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1 Abstract

A method for comparing three-dimensional vector fields
constructed from simple critical points is described. This
method is a natural extension of the previous work [1] which
defined a distance metric for comparing two-dimensional
fields.

The extension to three-dimensions follows the path of
our previous work, rethinking the representation of a critical
point signature and the distance measure between the points.
Since the method relies on topologically based information,
problems such as grid matching and vector alignment which
often complicate other comparison techniques are avoided.
In addition, since only feature information is used to repre-
sent, and therefore stored for each field, a significant amount
of compression occurs.

2 Introduction

Vector fields1 are used to study phenomena in almost all
areas of the physical sciences including such diverse subjects
as climate modeling, dynamical systems, electromagnetism,
and fluid mechanics. Hence, the analysis of vector fields has
become a significant concern to the sciences, and a variety of
techniques for visualizing and analyzing vector fields have
been developed. However, an effective technique to quanti-
tatively compare vector fields has not been developed. This
paper addresses the issue.

A review of existing comparison techniques is first dis-
cussed. Even the most promising of these techniques lack
the quantitative capabilities for automated comparisons. The
properties of the two dimensional classification technique
used in [1] are briefly discussed and are used to extend the
classification to three-dimensional critical points. A com-
plete categorization of 3-D simple critical points is presented
and is used to redefine the EMD metric allowing for a quan-
titative comparison between 3-D flow fields. The paper con-
cludes with an example demonstrating the effectiveness of

1The definition of vector fields is restricted to continuous fields or flows
which are discussed in section 4.

the technique on a thermal convection model described by
the Lorenz equations.

3 Existing Comparison Techniques

A variety of comparison techniques exist for vector fields.
These techniques basically fall into three general categories:
Image, data, and feature extraction based comparisons. In
most of these cases, comparisons are made visually [2].

Image based comparisons work on the computer gener-
ated image. Often times, a numerical data set is converted
into an image that simulates an experimental visualization
technique (computational flow imaging). This may be eas-
ier than extracting a vector field from an image, such as
Schlieren. However, visualizing a field in 3-D is quite diffi-
cult and often, these techniques are limited to two dimen-
sions. In addition to side-by-side comparison of images,
other techniques include image fusion, and Fourier analy-
sis [3].

Data level comparison techniques operate directly on the
raw data. An accurate comparison requires proper grid
alignment which can involve problematic interpolation be-
tween two fields [4].

The last comparison category is the extraction of features.
Typically features are problem specific; for example in fluid
mechanics features include vortex cores and shock surfaces.
Often there is a geometric representation of the feature and
possibly a semantic representation of the system which can
be compared using a pattern recognition technique [5]. This
may lead to more robust comparisons.

Qualitative comparisons have been based on the concept
of critical points in vector fields. Past study has focused on
the geometric structure of vector fields [6] and last year a
quantitative measure for two dimensional vector fields was
introduced [1]. The work is extended by defining a quan-
titative measure of the similarities and differences of three-
dimensional vector fields.
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4 Description of Phase Portraits with 2-D�-�
Parameters

Since the method reduces a 3-D flow pattern into 2-D
components, the relevant 2-D categorization for this type of
vector field is reviewed. A 2-D vector field that can be rep-
resented as a system of two simultaneous differential equa-
tions has the following form:

vx =
dx

dt
= F (x; y) (1)

vy =
dy

dt
= G(x; y)

where F and G are continuous and have continuous partial
derivatives in some regionD. The solutions to this system
forms a family of directed paths. Given some initial value
to the system, a parametric representation expressed asx =
�(t), y =  (t) can be deduced. The image formed is the
phase portrait and is typically described by the number, type,
and arrangement of critical points (or equilibrium points).
These are points whereF (x; y) = 0 andG(x; y) = 0. The
nature of a critical point will not change under continuous
(affine) transformation. Critical points are significant in that
they are the only points in a vector field where tangent curves
may cross each other. Therefore, critical points delineate the
field into sectors of uniform flow.

