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Abstract. A powerful aspect of diffusion MR imaging is the ability to
reconstruct fiber orientations in brain white matter; however, the ap-
plication of traditional learning algorithms is challenging due to the di-
rectional nature of the data. In this paper, we present an algorithmic
approach to clustering such spatial and orientation data and apply it to
brain white matter supervoxel segmentation. This approach is an exten-
sion of the DP-means algorithm to support axial data, and we present
its theoretical connection to probabilistic models, including the Gaussian
and Watson distributions. We evaluate our method with the analysis of
synthetic data and an application to diffusion tensor atlas segmentation.
We find our approach to be efficient and effective for the automatic ex-
traction of regions of interest that respect the structure of brain white
matter. The resulting supervoxel segmentation could be used to map
regional anatomical changes in clinical studies or serve as a domain for
more complex modeling.
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1 Introduction and Related Work

Diffusion MR imaging enables the quantitative measurement of water molecule
diffusion, which exhibits anisotropy in brain white matter due to axonal mor-
phometry and coherence. Consequently, the orientation of fibers passing through
a voxel can be estimated from the diffusion signal, allowing the local analysis
of tissue or more global analysis of fiber bundles. Methods from computer vi-
sion and machine learning offer many opportunities to understand the structure
captured by diffusion MRI; however, the directional nature of the data poses a
challenge to traditional methods.

A successful approach for dealing with this directional data has been proba-
bilistic models on the sphere; the two most common being the von Mises-Fisher
and Watson distributions. The Watson distinguishes itself by being defined for
axial variables, that is, points on the sphere with anti-podal equivalence. These
models have been known in the statistics community for decades and have ap-
plications to a number of disciplines, including geophysics, chemistry, genomics,
and information retrieval [16]. Recently, there has been increasing interest in ex-
ploring directional mixture models for neuroimage analysis [6, 10]. They can be



computationally challenging, however, as their normalization constants have no
closed form and require either strong assumptions [11] or approximations [12].

This problem is not unique to directional data, however, and there has been
much work to develop efficient and scalable alternatives to probabilistic models.
Some success in this area applies to the exponential families, which constitute
most distributions in use today. Banerjee et al. made a powerful finding which
established a bijection between the exponential families and Bregman diver-
gences. They also explored the asymptotic relationship between mixture models
and hard clustering algorithms [2]. These hard clustering algorithms tend to be
more efficient, scalable, and easy to implement, at the cost of some flexibility in
data modeling. We build on these ideas to derive hard clustering for data that
has both spatial and directional components. Our approach extends this idea to
axial data by considering the Bregman divergergence of the Watson distribution
[12]. We employ additional prior work in this area that derived the DP-means al-
gorithm from the asymptotic limit of a Dirichlet process mixture [7, 5], providing
a data-driven way to select the number of clusters. We define our segmentation
from the hard clustering of voxels, so we use the terms interchangably for the
rest of the paper.

Segmentation algorithms offer an opportunity to study neuroanatomy in an
automated way, reducing the cost of manual delineation of anatomical structures.
We consider voxelwise segmentation, as opposed to methods that cluster curves
extracted by tractography. One common application of the voxelwise approach is
the segmentation of the thalamic nuclei, which has been achieved by mean shift
analysis, spectral clustering, level-sets, and modified k-means [17]. The work of
Weigell et al. is most similar to the approach we propose, as they apply a k-
means-like algorithm, modified to operate in the joint spatial-tensor domain. In
contrast, we include optimization for model complexity, instead of selecting a
fixed number of clusters as in k-means. We also operate on the fiber orientation,
instead of the full tensor, a reasonable simplification for the segmentation of
white matter, which is more anisotropic than gray matter.

We consider a segmentation of whole brain white matter in which numerous
small and homogenous regions (or supervoxels) are extracted, an approach that
is similar to superpixel segmentation in the computer vision literature [13]. Su-
perpixels have been found to offer both a more natural representation of images
compared to pixels and a simpler domain for more complex models [9]. In the
field of biomedical imaging, this idea has recently been successfully applied to
spectral label fusion [15], cellular imaging [8] and fiber orientation distribution-
based segmentation [3], to which our work bears similarity.

