tract modeling.
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1 Introduction

In this paper, we compare methods for reconstructing the cortico-spinal tract
(CST) with diffusion MRI tractoraphy and evaluate the effect of multi-fiber ori-
entation filtering. The reconstruction of the CST is a clinically relevant problem,
as an accurate geometric reconstruction can be used both in surgical planning to
reduce the risk of unnecessary damage to motor pathways [1] and in neuroimag-
ing population studies. Diffusion tractography provides a tool for extracting
patient-specific geometric models of fiber bundles; however, several challenges
exist for making this a clinically useful resource for CST reconstruction. First,
the anatomy of the CST includes crossings with the superior longitudinal fas-
ciculus (SLF) in the lateral projections [2]. This poses a problem for diffusion
models that do not represent complex fiber configurations, such as the single
tensor model. Multi-fiber models provide an alternative that theoretically ad-
dresses this issue [3], although these can be more difficult to fit numerically and



more susceptible to noise due to the increased number of parameters. A second
challenge is the validation for clinical application, which includes establishing the
accuracy of the reconstruction with respect to anatomy and the practical value
to a clinician. We focus here on the evaluation of methods for tractography,
specifically, model-based filtering of multi-fiber models for CST reconstruction.
Our goal is for these results to contribute to the larger challenge of validating
the use of tractography for clinical applications.

The main contribution of this paper is the application of fiber orientation fil-
tering to the reconstruction of the CST with Extended Streamline Tractography
(XST) [3]. Our model-based approach may offer computational and theoretical
advantages over image processing performed with the diffusion-weighted images
[4]. A number of model-based approaches exist for diffusion imaging, including
the Riemannian frameworks for tensors [4], orientation distribution functions
[5], and multi-tensor models [6] [7]. In our approach, we apply recent work on
model-based processing of multiple orientations [8] and the ball-and-sticks diffu-
sion model [9]. Other methods for orientation regularization have been studied
for single [10] [11] [12] and multi-fiber models [13] as well. A related multi-fiber
filtering approach developed Kalman filtering for robust model fitting during
tractography [14]; however, here we instead process precomputed voxelwise mod-
els. Our work distinguishes itself with support on multiple fiber orientations per
voxel, an efficient approach, and support for data-adaptive processing similar to
a bilateral filter [15].

In the rest of the paper, we conduct experiments testing the quality of corti-
cospinal tract reconstruction with the ball-and-sticks diffusion model. We com-
pare these results with the standard single diffusion tensor model and also test
our adaptive orientation filtering approach. We apply this to real clinical brain
data including a normal bundle and a bundle infiltrated by metastatic ade-
nocarcinoma. Our findings suggest that the multi-fiber modeling improves the
reconstruction of the lateral projections of the CST and that orientation filtering
reduces the number of outliers while increasing the number of lateral projections.

2 Methods

In the following sections, we review the diffusion models used in our experi-
ments, describe our tractography algorithm, and present our approach for fiber
orientation filtering.

2.1 Diffusion Models

In our analysis, we apply diffusion models supporting both single and multiple
fiber per voxel. For single fiber analysis, we use the standard diffusion tensor
model, which has the following predicted signal Si of the i-th diffusion-weighted
image (DWI):

Si = S0 exp
(
−bigTi Dgi

)
(1)



given gradient encoding direction gi, b-value bi, unweighted signal S0, and diffu-
sion tensor D. We compare this to the multi-fiber ball-and-sticks model, which
theoretically can resolve more complex fiber configurations than the single ten-
sor. This is defined by a linear combination of single tensors with the first compo-
nent being isotropic (ball) and the others being completely anisotropic (sticks).
The goal of these constraints is to reduce the number of degrees of freedom
while maintaining the ability of the model to reconstruct fiber orientations. The
predicted signal Si of the i-th DWI is as follows:

Si = S0

N∑
j=0

fj exp
(
−bigTi Djgi

)
(2)

given N fiber compartments, fiber volume fraction 0 ≤ fj ≤ 1, and
∑M
j=0 fk = 1.

The compartments are then forced to include a completely isotropic first com-
ponent D0 = diag(d, d, d) and completely anisotropic subsequent components
Dj = dvjv

T
j with diffusivity d and fiber orientation vj .