A critical point is said to be isolated or simple if there is
an open neighborhood around it that contains no other criti-
cal points. The behavior of the flow about a critical point can
be analyzed by investigating the trajectories in the neighbor-
hood of the critical point. If the distance is sufficiently small
(saydx; dy), a first order approximation (Equation 2) of the
field can be used.

vx(dx; dy) � @vx
@x

dx +
@vx
@y

dy (2)

vy(dx; dy) � @vy
@x

dx+
@vy
@y

dy

Hence, the flow pattern is completely determined by the Ja-
cobian,Jij = @vi

@vj
(i; j = 1; 2) evaluated at the critical point.

The various patterns formed in the phase-plane space can be
seen by analyzing the eigenvalues of the Jacobian. The char-
acteristic equation

�2 + P�+Q = 0 (3)

whereP = �trace(J) andQ = det(J) is used to classify
the various patterns using the well knownP �Q stability di-
agram [7]. However, advantageous properties arise by defin-
ing a new space(�0; �0) as explained in [1], where the eigen-
values map� = P and� = sign(P 2 � 4Q)

pjP 2 � 4Qj

Repelling  Star
α > 0
 β = 0

Saddle Point
α = 0
 β > 0

Center
α = 0
 β < 0

Attracting  Star
α <0 
 β = 0

Repelling  Node
α > 0
 β > 0

Attracting  Node
α < 0
 β > 0

Attracting  Focus
α < 0
 β < 0

Repelling  Focus
α > 0
 β < 0

α

β

Figure 1: Basic patterns for simple critical points.

and are normalized as follows:

�0 =
�p

�2 + �2
(4)

�0 =
�p

�2 + �2
(5)

In this space, critical points obey all the the rules defined for
a regular 2-D Euclidean space and the distance between any
two critical points is a metric.

It is shown in [8] that the actual values of� and� do
not determine the portrait of the critical point; only the ra-
tio between them matters. Hence, this normalization maps
all points onto a unit circle and thereby provides a means of
relatively quantifying the difference between various points
by just an angle. Also note that a uniform vector field with
no critical points,F (x; y) = c1, G(x; y) = c2 has� = 0
and� = 0 and maps to the origin of the unit circle. This
is the reason why arc length is not used as a metric. For
the remainder of the paper,� and� values will be assumed
normalized. The patterns are sketched in Figure 1 and enu-
merated in Table 12. Notice a positive or negative real part

2The definition of saddle indicated in the table is more relaxed than spec-
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� � Type Constraint
> 0 = 0 Repelling Star
> 0 > 0 Repelling Node j�j < j�j
— > 0 Saddle j�j > j�j
< 0 > 0 Attracting Node j�j < j�j
< 0 = 0 Attracting Star
< 0 < 0 Attracting Focus
= 0 < 0 Center
> 0 < 0 Repelling Focus

Table 1: Classification of Critical Points via�-� values

(denoted by�) is indicative of repelling/attracting behav-
ior. And if an eigenvalue has an imaginary part (� < 0),
it indicates circulation about the point and the trajectories
can be represented via logarithmic spirals, otherwise asymp-
totic behavior whose trajectories can be described via simple
power laws is exhibited.

5 Classification of Three-Dimensional
Vector Fields Using Phase Portraits

The formulation for a 3-D vector field is very similar to
the 2-D analysis. For a three-dimensional vector field, the
Jacobian is represented by a3X3 matrix,Jij = @vi

@vj
(i; j =

1; 2; 3) The characteristic equation now becomes

�3 + P�2 +Q�+R = 0 (6)

whereP = �trace(J), Q = 1
2 (P

2 � trace(J2)), and
R = �det(J). Three distinct eigenvalues are possible,
along with three eigenvectors. The flow field can be de-
composed into fundamental solution trajectories along its
eigenvector planes as demonstrated by Reyn [9] and Chong
et al. [10]. All other solutions trajectories converge (or di-
verge) to these eigenvector planes. Therefore a critical point
in 3-D can be defined by a set of three(�; �) values. Each
(�; �) point corresponds to a solution trajectory formed in
the respective eigenvector plane.