The rest of the paper is as follows. First, we review the exponential families
and their relation to Bregman divergences. We then present the models and
Bregman divergences of the Gaussian and Watson distributions. From these, we
derive an axial DP-means algorithm that clusters voxels in the joint spatial-axial
domain. Finally, we present an evaluation with synthetic data and an application
to diffusion tensor atlas white matter supervoxel segmentation.



2 Methods

2.1 Exponential Families and Bregman Divergences

In this section, we review the exponential families, its relationship to Bregman
divergences, and applications of this divergence to clustering problems.

A parameteric family of distributions is considered exponential when mem-
bers have a density of the following form [1]:

PG(x|θ) = P0(x) exp(< θ,x > −G(θ)) (1)

where θ is the natural (or canonical) parameter, x is the sufficient statistic, G(θ)
is the cumulant (or log-partition) function, and P0(x) is the carrier measure. The
exponential families have a variety of useful properties, but here we consider their
relation to Bregman divergences, a measure which can be interpreted as relative
entropy. Banerjee et al. showed a bijection between the exponential families and
Bregman divergences [2], and consequently, the divergence corresponding to a
given member of the exponential family can be defined from the cumulant [1]:

∆G(θ̂,θ) = G(θ̂)−G(θ)− < θ̂ − θ,∇θG(θ) > (2)

This result gives a probabilistic interpretation to many distance measures.
In particular, a number of hard clustering objectives may be expressed in terms
of Bregman divergences associated with exponential mixture models, showing a
relationship between soft and hard clustering algorithms [5]. This result can also
be used to derive hard clustering algorithms for directional data, as described in
the following sections.

2.2 Gaussian and Watson Distributions

We now consider two probabilistic models for our data, namely the Gaussian and
Watson distributions, which represent spatial and axial data, respectively. For
each distribution, we show the form of their distribution, derive their associated
Bregman divergences, and discuss their relationship to hard clustering algorithms
in the literature.

The isotropic Gaussian distribution is defined on Rn and is commonly used
to represent spatial data. Its probability density N and associated Bregman
divergence DN are given by:

N (p|q, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
||p− q||2

)
(3)

DN (p̂,p) =
1

2σ2
||p̂− p||2 (4)



given input positions p, p̂ ∈ Rn, mean position q ∈ Rn, and constant variance pa-
rameter σ2 > 0. The associated Bregman divergence DN is the scaled Euclidean
distance between two positions, an observation which gives a probabilistic inter-
pretation to the k-means and DP-means algorithms, which are asymptotic limits
of Gaussian mixture and Dirichlet process mixture models, respectively [7].

The Watson distribution is analagous to a Gaussian but defined on the hy-
persphere Sn−1 ⊂ Rn with anti-podal symmetry, i.e. d ∼ −d. This structure is
well-suited to diffusion MR, for which a sign is not associated with the diffusion
direction. Samples from this distribution are often called axial variables to dis-
tinguish them from spherical data without symmetry. Its probability density W
and associated Bregman divergence DW are given by:

W (d|v, κ) =
Γ (n/2)

(2π)n/2M( 1
2 ,

n
2 , κ)

exp
(
κ
(
vTd

)2)
(5)

DW (d̂,d) = κ
M( 1

2 ,
n
2 , κ)

M ′( 1
2 ,

n
2 , κ)

(
1−

(
d̂Td

)2)
(6)

for input axial directions d, d̂ ∈ Sn−1, mean axial direction v ∈ Sn−1, and Kum-
mer’s confluent hypergeometric function M(a, b, z). We also assume a constant
and positive concentration parameter κ > 0. The associated Bregman divergence
DW is then a scaled cosine-squared dissimilarity measure, which is equivalent
to the measure used for diametrical clustering—the asymptotic limit of a mix-
ture of Watsons [4, 12]. The Bregman divergences for the Gaussian and Watson
distributions can then be used to define hard clustering algorithms, which we’ll
describe next.

2.3 Hard Clustering

We now present an objective function for clustering axial data and an iterative
algorithm for optimizing it. In particular, this approach is a hard clustering algo-
rithm that behaves similarly to a Dirichlet process (DP) mixture model learned
with Gibbs sampling, as a result of recent work on small-variance asymptotic
analysis of the exponential family and Bregman divergences by Jiang et al. [5].
We apply their work to our case of spatial and axial data, which is assumed to
be modeled jointly by the Gaussian and Watson distributions.