2.2 Tractography

We performed tractography using a generalization of the standard streamline ap-
proach [16] to account for multiple fibers. In the standard streamline approach,
a fiber trajectory is considered a 3D space curve whose tangent vector is equated
with the fiber orientation of the voxelwise diffusion models. This can be found
by evolving a solution to a differential equation with some initial condition at a
given seed position. Typically, some geometric criteria are also used to stop and
exclude fibers, including angle threshold and minimum and maximum length.
When multiple orientations are present, this approach must be adapted in sev-
eral ways. First, additional volume fraction termination criteria are included,
from the fi parameters in Eq. 2. During tracking, one of the N possible fiber
orientations must also be chosen for the next step. Our approach is similar to
Extended Streamline Tractography (XST) [3], although our model does not rep-
resent anisotropy in the compartments. The original XST chooses the fiber with
the smallest angle difference to the previous step. We take a slightly different
approach and randomly choose a fiber among those below a threshold angular
difference to the previous step. This seemed to allow tracking in cases where sev-
eral fibers are quite similar in angular difference to the previous step. Two other
issues are interpolation and spatial regularization. The original XST approach
interpolates in the DWI image and fits Eq. 2 at each step, but here we test the
effect of model-based filtering. A major challenge to a model-based approach is
that the presence of multiple fibers per voxel presents a combinatorial problem
for matching fibers, which is quite expensive to compute exhaustively even for
a small filter support [17]. We address this combinatorial issue with an efficient
clustering algorithm and derive estimators for model-based interpolation and
filtering, which we describe next.



Fig. 1: An illustration of filter weights for a single voxel (left) at a boundary
in a noisy phantom. The weights (right) are given by the product of the linear
Gaussian (top) and data-adaptive (bottom) weights.

2.3 Orientation Filtering

For the purpose of tractography, we genearalize the diffusion models to include
only volume fractions and fiber orientations. We then consider a model M to
be a weighted combination of N fiber volume-fraction and orientation pairs
M = {(fi, vi)}Ni=1 that lie in each voxel. Next, we aim to construct a least
squares estimator for fiber models [18] that will provide a way to perform both
smoothing and interpolation.

Given an input position p and local neighborhood {(pi,Mi)}Ci=1 with Mi =

{(fij , vij)}Ni
j=1, the estimator for M̂ is given by:

M̂ = argmin
M

C∑
i=0

K

(
d2e(pi, p)

h2p

)
d2m(Mi,M) (3)

given model distance dm, spatial bandwidth hp, and kernel function K(x) =

exp(−x). We define the model distance between M and M̂ by d2m(M,M̂) =
minπ

∑
j fjd

2
f (vj , v̂π(j)), which is selected across all possible mapping π from

fibers in M to M̂ , with respect to the fiber distance df . We then define the
fiber distance by the sine of the angle between two fibers a and b: d2f (a, b) =

2(1 − (a · b)2) = 2sin2(θ). This was chosen for its theoretical and computa-
tional advantages [19] [20] [21] as well as its statistical interpretation [22]. Taken
together, the estimator in Eq. 3 can be then expressed by:

M̂ = argmin
M

C∑
i

wid
2
m(Mi,M) = argmax

M,π

C∑
i

Ni∑
j

wifij(vij · vπ(ij))2 (4)

with weights wi taken from the above kernel function. For a fixed number of
fibers in M̂ , this objective can be minimized by an iterative Expectation Max-
imization procedure similar to k-means clustering. In fact, this is equivalent to



the procedure for hard Mixture of Watsons clustering of Sra et al [23] and has
been previously applied to linear filtering of multiple orientations [8].

A data-adaptive extension can be obtained by the including a factor for

model-to-model similarity in the weights of Eq. 3. This factor is K
(
d2m(Mi,M0)

h2
m

)
,

given model bandwidth hm and reference model M0. In this case, the weights
must be recomputed at each voxel; however, the same EM procedure may be
used. An illustration of the data-adaptive filter weights is shown in Fig. 1.

Two additional concerns are the number of fibers and the resulting volume
fractions, which we find with a similar estimator for scalar data [18]. The number
of fibers is then a weighted average, which is rounded to the nearest integer, and
the volume fractions are weighted averages, within groups defined by the optimal
fiber correspondences π.

2.4 Bundle Delineation

We used an atlas-based approach [24] to delineate the corticospinal tract with
three regions of interest. The diffusion tensor atlas was previously constructed
using a population of 80 normal adult subjects [25]. The following three regions
were then defined in each hemisphere of the atlas: the posterior limb of the
internal capsule, cerebral peduncle, and the precentral brain matter. The first
two regions were manually drawn in ITK-SNAP 1 and the precentral region was
defined by the population average combined mask of the white and gray matter
labels computed with Freesurfer version 5.1 2. Visualizations of these regions are
shown in Fig. 2. The patient’s diffusion tensor volume was then registered to the
atlas using deformable tensor-based registration with DTI-TK 3, and the labels
were deformed to the patient image space. Tractography seeding was performed
in the precentral white matter and only fibers that traversed both other regions
were kept.