To simplify the classification of the various phase por-
traits about a three-dimensional critical point, the Jacobian
is transformed into canonical form. This does not affect
the eigenvalues since they are invariant to changes in scale,
translation, and rotation. Philippou, and Strickland catego-
rized the Jacobian into seven basic canonical forms [11] or
classes. With each form, several phase-portraits are possi-
ble. In Tables 2 and 3, all possible cases are enumerated in a
similar style as presented in reference [11]3 along with the

ified in the figure.
3The class structure is slightly changed by placing the complex Jordan

form last.

Figure 2: Decomposition of a class 1 critical point along
eigenvector planes.

corresponding�; � sets. A brief discussion of the various
classes is given below.

Class 1(�1; �2; �3): Class 1 is indicative of eigenval-
ues which are real and distinct. In this case, there exists
three independent eigenvectors and therefore three indepen-
dent eigenvector planes. For the case of a Hermitian matrix
(and its subclass the real symmetric matrix), the eigenvectors
are mutually orthogonal. If all of the eigenvalues are posi-
tive, repelling nodes form in all three planes. If the signs
differ, a saddle occurs in two of the planes, and finally if
all signs are negative attracting nodes occur. All other solu-
tion trajectories approach or diverge from the critical point
ast! 1 and are not planar. In this case, there exists a full
set of�; � values. A degenerate 2-D case is exhibited when
one of the eigenvalues is zero. Only one plane will contain
a simple solution trajectory, the other two planes will con-
tain lines (since in 2-D every plane in the third dimension
is identical). In this case, there exists only one distinctive
�; � value. The remaining two are set to zero. In fact, all
2-D cases degenerate toff�1; �1g ; f0; 0g ; f0; 0gg and the
computed comparison values are identical to those in refer-
ence [1]. Figure 2 is an example of trajectories formed for a
node/saddle/saddle combination.

Class 2(�1; �1; �2): This is a degenerate case where two
eigenvalues are identical. The multiplicity is 2, however, 3
independent eigenvectors can still be found. One plane will
contain a star pattern, the planes normal to this will contain
solution trajectories (nodes or saddles) and will have identi-
cal�; � values. The 2-D case degenerates to the star pattern.
The 1-D (�1 = 0) case is ignored.

Class 3(�1; �1; �2): In this case, only 2 independent
eigenvectors and only two solution trajectories exist. In one
plane, a log star4 trajectory is observed and in the other plane

4A log star is also referred to as an improper node see [12]
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a node or saddle. A log star in the�; � space is indistin-
guishable from a star pattern, i.e.� = �1; � = 0 since the
star pattern is just a special case of the family of logarithmic
stars formed.

Class 4(�1; �1; �1): Case 4 exhibits triple degeneracy
with three independent eigenvectors. Any plane passing
through the critical point will exhibit a star trajectory. The
set of�; � values are identical.

Class 5(�1; �1; �1): Two linearly independent eigenvec-
tors exist for this triple degeneracy case. Here there are only
two independent planar trajectories. One trajectory is a log
star located in the coordinate plane spanning the eigenvector
(in x-y plane for the canonical form) and a star pattern in the
other coordinate plane (x-z).

Class 6(�1; �1; �1): In this case, the multiplicity is three
but only one independent eigenvector exists. Therefore, only
one plane contains an attracting/repelling log star trajectory.
Hence only one unique�; � value exists and this case con-
flicts with the 2-D case of class 2 and 3. Therefore, some
false positives can be expected. Fortunately, class 1 is the
most common occurrence [11], which this method classifies
most uniquely.

Class 7 (�+ �; � � �; �3): Three eigenvalues are
found, two of which must be complex conjugates of each
other for theJ matrix which contains no imaginary values.
Only one plane will contain solution trajectories which are
either a focus or a center. Hence, only one unique�; � pair
value exists just as in the 2-D case. The real eigenvalue,
�3, denotes a stretching or compressing phenomenon where
trajectories either spiral away or towards the solution plane,
and this will not be captured [13].