For imaging applications, segmentation is often performed in the joint spatial-
intensity space. A common application is superpixel segmentation, which pro-
vides a domain for image understanding that is both more simple and natural
than the original pixel domain [9]. This is also the case for diffusion MR, where
we want to segment voxels based on both proximity and fiber orientation simi-
larity, perhaps to aid more complex anatomical modeling [3]. This motivates the
development of a clustering algorithm that accounts for these two aspects, which
we achieve by the linear combination of the Bregman divergences presented in
the previous section. The resulting objective function E can be defined similarly
to the DP-means algorithm:



E =

K∑
k=1

∑
(p,d)∈lk

DN (p,qk) +DW (d,vk) + λK (7)

E =

K∑
k=1

∑
(p,d)∈lk

α||p− qk||2 + β
(

1−
(
vT
k d
)2)

+ λK (8)

where lk is the set of voxels in the k-th cluster, λ is a cluster-penalty term
that controls model complexity, and the parameters α and β control the relative
contributions of the spatial and axial terms to the total cost. These parame-
ters have probabilistic interpretations, where λ relates to the Dirichlet process
mixture prior, and α and β relate to the Gaussian σ and Watson κ, respectively.

A procedure to minimize this objective is presented in Algorithm 1. In a
modification of the DP-means algorithm [7], the assignment step measures dis-
tance by the linear combination of divergences. In the update step, the spatial
cluster center qc is computed by the Euclidean average. The axial cluster center
vc is computed by the maximum likelihood approach of Schwartzman et al. [11],
where dyadic tensors are computed by the outer product of each axial variable
and the mean axial direction is found from the principal eigenvector of the mean
tensor, as shown by the prineig function.

Algorithm 1: joint spatial-axial DP-means clustering

Input:
(p1,d1), ..., (pN ,dN ): input position/axial direction pairs,
α, β, λ: objective weighting parameters

Output:
K: number of clusters, L1, ..., LN : labels,
(q1,v1), ..., (qK ,vK): cluster centers

Initialize: K ← 1, q1 ←
∑

i pi/N, v1 ← prineig
(∑

i did
T
i /N

)
while not converged do

Assign cluster labels:
for i=1 to N do

for j=1 to K do

Dij ← α||pi − qj ||2 + β
(

1−
(
dT
i vj

)2)
if minj Dij > λ then

K ← K + 1, qK ← pi, vK ← di, Li ← K
else

Li ← argminj Dij

Update cluster centers:
for j=1 to K do

qj ←
(∑

i δ(j, Li)pi

)
/
∑

i δ(j, Li)

vj ← prineig
((∑

i δ(j, Li)did
T
i

)
/
∑

i δ(j, Li)
)

return



3 Experiments and Results

3.1 Synthetic Data

In our first experiment, we investigate the choice of the cluster penalty parame-
ter λ by synthesizing axial data and testing performance of the axial DP-means
algorithm across varying numbers and sizes of clusters. Here, we ignore the spa-
tial component and only test the relationship between λ and the axial clustering.
The number of clusters N ranged from 3 to 10 and were generated by sampling
a Gaussian and normalizing with “size” σ ranging from 0.1 to 0.3. We evaluated
ground truth agreement with the adjusted mutual information score (AMI) [14],
a statistical measure of similarity between clusterings that accounts for chance
groupings and takes a maximum value of one when clusterings are equivalent.

For a constant number of clusters, we found the optimal choice of λ increased
with cluster size σ. For a constant cluster size σ, we found the optimal λ to be rel-
atively stable across variable numbers of clusters N . In Fig. 1, we show examples
of the clustering for the two conditions. In Fig. 2, we show plots of the relation-
ship between the AMI and λ. We found our implementation to converge in fewer
than 20 iterations on average. All cases except one found the correct number of
clusters for the optimal λ. This could be due to the presence of local minima, an
issue that could possibly be addressed with a randomized initialization scheme
and restarts.

3.2 White Matter Segmentation

In our second experiment, we apply the axial DP-means algorithm to the super-
voxel segmentation of brain white matter in a diffusion tensor atlas. We used
the IXI aging brain atlas, which was constructed by deformable tensor-based
registration with DTI-TK [19]. White matter was extracted by thresholding the
fractional anisotropy map at a value of 0.2, which excludes white matter voxels
with complex fiber configurations that are not accurately represented by tensors.

