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Abstract
This chapter provides an overview of the variables that have been considered in
the controlled and semi-controlled experiments for studying phenomena in visual-
ization. As all controlled and semi-controlled experiments have explicitly defined
independent variables, dependent variables, extraneous variables, and operational
variables, a survey of these variables allow us to gain a broad prospect of a major
aspect of the design space for empirical studies in visualization.

7.1 An Overview of Empirical Studies in Visualization

Empirical studies are an integral part of the research activities in visualization, in a
recent survey by Kijmongkolchai et al. [22], some 80 papers on empirical studies,
which were published in visualization journals and conferences, were categorized.
This is the largest collection to date of papers reviewing controlled empirical studies
in visualization, though there are no doubt many more in the literature to be discov-
ered. Many of these empirical studies have provided verifiable means for evaluating
different visual designs and visualization techniques, and many others focused on
controlled experiments designed to gain some understanding or measurement about
specific phenomena in visualization, such as color perception, the effect of emotion,
or the use of knowledge.

All controlled empirical studies are designed to study the impacts of the vari-
ations of a number of conditions. Mathematically, the individual aspects of the
conditions that are being changed during an experiment are defined as indepen-
dent variables, while the effects to be measured are defined as dependent variables.
Meanwhile, because the variation of an effect could potentially be caused by many
variables, each experiment usually has to minimize the impact of some potential
variables in order to maintain the total number of conditions being studied at such
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a level that all conditions can be sampled adequately. The methods for controlling
a variable other than the pre-defined independent and dependent variables typically
include (a) setting it to a constant (e.g., using the same room), and (b) making its
instances reasonably random (e.g., ordering different conditions randomly). In some
empirical studies, such as web-based crowd sourcing studies, there are well-defined
independent and dependent variables, but the impact of some potential variables
cannot be fully controlled (e.g., the computer or the room used for the study). They
are commonly referred to as semi-controlled studies.

There are many forms of empirical studies that do not pre-define a set of in-
dependent and dependent variables, including free-text questionnaires, observation
diaries, focus group discussions, think aloud sessions, interviews, and so on. One of
the goals of such a study is to identify, in an open-minded manner, some independent
and dependent variables that may offer potentially the most meaningful explanation
about a causal relation in visualization.

In this chapter, we survey the independent and dependent variables that have
been studied in controlled and semi-controlled empirical studies in the visualization
literature, while examining how extraneous variables were controlled in three case
studies. In the remainder of this chapter, we will first give more precise definitions
of the main categories of variables. This is followed by a collection of examples for
each category. We then detail how variables are defined in three case studies. We
offer our summary observation and concluding remarks at the end of the chapter.

7.2 Independent, Dependent, and Other Variables

A variable V in an empirical study is a conceptual entity that may change during
an experiment, and such an entity can be a piece of stimulus information, a char-
acteristic attribute, an experimental condition, a measurement, or other entity that
may vary. For example, in a basic visual search experiment, participants may be

Question: How many Pink Squares are in the above picture? 

0 1 2 3 4 or more 

Question: How many Orange Objects are in the above picture? 

0 1 2 3 4 or more 

(a) How many pink squares cpink∧ ssquare? (b) How many orange objects corange∧ (si ∈ S)?

Fig. 54 Two example stimuli that may be used for a traditional experiment on visual search.
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shown stimuli similar to the two shown in Fig. 54. There are many variables that
may change during an experiment, such as:

a. the color of an object in a stimulus;
b. the shape of an object in a stimulus;
c. the size of an object in a stimulus;
d. the position of an object in a stimulus;
e. the number of objects in a stimulus;
f. the aspect ratio of the display area of a stimulus;
g. the questions that may appear in conjunction with a stimulus;
h. the ways in which a question may be answered (e.g., multiple choice buttons,

pull down menu, free text, etc.);
i. the number of options available for a multiple choice answer;
j. the ordering of the options available for a multiple choice answer;
k. the type of computing devices used for the experiment;
l. the venue where the experiment is conducted;

m. the time of day when the experiment is conducted;
n. the gender of a participant;
o. the age of a participant;
p. the visual capabilities of a participant;
q. the education background of a participant;
r. the knowledge of a participant that may be used to complete a trial in the experi-

ment;
s. the time taken by a participant to complete a trial in the experiment;
t. the correctness of a participant’s response to a stimulus in a trial;
u. the average time taken by all or a specific group of participants to complete the

same type of trials in the experiment;
v. the average accuracy of the responses given by all participants or a specific group

of participants to the same types of stimuli in the experiment;
w. ...

While we are almost running out of the letters in the English alphabet, it is not
difficult to add to the above list. Some variables can be further decomposed into
simpler variables. For example, the sight variable may be decomposed to elementary
variables of shortsightedness, colorblindness, etc., and the education background
may be decomposed to elementary variables of levels, subjects, language, etc.