6 Feature Comparison via EMD

A flow field can now be described by a set of�; � val-
ues. To compare two flows, one approach is to find the clos-
est match between the two sets of�; � values. The EMD
algorithm provides this functionality. EMD is emphasized,
since other techniques exist such as graph matching which
takes into account connections between critical points. In
the original description of EMD, terminology such as feature
distribution, energy and work are used. The terminology is
maintained for consistency and further information can be
found in [14].

Earth Mover’s Distance computes the minimal amount of
work required to transform one distribution to another. In
the case of vector fields, the distribution can be represented
as the set of�; � values.

Definition 1 (Feature Distribution) A feature distribution
for a 3-D vector field is the set of sets of� and � values

associated with the vector field’s critical points:

ff(�(1)1 ; �
(1)
1 ); (�

(1)
2 ; �

(1)
2 ); (�

(1)
3 ; �

(1)
3 )g;

f(�(2)1 ; �
(2)
1 ); (�

(2)
2 ; �

(2)
2 ); (�

(2)
3 ; �

(2)
3 )g;

: : : ; f(�(n)1 ; �
(n)
1 ); (�

(n)
2 ; �

(n)
2 ); (�

(n)
3 ; �

(n)
3 )gg (7)

Definition 2 (Energy) The energy for a vector field is:

Energy =

vuut
nX

j=1

3X
i=1

((�
(j)
i )2 + (�

(j)
i )2);

where n is the total number of critical points in this field.

The energy is a quantity that characterizes the critical points
of a vector field. It is different from physical energy. The
concept “work” is used to measure the energy differences
between two vector fields or the amount of energy used to
transform one vector field into the other. For a 3-D vector
field, work will be defined at two levels. At the higher level,
the work required to convert one set of�; � values represent-
ing a critical point into another is needed. This is denoted as
the Set Work. At the lower level, the work required to con-
vert one�; � value in the set into another is needed. This will
be defined as the Elemental Work. The Set Work is therefore
the minimum amount of Elemental Work required to convert
one set into another. Therefore, EMD can be used on the Set
Work where the distance function is the Elemental Work.

Definition 3 (Set Work) For two vector fields with feature
distributions

ff(�(1)1 ; �
(1)
1 ); (�

(1)
2 ; �

(1)
2 ); (�

(1)
3 ; �

(1)
3 )g;

f(�(2)1 ; �
(2)
1 ); (�

(2)
2 ; �

(2)
2 ); (�

(2)
3 ; �

(2)
3 )g;

: : : ; f(�(n)1 ; �
(n)
1 ); (�

(n)
2 ; �

(n)
2 ); (�

(n)
3 ; �

(n)
3 )gg

and

ff(�̂(1)1 ; �̂1
(1)

); (�̂
(1)
2 ; �̂2

(1)
); (�̂

(1)
3 ; �̂3

(1)
)g;

f(�̂(2)1 ; �̂1
(2)

); (�̂
(2)
2 ; �̂2

(2)
); (�̂

(2)
3 ; �̂3

(2)
)g;

: : : ; f(�̂(n)1 ; �̂1
(n)

); (�̂
(n)
2 ; �̂

(n)
2 ); (�̂

(n)
3 ; �̂

(n)
3 )gg

The amount of work necessary for transforming one vec-
tor field into the other is defined as:

Workset =

nX
i=1

EMDe(f(�(i)1 ; �
(i)
1 )(�

(i)
2 ; �

(i)
2 ); (�

(i)
3 ; �

(i)
3 )g;

f(�̂(i)1 ; �̂
(i)
1 ); (�̂

(i)
2 ; �̂

(i)
2 ); (�̂

(i)
3 ; �̂

(i)
3 )g)
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Figure 3: EMD capturing topological changes to Lorenz
Model

whereEMDe is the Earth Mover’s Distance whose dis-
tance function is the Elemental Work.

