
TIV: A Thread Interaction Viewer

Kevin Audleman David H. Laidlaw Steven P. Reiss

fkforbes, dhl, sprg@cs.brown.edu
Department of Computer Science, Brown University, Providence, RI

Figure 1: Clockwise, from top left: a) Thread states are represented as colored bars. b) The timeline view shows the states of execution of the
threads, describing how they are acting. c) The interaction shows group behavior on mutual locks, describing how the threads are interacting.
d) A larger view showed at the mid level of detail.

This paper presents Thread Interaction Viewer (TIV), a visu-
alization tool for examining the thread behavior of large, long-
running Java programs. It provides a novel view of thread schedul-
ing information, I/O behavior, and blocking behavior in a manner
that helps in the understanding and debugging of thread related
problems. This is facilited in part by a flexible visualization frame-
work that uses levels of detail to scales the visualization to best re-
flect the relevant information for different numbers of threads. TIV
uses a 3-D space to represent the threads, but relies primarily on two
specific views in this space: the Timeline View and the Interaction
View. These views together paint a picture of behavior: the timeline
view shows how each thread is acting, and the interaction view how
they’re interacting. We have found TIV to be good at identifying
problems that are the result of threads interacting improperly, such
as erroneous synchronization behavior, errors in thread scheduling,
and more complex user defined thread communication errors.

Introduction.
Threaded programs have multiple threads of execution working in

the same address space. They work in shared memory, communi-
cating through the use of locking primitives. Properly coding the
synchronization of these locks is necessary to prevent threads from
interfering with each other, however doing so is a delicate and error
prone process. Small flaws in logic can have a large impact on pro-
gram performance. For instance, introducing a lock in the wrong
place, such as on a heavily accessed class or object, can create a
huge amount of excess blocking. The will result is a drop in perfor-
mance as many threads wait on a lock. Identifying the cause of this
sudden slowdown is not easy without the right tool.

TIV is designed to help the user identify thread communication
based problems such as these. It uses a data visualization that uses
two distinct views, the timeline view and the interaction view, to
make problems of this type stand out. TIV’s data representation
allows for an efficient means of examining large and long running
programs. We describe the details of the visualization below.

Visualization
TIV’s data representation is a combination of thread scheduling



states, I/O behavior, and shared blocking statistics. For each thread,
TIV reports the time spent in each of the following states:
Running: It is active on a processor
Runnable: It is ready to run, but there just aren’t enough proces-
sors for it to get one.
I/O Waiting: It is currently waiting for a call to a memory or on a
socket.
Sleeping:It is waiting for a synchronization variable.
Suspended: A call to the suspension function
thread.suspend() has been made.

In the examples in this paper, each state is represented over a
one second time window. However, this length of time is user con-
trollable to allow for a coarse or fine examination of the data. An
example will illustrate the use of TIV.

Example
Figure 1 illustrates a message server. It has five listener threads
waiting on sockets to receive messages, which it then processes and
displays in a GUI. For some reason, it is running slowly. As we will
demonstrate below, TIV makes it easy to identify the problem.

Figures 1b shows thetimeline view, which is used to examine
states. The five threads in the middle are the listener threads. In a
proper execution, we would expect these threads to be primarily in
the I/O waiting state, ready to accept incoming messages. However
the timeline view shows us that they’re mostly in the sleeping state.
This explains the slowdown – the listeners are not available to ac-
cept incoming messages because they’re spending all of their time
blocking. The interaction view gives more detail.

Figure 1c shows theinteraction view, which is used to examine
blocking behavior. A connection between two threadsT1 andT2
indicate that one of them is waiting on a lock the other holds. In
this example, it can be seen that all of the listeners are waiting on
each other. This indicates that there is a lock they are all fighting
over, which is unexpected. Examination of the code reveals that
each thread is accessing a Java implementedhashTable that re-
quires synchronous reads. Switching to ahashMap removes the
synchronization and eliminates the slowdown.

Levels of Detail
TIV also gives a means for examining programs with a large num-
ber of threads through a flexible visualization framework. We have
tested its effectiveness on programs up to 50 threads, and expect to
increase this to about 200. LOD changes the visualization based
on how many threads are on the screen. There are three levels:
near, mid, andfar . Near is as described above, and mid and far
successively compact the information displayed. This serves the
purpose of keeping the visualization readable at large scales – five
states for 100 threads produces an incomprehensible display, but
two or three colors is much more understandable. It also serves
the purpose of abstracting away detail that is not as relevant as the
number of threads increase. For instance, examining the scheduling
of threads onto processors (the proportion ofrunning to runnable)
is useful with a small number of threads, as it provides a means
of finding problems with priorities, such as threads being starved.
However with twenty or more threads, it is often useful to assume
the thread library is doing a decent job. Mid level handles this issue
by compressingrunning to runnableinto executing. The levels are
describes as:

� Near: This is the same as described above. It describes the
states: running, runnable, I/O waiting, sleeping, and blocking.
It is useful for up to 20 threads.

� Mid: This level shows: executing, I/O waiting, sleeping, and
blocking. It is useful for up to 50 threads.

� Far: This level combinesblockingand I/O Waiting into the
single categoryNon-runnableto further reduce visual clutter.

This level is designed to point out potential bad behavior that
can then be examined in greater detail with a closer view. The
states it describes are: executing, non-runnable, suspended. It
is designed for up to 200 threads.

Figure 1d gives an example of TIV running at mid level. This is a
message server with forty message listeners. The listeners initially
start in the waiting on I/O state, but then are deluged by a massive
number of messages. This can be seen by the large amount of time
they spend in theexecutingstate. The specifics of when each thread
transitions from runnable to running aren’t of any concern with this
program, thus the mid level of detail is the right level to look at this
data.

Conclusion
TIV is a visualization tool that aids in the process of debugging and
understanding large threaded programs. It uses two main views,
the timeline view and the interaction view, to communicate how
threads are acting and interacting. It utilizes a level of detail system
to focus the visualization for different numbers of threads. TIV is
useful for identifying problems that occur through improper thread
communications, and is effective for programs with widely varying
numbers of threads.

References

[1] Qiang A. Zhao and John T. Stasko, Visualizing the execution
of threa ds-based parallel programs. Technical Report GIT-
GVU-95/01, Graphics, Visualiza tion, and Usability Center,
Georgia Institute of Technology, Atlanta, GA, Januar y 1995.

[2] John T. Stasko, The PARADE Environment for Visualizing
Parallel Prog ram Executions: A Progress Report. Technical
Report GIT-GVU-95-03, Graphics, Vis alization, and Usabil-
ity Center, Georgia Institute of Technology, Atlanta, GA, 1
995.

[3] B. Stein and Chassin de Kergommeaux, Interactive Visualiza-
tion Envir onment of Multi-threaded Parallel Programs.

[4] Jordi Guitart, et al, Java Instrumentation Suite: Accurate
Analysis of Java Threaded Applications.

[5] http://www.research.ibm.com/jinsight/docs/index.htm

[6] Wim De Pauw et al, Drive-by Analysis of Running Programs

[7] John May and Francine Berman, Creating Views for Debug-
ging Parallel Programs.

[8] Bryan M. Cantrill and Thomas W. Doeppner Jr, ThreadMon:
A Tool for M onitoring Multithreaded Program Performance.


