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We present the results from a pilot study that evaluatesfthetiveness
of 2D visualization methods in terms of a set of design fagtamich are
subjectively rated by expert visual designers. In collakion with educa-
tors from the Illustration Department at the Rhode Islankdd®t of Design
(RISD), we have defined a space of visualization methodgyusasic vi-
sual elements including icon hue, icon size, icon densitg, lBackground
saturation (see Figure 1).

In this initial pilot study we presented our subjects withgde variable
visualization methods. The results characterize the @ffeess of individ-
ual visual elements according to our design factors. We aginbing to
test these results by creating two-variable visualizatiand studying how
the different visual elements interact.

1 INTRODUCTION

Given the increasing capacity of scientists to acquire mutate multival-

ued datasets, creating effective visualizations for ustdeding and corre-
lating these data is imperative. However, modeling thespapossible vi-

sualization methods for a given scientific problem has ehgkd computer
scientists, statisticians, and cognitive scientists fanynyears [1,2,3,4]; it
is still an open challenge. Our goal is to provide scientigth visualization

methods that convey information by optimizing the desigthefimages to
facilitate perception and comprehension.

We created a framework for evaluating these visualizaticethads
through feedback from expert visual designers and art edrigca Our
framework mimics the art education process, in which artcathrs im-
part artistic and visual design knowledge to their studémsugh critiques
of the students’ work.We established a set of factors thataterize the
effectiveness of a visualization method in displaying stifie data. These
factors include constraints implied by the dataset, sudhaselative im-
portance of the different data variables or the minimumuieasize present
in the data. We also include design, artistic, and percéfdgtors, such
as time required to understand the visualization, or howalig linear is
the mapping between data and visual element across the .invegewill
describe these in detail in section 2.

Evaluating the effectiveness of visualizations is diffiladcause tests to
evaluate them meaningfully are hard to design and execiite\f& have
researched this issue previously in two user studies cangp@D vector
visualization methods. The first one [6] used scientistsviduate 6 visu-
alization methods, and the second one [7] studied the talidisubjective
measures to evaluate the same methods using designersjestsuliRe-
sults indicated that the designers rated the visualizatiethods in a pattern
similar to the results of the scientists of the first study. &\® found that
designer critiques generally took less time and that desfgwere able to
provide methods for improving the visualizations. Thisuteprovides key
support for using subjective expert design knowledge ad#ses for our
visualization effectiveness characterization.
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Figure 1: Eleven different visualization methods that represent the same continuous scalar dataset. We are characterizing the effectiveness of each one of
these methods, both individually and in combination, to represent scalar datasets in 2D.

The current pilot study builds on those two studies and isitfitél
step towards our final goal, which is to create a mathematizadel of
the knowledge collected from design experts and use thaehtodind an
optimal solution for a data visualization problem.

2 DEFINITIONS

In this section, we will define the two main components of audg: our set
of visualization methods and the design factors we definathémacterize
them.

In general, a visualization method takes a scientific datase produces
a visualization display. A method corresponds to a layedhination
of our visual elements (see Figure 1), where the differeta dariables
being represented are mapped to one or more of the avail@eets. To
express these mappings we created Evolvis, a languagesinilsiag multi-
layered scientific visualizations of multivariate 2D datiss We have used
this language to generate all the images used in our stdthesthe single-
variable visualizations shown above to complex exampleaufi-layered
multi-variable displays.

The second component, the design factors, are quantitataasures of
the effectiveness of a visualization method. The goal ofgiralizations is
exploratory: scientists need an accurate representdtitieio data but have
no simple specific tasks in mind, other than exploring howdifferent vari-
ables interact. In this sense, the factors we define heréderavformation
about the quality of the data presented and the capabiligna$ualization
method to work in combination with other methods. Said fectoe:

e data resolution: the number of different levels of a data variable that

can be distinguished by a viewer;

o feature resolution: the minimum spatial feature size that can be re-
liably represented with the method, expressed as a pegepfahe
image width;

e linearity: the perceptual linearity of the mapping from data value to
visual property; this factor is measured by asking subjecisdicate
the locations where they see the values of 0, 0.25, 0.5, &b,1.0
along the image for a linear dataset visualization;

e visual bandwidth: the percentage of of a method that can be covered
when combined with other methods but still remain readable;

e dominance: the forcefulness gpunchiness of the data mapping. This
indicates how much a method would dominate the compositioenw
combined with other methods, measured as a value from 0 to 10;

e timetoread: the time it takes an average user to comprehend the data,
measured in seconds.