Definition 4 (Elemental Work) For two vector fields with
feature distributions

f(�1; �1); (�2; �2); : : : ; (�n; �n)g

and

f(�01; �01); (�02; �02); : : : ; (�0n; �0n)g:

The amount of work necessary for transforming one
vector field into the other is defined as:Worke =pPn

i=1((�i � �0i)
2 + (�i � �0i)

2).

Notice that the definition for elemental work is identical
to the work defined for a 2-D critical point defined in [1].
Since we decompose a 3-D critical point into a set of 2-D
critical points, EMD at this lower level is the same as the
2-D case. To summarize, we can find the distance between
two 3-D vector fields by extracting all 3-D critical points
in the fields and representing them by a set of�; � values.
Earth Mover’s Distance is used to find the minimum energy
between the critical points just as in the 2-D case. However,
the distance metric is defined as the EMD over theset of
�; � values whose distance metric is further defined as the
elemental work. The elemental work is merely the Euclidean
distance in�; � space and therefore is a metric. It can be
shown that the Set Work is also a metric since EMD is a
metric [14].

7 Example: Lorenz Model

One application for field comparisons is in the area of me-
teorology. Weather patterns can be searched for in a database
to understand the development of a flow. E.N. Lorenz at-
tempted to model thermally induced fluid convection in the
atmosphere using the Navier-Stokes equations [15]. Us-
ing two-dimensional motion, fluid heated from below and
cooled from above under the effects of gravity produce cir-
culation or convection rolls. This phenomenon is summa-
rized in Equation 8.

x0 = �(y � x) (8)

y0 = rx � y � xz

z0 = �bz + xy

x(t) represents a measure of the fluid velocity (amplitude of
the convection motion), and y(t), z(t) represent measures of
the spatial temperature distribution. The equations are in
non-dimensional form where� is the Prandtl number (ratio
of kinematic viscosity to thermal conductivity),b is a geo-
metric factor andr is the Rayleigh number and is propor-
tional to the temperature difference between the upper and
lower regions of the system. These equations were one of
the first to demonstrate chaotic behavior, and have resulted
in over a hundred papers [16]. The resulting phase portrait of
the system is in three-dimensions and is composed of simple
critical points.

In the original study by Lorenz� and b were fixed, and
the Rayleigh number (i.e. the temperature difference be-
tween the plates) was varied. Whenr is below1 only one
critical point exists. As the temperature difference increases,
three critical points form and eventually for large enoughr
the entire system becomes unstable. Using�; � space, the
behavior of the system can clearly be seen and in fact the
transformation from a stable system to an unstable system is
continuous in this space.

Beginning withr = 0, Equation 8 has one critical point
at the origin. As seen in Figure 4a, the critical point is type
Class I whose phase portraits are three attracting (stable)
nodes. Asr is increased to 1, the angle measured from the
positive� axis reduces and therefore the nodes become less
stable as it nears the saddle point. The arrow in Figure 4a
represents the critical point’s progression with increasing r.
At r = 1, the angle is135o and a degenerate node forms
(Figure 4b). Increasingr further, the origin’s phase por-
trait becomes a set of two saddles, and an attracting node
(Figure 4c). Asr increases, the saddle points approach the
repelling node.

In addition, forr > 1, two other critical points come
into existence at(�

p
b(r � 1);�pb(r � 1); r � 1). For

r near 1, another set of stable attracting nodes form (Fig-
ure 4d). However asr approaches 1.346, the angle increases
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approaching an attracting star. Since the system is non-
linear, the slightest perturbation causes the attracting star to
become an attracting focus. Hence for1:346 < r < 24:74
(Figure 4e) an attracting focus forms. Asr is increased
to 24.76, the phase portrait changes gradually to a center.
Hence, the observation of the unstable limit cycles forming
aroundr = 13:926. Oncer increases past 24.74, the an-
gle increases to over270o and a repelling focus comes into
existence and the system is unstable.