3 Experiments

Human Brain Data Imaging data of a single patient was downloaded from
XNAT 4 as part of the MICCAI 2014 DTI Challenge. The diffusion MRI scans
were acquired with a spin-echo EPI sequence with the following parameters:
voxel size 2.0 x 2.0 x 2.0 mm, 256 x 256 matrix, 73 slices, b-values 200, 500, 1000
and 3000 s/mm2, 69 diffusion-weighted volumes and 4 non-diffusion weighted
volumes. The patient presented with a metastatic adenocarcinoma infiltrating
the corticospinal tract with large edema, both isolated to the right hemisphere.

1 http://www.itksnap.org/
2 https://surfer.nmr.mgh.harvard.edu
3 http://dti-tk.sourceforge.net
4 http://central.xnat.org



Atlas Atlas Atlas Regions deformed
Precentral Posterior Limb of Cerebral from atlas

Brain Matter Internal Capsule Penduncle to patient

Fig. 2: Regions of interest used for delineating the corticospinal tract. Atlas space
regions are shown in a surface rendering of the superior surface of the precentral
brain matter (first), and axial slices of the posterior section of the internal capsule
(second) and cerebral peduncle (third). The regions were deformed to patient
image space, as shown in a surface rendering (fourth), and used to seed and
select fibers in the bundle.

Image Analysis Preprocessing, voxel model fitting, tractography, and visual-
ization were performed as follows. A brain mask was extracted with BET in FSL
version 5.0 5. Single diffusion tensors were fit with DTIFIT in FSL. Multi-fiber
models were fit using an MCMC procedure with XFIBRES in FSL with default
parameters. Orientation filtering and interpolation were performed with custom
software with hp = 3.0, hm = 0.75, and a filter support of 5 voxels. Tractog-
raphy was peformed with custom software with the following parameters: angle
threshold 50 degrees, step size 1.5 mm, 20 seeds per voxel, minimum length 20
mm, maximum length 110 mm, and volume fraction threshold 0.1. Bundle de-
lineation was performed with custom software, and visualizations were rendered
with Slicer 6. Parameters were chosen by varying them in step-wise fashion.

Results Visualizations in Fig. 3 show the reconstructed bundles. In the left
hemisphere, we found the single tensor analysis to be similar to other works [2]
and included only the most superior projections. The ball-and-sticks reconstruc-
tion improved the tracking through crossing and fanning fibers also similar to
previous works [3]. Linear filtering significantly increased the number of lateral
projections. The filtering also produced smoother fibers that retained a simi-
lar overall shape in the main body of the bundle. The addition of the adaptive
term in the filtering added more lateral projections with little other change. The
reconstructions in the right hemisphere were significantly different due to the
presence of edema and tumor. Only filtered models allowed tracking through
some of the edema, and no method tracked through the tumor.

5 http://www.fmrib.ox.ac.uk/fsl
6 http://www.slicer.org
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Fig. 3: Tractography (red) for standard single diffusion tensor modeling and ball-
and-sticks modeling with and without filtering. Shown are results from stan-
dard diffusion tensor (top left), unfiltered ball-and-sticks (top right), linear fil-
tered ball-and-sticks (bottom left), and adaptive filtered ball-and-sticks (bottom
right). The outline of motor cortex is overlaid in purple. In the right hemisphere,
we see the infiltrating tumor (blue) stops tracking in all models, and the edema
(yellow) stops tracking to varying extents. In the left hemisphere, we see that
single tensor modeling does not include the lateral projections. Linear filtering
increased the number of lateral projections. Adaptive filtering further increased
the lateral projections and reduced the number of outlier fibers.



4 Conclusion

In this study, we examined several approaches for the reconstruction of the cor-
ticospinal tract and tested the effect of fiber orientation filtering on the quality
of the resulting tract geometry. We employed a multi-fiber model to resolve
complex fiber configurations at the crossing of the CST with the superior lon-
gitudinal fasciculus. Our filtering approach provides an efficient mechanism for
both smoothing and interpolation during tractography, and our results suggest
that this step aids in tracking the lateral projections to the precentral gyrus.
The proposed filtering method could also be applied to other diffusion models
that represent multiple fiber orientation. The evaluation of this, as well as a
comparison to other approaches such as Kalman filtering, remain open issues.
In summary, we found the combination of multi-fiber modeling and orientation
filtering to be a valuable approach that could be considered for clinical research
applications that aim to understand the structure of the corticospinal tract in
both health and disease.
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