We then performed white matter segmentation of the remaining voxels with
the joint spatial-axial DP-means algorithm. For each voxel, the spatial compo-
nent was taken to be the voxel center and the directional component was taken
to be the principal direction of the voxel’s tensor. We found several structures
which were spatially disconnected but given the same label, for example, the bi-
lateral cingulum bundles, which are both close and similarly oriented. To account
for this, we finally performed connected components labeling using an efficient
two-pass procedure [18].

We investigated the effect of λ and β (holding α constant) by measuring the
mean cluster orientation dispersion and cluster volume. We found that as λ was
increased, both the volume and angular dispersion increased. As β increased,
we observed decreased cluster volume and angular dispersion. These results are
shown in the plots of Fig. 3. We also generated visualizations from a segmentation
with λ = 25 and β = 15, which are shown in Fig. 3. From slice views, we
found the segmentation to reflect known anatomical boundaries, such as the



cingulum/corpus callosum and corona radiata/superior longitudinal fasciculus.
By overlaying fiber models, we see the region boundaries tended to coincide
with large changes in fiber orientation. From an boundary surface rendering,
we found lateral symmetry and a separation of gyral white matter from deeper
white matter. Our serial implementation on a 2.3 GHz Intel i5 ran in several
minutes end converged in 125 iterations.

4 Discussion and Conclusions

In this paper, we presented an efficient approach to hard clustering of spatial and
axial data that is effective for segmenting brain white matter. This algorithm
has a probabilistic interpretation that relates its objective to the Bregman di-
vergences of the Gaussian and Watson distributions. Through our experiments,
we first found the parameter λ to be more affected by cluster size σ than the
number of clusters N . This may suggest the need to account for noise level when
selecting λ and possible limitations when applied to datasets with clusters of
heterogeneous size. In our second experiment, we found our approach to effi-
ciently perform white matter atlas segmentation, producing regions that respect
anatomical boundies in white matter structure. We also found considerable vari-
ablility across different hyperparameters. On one hand, this offers fine-grained
control of region size, but it also suggests that a comparison with a simpler k-
means type approach could be valuable. A limitation is the restriction of this
approach to single fiber voxels and extensions to multiple fibers could be valu-
able. This could be possibly used with other methods for reconstucting fiber
orientations, such as orientation distribution function (ODF) and fiber orienta-
tion distribution (FOD) approaches.

This method may also aid several aspects of clinical studies of white mat-
ter. The resulting segmentation could provide automatically defined regions-of-
interest for clinical study, similar to voxel-based population studies of neurologi-
cal disease. This approach may also offers a domain for more efficient inference of
complex anatomical models, such as graph-based methods for measuring brain
connectivity. One interesting extension would generalize the clustering objective
to include variable concentration κ, which may enable more sensitive segmen-
tation for diffusion models that account for fiber orientation dispersion in each
voxel. In conclusion, we find this approach to be an efficient and valuable tool
for segmenting white matter with a desirable probabilistic interpretation and a
number of applications to brain connectivity mapping.



Variable σ, Constant N

Constant σ, Variable N

Fig. 1: First experiment: visualizations of the synthetic axial data and the optimal
clusterings computed from the proposed method. The top shows results for variable
cluster size σ = {0.05, 0.0875, 0.125, 0.1625, 0.2}, and constant number of clusters N =
4. The bottom shows results for constant cluster size σ = 0.10, and variable number of
clusters N = {3, 4, 5, 6, 7}. The bottom right shows a single mislabeled cluster, possibly
caused by finding a local minima in the optimization.
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Fig. 2: First experiment: clustering performance as a function of cluster penalty pa-
rameter λ ∈ [0, 1] given ground truth generated with cluster size σ, and number of clus-
ters N , which are visualized in Fig. 1. We measured the adjusted mutual information
(AMI), a statistical measure takes a maximal value when clusterings are equivalent.
Shown are plots of the AMI vs. λ for two conditions. The first tested with variable
σ = {0.05, 0.0875, 0.125, 0.1625, 0.2} and constant N = 4. The second tested with con-
stant σ = 0.10 and variable N = {3, 4, 5, 6, 7}. These results indicate that the optimal
λ depends more on σ than N , suggesting that performance may depend on the noise
level and may dimishish when differing clusters sizes are present. Also note that the
maximum AMI decreases with increasing σ, which may be due to cluster overlap or
over-sensitivity in the AMI measure.
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Fig. 3: Second experiment: white matter supervoxel segmentation by axial DP-means
clustering. The top row shows mean cluster volume (mm3) and mean cluster angular
dispersion (degrees) as a function of cluster penalty λ ∈ [10, 40] and axial weighting β ∈
[0, 30]. We found increasing λ also increased the volume and dispersion, while increasing
β reduced the volume and dispersion. The middle and bottom rows show an example
result given λ = 25 and β = 15. The middle shows boundary surfaces of the regions,
which illustrates the symmetry and separation of gyral and deep white matter. The
bottom shows a partial coronal slice with the fractional anisotropy (left) and computed
segmentation (right), whish shows region boundaries that match known anatomical
interfaces, such as the corpus callosum/cingulum bundle and corona radiata/superior
longitudinal fasciculus.