The change with temperature can also be understood by
observing how the phase portrait for a particularr compares
with the remaining phase portraits. Figure 3 plots the EMD
values required to change the critical points forr = 0 into
other critical points at otherr values. As can been seen,
for r < 1, a gradual increase in EMD occurs as the at-
tracting node at the origin becomes a saddle. As soon as
r > 1, two new critical points form causing a large jump in
EMD. The jump is drastic since six additional (2-D) critical
points (attracting nodes) must form. Oncer > 1:346, the
phase portrait changes from three attracting nodes, to one
attracting focus. Hence, less energy is required to create two
additional focii than six critical points. Fromr > 1:346,
the EMD value slowly increases as the system continuously
moves further from a stable system to an unstable one. Not
only is the attracting focii becoming a repelling focii, but the
saddles at the origin are approaching degenerate repelling
nodes (Figure 4c).

8 Conclusion and Future Work

We have extended the feature based comparison method
to three-dimensional vector fields. We have shown that the
extension can be straight-forward if we use the property that
a 3-D critical point can be decomposed into a set of 2-D
critical points with planar phase portraits. In addition, the
redefined distance function for EMD remains a metric.

As with the 2-D case, connections between the critical
points are not considered. Our experience has shown that for
many cases this is sufficient, however, to reduce the num-
ber of false positives and to provide a better distance be-
tween two fields the connections should be taken into ac-
count. We are investigating this aspect along with generaliz-
ing this method to tensor fields.

This method has also demonstrated its usefulness in un-
derstanding complicated phenomenon such as the Lorenz
model. The evolution of the thermal convection can be cap-
tured with EMD. Since the system is represented by quanti-
ties, fast searches can be easily constructed to locate partic-
ular patterns.
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[13] J. M. Chaćin, B. J. Cantwell, and S. Kline, “Study of turbulent
boundary layer structure using the invariants of the velocity
gradient tensor,”Journal of Experimental Thermal and Fluid
Science, vol. 13, pp. 308–317, 1996.

[14] Y. Rubner and C. Tomasi, “The earth mover’s distance as
a metric for image retrieval,” Tech. Rep. STAN-CS-TN-98-
86, Department of Computer Science, Stanford University,
September 1998.

[15] E. N. Lorenz, “Deterministic non-periodic flow,”J. Atmos.
Sci., no. 20, pp. 130–141, 1963.

[16] C. Stoker,The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors. Springer-Verlag, 1982.

111



Class Canonical Form Notes Phase Portraits jj�jj jj�jj

1

2
4
�1 0 0
0 �2 0
0 0 �3

3
5 Eigenvalues are real and

distinct. Eigenvectors
are linearly independent.

A-Node, A-Node, A-Node
R-Node, R-Node, R-Node
A-Node, Saddle, Saddle
R-Node, Saddle, Saddle

�1 =
�1+�2p
2(�21+�

2
2)

�2 =
�1+�3p
2(�21+�

2
3)

�3 =
�2+�3p
2(�22+�

2
3)

�1 =
�1��2p
2(�21+�

2
2)

�2 =
�1��3p
2(�21+�

2
3)

�3 =
�2��3p
2(�22+�

2
3)

2
4
�1 0 0
0 �2 0
0 0 0

3
5 2-D case

A-Node
R-Node
Saddle

�1 =
�1+�2p
2(�21+�

2
2)

�2 = 0
�3 = 0

�1 =
�1��2p
2(�21+�

2
2)

�2 = 0
�3 = 0

2

2
4
�1 0 0
0 �1 0
0 0 �2

3
5 Eigenvectors are inde-

pendent.