Bertin [1] developed a similar classification of his “retirmaoperties”

(size, value, texture, color, orientation, and shape) rlteg to their level
of organization (whether they could be used to representtijative, quali-
tative, or ordered information) and the number of steps tweyd take (our
data resolution factor). Our factors introduce new measuilee linearity,



Highest Average Lowest

Data Icon Orientation 3
Resolution (18)

loon Hue 2 (10) Icon Transparency 2

1/(Feature
Resolution)

Icon Orientation 2| Plane Saturation 3

Plane Hue 1 (50)

Visual Plane Hue 3

Bandwidth

Plane Lightness 1

(99%) (50%) Icon Density 3 (0%)

Icon Transparency 2 | lcon Saturation 2

8.3 )

Dominance Icon Lightness 2 (2)

Plane Saturation 3
(0.04)

1/(Time to
Read)

Icon Density 3

Plane Hue 1 (1.5) (0.45)

Summary of results for single-variable

Saturation 1/Density 1 Lightness 1/Density 2

o LIGHT1
m DENS1
4 DENS2
v P_SAT1

o LIGHT
= DENS1
4 DENS2 15
v B_SAT

‘ 7\ Yo
05 . ¢ -0.5¢

2
1/(Feature Res.) Dominance
Data Res. Visual Band. 1AT. o R)

Two-variable-scores

-2
1/(Feature Res.) Dominance
Data Res. Visual Band. MUT.toR)

Single-\@lda-scores

Figure 2: For our pilot study, we showed subjects 3 different parameterizations for each of the 11 visual elements (see Figure 1). On the summary table,
the number following the element’s name indicates which parameterization obtained those results. Next, we show two examples of two-variable visualization
methods and evaluation results (zscores) for each design factor, both individual and in combination. Note how values change when another dataset is present.
The perceptual conflict between visual elements is obvious in the 'Lightness/Density’ example.

and also capture some composition characteristics, ligeatibandwidth
and dominance. Our data resolution and feature resolutictorfs capture
the fact that we are targeting quantitative datasets.

3 METHODS

Building on these visualization methods and design facteeshave devel-
oped an approach for acquiring knowledge about our spacsudlization
methods. We have expert illustration educators critique r@te simple
visualizations where only one visual element changed. Dla¢ig to deter-
mine the relative effectiveness of each of these visual faragpresenting
single-valued data (see Figure 3). At this stage we alsaat@bur set of
design factors based on the comments from expert designers.

During their critiques, our subjects provide three différkinds of in-
formation for each design factor: numeric ratings, spesifiggestions for
directions of improvement, and explanations of their iggin\e videotape
the sessions, which last approximately 3 hours, and we eageun-depth
explanations of their numerical ratings.

We are also beginning our exploration of how combinationslements
work together. In this case, our subjects critique and ratebinations of
visual elements to map the ability of cue combinations togsgnt complex
relationships within multivalued data sets. The two imageghe left of
Figure 2 show two examples of visualizations of two-varaddtasets. This
step allows us to understand how the individual visual elgménteract
when put together in the same visualization display. We edgthpare the
results obtained here with the results of the single-végiabudy to better
characterize the element interactions.

4 RESULTS

Four illustration educators have performed the study. We fodotained a
characterization of methods for each of the design factodied, summa-

rized in the table in Figure 2. We also obtained #hecores for an easier
comparison across factors, effectively normalizing allea to have a 0
mean. Figure 2 shows an example of this classification for foethods

(chart labeled 'Single-variablescores’).

For the conditions with two visual elements combined we krfowex-
ample for the cases shown in Figure 2, how the parametenmabf icon
lightness and density work in isolation, and we can see tlsggddactor
evaluations changed significantly when we combined both.thH@nother
hand, saturation (red line in the charts) was not affectgaifstantly by its
combination with a different density parameterizationc@pt for its domi-
nance value).

5 DISCUSSION
As we expected, no method dominates all factors for the singtiable
case. For the linearity factor (not shown in the charts)niooientation

visually conveyed linearity very accurately, while almalitother methods
failed to do so.

Figure 3: A subject in our pilot study critiques visualizations of 2D datasets
with a single scalar variable. lllustration educators are shown a total of 132
visualizations corresponding to 3 parameterizations (columns, on the right)
of 11 visual elements and 4 different datasets (rows, on the right). For each
parameterization, they evaluate all 6 of our design factors (left, bottom).