References

1. Azoury, K.S., Warmuth, M.K.: Relative loss bounds for on-line density estimation
with the exponential family of distributions. Machine Learning 43(3) (2001)

2. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. J. Mach. Learn. Res. 6, 1705–1749 (Dec 2005)

3. Bloy, L., Ingalhalikar, M., Eavani, H., Schultz, R.T., Roberts, T.P., Verma, R.:
White matter atlas generation using HARDI based automated parcellation. Neu-
roImage 59(4), 4055 – 4063 (2012)

4. Dhillon, I.S., Marcotte, E.M., Roshan, U.: Diametrical clustering for identifying
anti-correlated gene clusters. Bioinformatics 19(13), 1612–1619 (2003)

5. Jiang, K., Kulis, B., Jordan, M.: Small-variance asymptotics for exponential family
Dirichlet process mixture models. In: NIPS 2012 (2012)

6. Kaden, E., Kruggel, F.: Nonparametric Bayesian inference of the fiber orientation
distribution from diffusion-weighted MR images. Med. Image Anal. 16(4), 876 –
888 (2012)

7. Kulis, B., Jordan, M.I.: Revisiting k-means: New algorithms via Bayesian nonpara-
metrics. In: ICML-12. pp. 513–520 (2012)

8. Lucchi, A., Smith, K., Achanta, R., Lepetit, V., Fua, P.: A fully automated ap-
proach to segmentation of irregularly shaped cellular structures in em images. In:
Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) MICCAI 2010, LNCS, vol.
6362, pp. 463–471. Springer Berlin Heidelberg (2010)

9. Mori, G.: Guiding model search using segmentation. In: ICCV 2005. vol. 2, pp.
1417–1423 Vol. 2 (2005)

10. Rathi, Y., Michailovich, O., Shenton, M.E., Bouix, S.: Directional functions for
orientation distribution estimation. Med. Image Anal. 13(3), 432 – 444 (2009)

11. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: Cross-subject comparison of prin-
cipal diffusion direction maps. Magnet. Reson. in Med. 53(6), 1423–1431 (2005)

12. Sra, S., Karp, D.: The multivariate Watson distribution: Maximum-likelihood es-
timation and other aspects. J. of Multivariate Analysis 114(0), 256 – 269 (2013)

13. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy
optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, LNCS, vol. 6315, pp. 211–224. Springer Berlin Heidelberg (2010)

14. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (Dec 2010)

15. Wachinger, C., Golland, P.: Spectral label fusion. In: Ayache, N., Delingette, H.,
Golland, P., Mori, K. (eds.) MICCAI 2012, LNCS, vol. 7512, pp. 410–417. Springer
Berlin Heidelberg (2012)

16. Watson, G.S.: Statistics on spheres, vol. 6. Wiley New York (1983)
17. Wiegell, M.R., Tuch, D.S., Larsson, H.B., Wedeen, V.J.: Automatic segmentation

of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage
19(2), 391 – 401 (2003)

18. Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling
algorithms. Pattern Analysis and Applications 12(2), 117–135 (2009)

19. Zhang, H., Yushkevich, P., Rueckert, D., Gee, J.: A computational white matter at-
las for aging with surface-based representation of fasciculi. In: Fischer, B., Dawant,
B., Lorenz, C. (eds.) Biomedical Image Registration, LNCS, vol. 6204, pp. 83–90.
Springer Berlin Heidelberg (2010)