A-Star, A-Node, A-Node
R-Star, R-Node, R-Node
R-Star, Saddle, Saddle
A-Star, Saddle, Saddle

�1 = �1
�2 =

�1+�2p
2(�21+�

2
2)

�3 =
�1+�2p
2(�21+�

2
2)

�1 = 0

�2 =
�1��2p
2(�21+�

2
2)

�3 =
�1��2p
2(�21+�

2
2)

2
4
�1 0 0
0 �1 0
0 0 0

3
5 2-D case

A-Star
R-Star

�1 = �1
�2 = 0
�3 = 0

�1 = 0
�2 = 0
�3 = 0

2
4
0 0 0
0 0 0
0 0 �2

3
5 1-D case ignore – –

3

2
4
�1 1 0
0 �1 0
0 0 �2

3
5 Eigenvalues are real.

1 linearly dependent
eigenvector.

A-Log Star, A-Node
R-Log Star, R-Node
R-Log Star, Saddle
A-Log Star, Saddle

�1 = �1
�2 = 0

�3 =
�1+�2p
2(�21+�

2
2)

�1 = 0
�2 = 0

�3 =
�1��2p
2(�21+�

2
2)

2
4
�1 1 0
0 �1 0
0 0 0

3
5 2-D case

A-Log Star
R-Log Star

�1 = �1
�2 = 0
�3 = 0

�1 = 0
�2 = 0
�3 = 0

2
4
0 1 0
0 0 0
0 0 �2

3
5 1-D case ignore – –

Table 2: Phase Portraits for Classes 1,2,3. Legend: A- : Attracting R- : Repelling�1 6= �2 6= �3 6= 0, �1 > �2 > �3
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Class Canonical Form Notes Phase Portraits jj�jj jj�jj

4

2
4
�1 0 0
0 �1 0
0 0 �1

3
5 Eigenvalues are real.

Eigenvectors are linearly
independent.

A-Star, A-Star, A-Star
R-Star R-Star, R-Star

�1 = �1
�2 = �1
�3 = �1

�1 = 0
�2 = 0
�3 = 0

5

2
4
�1 1 0
0 �1 0
0 0 �1

3
5 Eigenvalues are real.

One linearly dependent
eigenvector.

A-Log Star, A-Star
R-Log Star, R-Star

�1 = �1
�2 = 0
�3 = �1

�1 = 0
�2 = 0
�3 = 0

6

2
4
�1 1 0
0 �1 1
0 0 �1

3
5 Eigenvalues are real.

Two linearly dependent
eigenvectors.

A-Log Star
R-Log Star

�1 = �1
�2 = 0
�3 = 0

�1 = 0
�2 = 0
�3 = 0

7

2
4
� �� 0
� � 0
0 0 �3

3
5 Two complex and one

real eigenvalues.

A-Focus
R-Focus
Center

�1 =
�p

�2+�2

�2 = 0
�3 = 0

�1 =
�p

�2+�2

�2 = 0
�3 = 0

Table 3: Phase Portraits for Classes 4-7. Legend: A- : Attracting R- : Repelling�1 6= �2 6= �3 6= 0, �1 > �2 > �3
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α

β

Saddle

A-Node R-Node

α

β

Saddle

A-Node R-Node

0 � r < 1 AN,AN,AN r = 1 DAN,DAN,AN
Figure a (x; y; z) = (0; 0; 0) Figure b (0; 0; 0)

α

β

Saddle

A-Node R-Node

α

β

A-Node

A-Focus R-Focus

r > 1 S,S,AN 1 < r < 1:346 AN,AN,AN
Figure c (0; 0; 0) Figure d (�

p
b(r � 1);�

p
b(r � 1); r � 1)

α

β

A-Node

A-Focus R-Focus α

β

A-Node

A-Focus R-Focus

1:346 < r < 24:74 AF r > 24:74 RF
Figure e (�

p
b(r � 1);�

p
b(r � 1); r � 1) Figure f (�

p
b(r � 1);�

p
b(r � 1); r � 1)

Figure 4: Lorenz Model for Fluid Convection depicted in�; � space. � = 10; b = 8=3. AN:Attracting Node,
DAN:Degenerate Attracting Node, S:Saddle, AF:Attracting Focus, RF:Repelling Focus
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