Commenting on the appropriateness of our design factors,obrour
subjects noted that a choice of visualization method wikifbected by what
the data actually is, e.g., visualizing temperatures ishrosame as looking
at wind speed or altitude data. In our case, we want to applyesulting
design knowledge to any type of scalar data, so we are caimgjdhe use
of a seventh factor callddtuitive association. This would measure whether
there are any associative readings of a method that migérféne with the
desired numerical reading and should be avoided.

For the two-variable examples, following Bertin’s prinigip [1], icon
density and lightness would have similar levels of orgaiwmaso they
would visually conflict with each other when combined, sdmred that
is obvious by observing the example above and which our dité con-
firmed. The non-conflict between saturation and icon derisigliso pre-
dicted by Bertin, due to their different levels of organiaat The problem
in this case is that the density results change drasticdilievihe saturation
ones remain mainly the same. One of our subjects explairdathough
we are using the perceptually balanced LAB color spacetingesaturation
ranges that do not change their lightness is extremely diffi©ur eyes are
very well trained to detect lightness changes, so this niightausing the
density method to become unclear, like in the lightnessitleexample.

Note that our characterization of 2D visualization methadaowledges
that the input we get from the designers is directly targetettie needs of
scientists, and is not about artistic qualities, visualegbpor aesthetics. Our
subjects, illustration educators, are experts at evalgatsuals for targeted
communication goals; while their results are often appeadind aesthetic,
they first have to satisfy those communication goals whinhthis case,
means presenting scientific data for effective exploration
6 CONCLUSION

With our current results, given requirements for all ourigiegactors, we
can probably find by hand, in the single-variable case, amapbor close

to optimal solution. But when multiple variables are invaly the optimiza-
tion process will be much harder. This simple result alresulyports our
research idea that a mathematical model, combined with stieomed op-
timization process, is necessary to find effective multied! visualization
methods. Our goal is to be able to build such a model from daleated in

our designer critiques. A key for the success of this prdgetd gather as
much information as possible from design experts in arefiseofpace that
we can explore in a structured and exhaustive way, such aalization

methods with a single layer of visual elements represerdisingle data
variable.

Also, obtaining information about visual element inteiaes at this
point will facilitate our exploration of more complex areakthe space,
by exploiting the knowledge gathered for this simple casEke current
results, although preliminary, provide an idea of the ditfig of the prob-
lem and the need for a formal study of this space of visuatinahethods,
which we intend to pursue.
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MINNEARDLIS, MN USA Fritz Dru ry, lllustration, Rhode Island School of Design, Providence, R We obtained a characterization of each of our eleven visual elements with respect to
! ' ’ ’ Re SU |t g our six design factors along with valuable insights from our expert design educators

Contributions Research Objective

Five professors from the lllustration Dept. at RISD have evaluated our single-variable visualization examples. The graph on
To find effective methods for multivariate multilayered scientific the left shows the results for the data resolution (DR) factor (# different levels of data a method is able to represent.) The

data representation optimized to facilitate perception and
comprehension

© An experimental methodology for capturing
quantitative knowledge from visual design
experts

results for all 33 methods are shown (11 elements x 3 mappings per element.) We have analogous characterizations for all
the design factors.The graph on the right shows the results for the visual linearity factor for some of the methodes.

. One advantage of using design experts to do the

© Measurement of a set of design factors to To achieve this objective we are developing a mathematical model of visual ~ « evaluations is that they can pinpoint reasons why a method

. . e . : . 2 < e . lity of th
characterize visualization methods for design knowledge based upon evaluations of visualization methods performed by 2 does notwork. They COThrgpe)re]zel?sggctwetZ?fgcetlsjt;?‘ rg;attivg

representing scientific data expert visual-design educators. Our evaluation sessions, designed after "crit 0 Visual Linearity Averages space, the distinctive features a
sessions from art classes, create a familiar context in which expert designers can y
© Effectiveness quantification of individual provide valuable quantitative information about the methods presented. )
visual elements for visualizing single-variable . s . . | | |

Data Resolution Averages

makes it readable, or their
i technique of squinting their eyes to
-z perceive the overall composition

method like orientation creates that
scalar datasets for exploratory visualization The first step has been to evaluate individual visual elements for representing

- for us B il vt S o pecep ey 7 R ot recisng on Sngle ons

© Hypothesis for using the measured design affect the evaluations, we will hypothesize the design factor ratings for three- & @%@ § 8 EE LSS &“g‘}*‘}*‘"’&“& FEESESEELFFELESES o e gseo fesi cOmMMEeNts 1o TETine
factors for single-variable visualizations to variable visualizations and test a subset of them. - veeIdd Slr teletiginl 1elegolrc

predict measurements for multivariate cases With this characterization we devised five different scenarios, shown on the table below, setting goals for each design

This process will allow us to build our mathematical model for more complex factor. These scenarios represent requirements expressed by scientists exploring the data. We measured the effectiveness of

© Description of a parameterized space of visualization me’ghods, .involving multiple icpn .a.nd_ colpr—plane layers and each method based on how it fulfills the desired set of goals. The graph below shows the results for one of these scenarios.

multilayered multivariate scientific representing multiple variables for exploratory scientific visualization. Note that only three factors are constrained. For the other three factors, linearity can be fixed by adjusting the data-to-visuals

mapping, while visual bandwidth and dominance are not required for
single-variable examples. .

0.5 1

visualization methods and a language to
define it

Effectiveness Score for Scenario 1
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Experimental Setup

We present all stimuli simultaneously on paper so that

Sample Design Goal Scenarios

Data Feature Time 4]

Design Knowledge and

EffeCt“[eness Qua nt|f|cat|0n Data Resolution (DR) Visual Bandwidth (VB) consistent quantitative evaluations somtos] = T~ T mn ||
# levels of data a method % coverage a method can . . Scenario 5| 4<DR<6 | 5<FR<10 -
canirepresent support and remain readable Experienced educators can focus on evaluating a single method, but they 3 . .

® ° ° . Resolution Resolution to Read
subjects can easily compare them; this helps them provide [ji/E==r = T th” ” | ‘
i

Six design factors characterize our visualization
methods and form the basis for quantifying their
effectiveness

\\\\\\

explain their decisions more easily when they can compare across several
examples. In our setup we present:
o 11 visual elements
o 3 different mapping ranges (transformation from data variable to
visual variable) per element. See columns in the image below. h ext?

What's We are exploring a very high dimensional

space using a very sparse sampling of
visualization methods

Our design factors (see right) are based on concepts that our

: : 4 datasets (shown on the right) per mapping
expert design educators can understand quickly and report on Feature Resolutlon FR) Visual Dommance DO °q : —— | | |
numerically. The feedback obtained is aimed at measuring the size (% image width) of the sr()atla? how much (0-10) a method do(mma’zes We \{IdeOtape the sgssmng, USU3|!Y 3 t0.4 hOUI’S |0n9: and we €ncourage Based on these initial results we hypothe5|ze that we will be able to predlct
amount and quality of information transmitted by the feature a method can represent a composition over othermethods  our subjects to explain their scoring criteria as they go. We hope to  and test design factor measurements for multi-valued visualization

visualizations, not at their esthetic value.

: mcorporate their comments as tie-breakers when conflicts arise in our model.  methods using combinations of our visual elements. Dominance and visual
B bandwidth, key design factors when layering visualizations, will become
much more prominent in these more complex methods.

Expert illustration educators have experience in class
critiques where they teach design and artistic concepts by
evaluating how effectively a message is visually conveyed.

4
YaarVa 2y >
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To evaluate this hypothesis we are beginning to bring our experts back to
evaluate combinations of two visual elements representing two different
scalar variables.

Aquy >'

: L. : Vlsual Lmearlt (LI) | Time to Read (TR)
Requirements from scientists come in the form of goals for mark 0%. 25%. 50%, 75%. Xndmo% S o 3 e B G

some or all of these factors. We quantify effectiveness based
on how well a method fulfills the set of goals.

Using the design factors we will compare the evaluations with the results

: S : g o S of the single-variable study. These combinations create very complex
VI Sta I |Zat 101 La N g tia g € g e 0 perceptual interactions (one of our subjects described trying to measure
Collaborating with expert designers, we have created a visualization language for multivariate 'f R T S, 5 some of the factors as "visual heavy lifting"), and a direct analysis of the data
visualization using basic visual attributes for multiple layers of icons and color-planes B ) O e S g must be coupled with a protocol analysis of the videotaped sessions.
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Combinations of the elements we chose, shown below, generate an expressive space of visualization methods. The
main elements found in the visualization literature are represented, so our results will be applicable to a large set of
problems.The high dimensionality of the space poses a big challenge, but we are approaching the exploration of the
space from the ground up, building up our knowledge from simple to more complex visualizations.
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