An empirical study is usually designed to evaluate one or a few hypotheses. Each
trial in the experiment is a process that instantiates a causal relation from a set of
variables to another set of variables. As a tradition of empirical studies, such a causal
relation is usually expressed negatively as a null hypothesis. Let a null hypothesis
be defined as follows:

Null Hypothesis: Varying variables of X1,X2, . . . ,Xm will not have impact on
variables of Y1,Y2, . . . ,Yn (m > 0,n > 0).

In general, it is very difficult for an empirical study to evaluate a hypothesis
that depends on many variables. Consider, for example, the two stimuli shown in
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Fig. 54. There are 100 objects in each stimulus, and each object may have one of
the five colors (i.e., cgreen, cgrey, corange, cpink, and cpurple) and in one of the five
shapes (i.e., scircle, shexagon, sparallelogram, ssquare, and strapezoid). Hence, each object
may appear in one of the 25 color-shape combinations. When considering the 100
objects collectively as a group, the group of objects may appear in 25100 color-shape
combinations. In other words, if the 100 objects were placed on a fixed regular
grid (e.g., a 10× 10 grid), there would be 25100 possible stimuli. When one takes
other variations into consideration, such as the number of the objects, the size of the
objects, and the positions of the objects, and so on, the number of possible stimuli
will increase rapidly. Since an empirical study can only have a limited number of
trials, only a limited number of stimuli can be selected from a vast number of all
possible stimuli.

The word “controlled” thus plays a vital role in designing every collected em-
pirical study. Firstly, one has to select a small number of variables of X1,X2, . . . ,Xm
in a hypothesis by controlling m such that it is a relatively small number (typically
m < 5). These selected variables are commonly referred to as independent variables
in the literature of empirical studies. Those variables, which may or may not have
an impact on the participants’ performance but are not included in the set of, are
referred to as extraneous variables [7, 21], nuisance variables [21], or potential
confounding variables [13]. An extraneous variable becomes reprehensible as an
actual confounding variable, when it is known to have a confounding effect on the
participants’ performance but has not been adequately controlled.

Secondly, one has to control the number of variations or optional values that
each independent variable can have. For example, although there are many dif-
ferent colors and shapes that could be used in designing the stimuli in Fig. 54,
one has to exercise some control to restrict the number of colors and the num-
ber of shapes. To manifest the limited sampling of an independent variable X ,
one may consider it as an alphabet X, which is a term for variable in informa-
tion theory. The limited number of variations in a variable X is thus the num-
ber of letters in the corresponding alphabet X. Therefore, for the experiment il-
lustrated in Fig. 54, the alphabet for the sampled colors C has five letters, i.e.,
C = {cgreen,cgrey,corange,cpink,cpurple}. The alphabet for the sampled shapes S also
has five letters, i.e., S= {scircle,shexagon,sparallelogram,ssquare,strapezoid}, assuming that
the stimuli used in all trials feature the same alphabets C and S.

Thirdly, one has to control the impact of the extraneous variables, typically by
setting each of them to a constant. For example, in the case of the experiment il-
lustrated in Fig. 54, the number of objects is fixed to 100 for all stimuli, and the
filled areas of all objects are fixed to the same size. However, not all variables can
be fixed to some constants. In many empirical studies, some variables may be sam-
pled randomly, or may appear to be sampled randomly (commonly referred to as
pseudo-randomly). For example, the 100 objects in Fig. 54 may appear to be placed
in the display area randomly. In fact, they are positioned pseudo-randomly to mani-
fest a reasonably uniform distribution of the objects while avoiding any overlapping,
because varying the spatial distribution of the objects would introduce another in-
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dependent variable, while varying the amount of occluded part area of each object
would undermine the aforementioned control of the object size.

Finally, many variables can neither be fixed to constants nor be sampled ran-
domly or pseudo-randomly. For example, it would be very difficult to fix the ages
and education backgrounds of the participants to some constants, or to recruit partic-
ipants in a way reflecting a uniform distribution. In such cases, the common wisdom
is to record the variations of such variables in an empirical study and discuss their
potential impact in the report of the experiment. In some situations, one may de-
termine whether or not such a variable has an impact on the hypothesized causal
relation. In most other cases, one may have to leave such conclusions to some future
empirical studies.

The set of variables of Y1,Y2, . . . ,Yn in the general formation of a null hypothe-
sis are referred to as dependent variables. There are two main classes of dependent
variables. The variables that are to be measured in individual trials are measured
dependent variables. The most elementary dependent variable is a binary variable.
Most experiments for studying just notifiable difference (JND) ask participants to
choose whether the attribute of one stimulus is above or below that of another stim-
ulus. Many experiments for testing rapid reaction or decision capacities also use
binary variable, such as “yes” or “no”, “on” or “off”, “action” or “no action”, and
so on.

The slightly more complicated dependent variable is a set of multiple choices,
typically implemented as multiple command buttons, radio buttons, or selectable
visual objects in a stimulus. The examples in Fig. 54 show five command buttons.
Hence, when the multiple choices are considered as letters of an alphabet, we have
an alphabet for the answer A= {a0,a1,a2,a3,a4+}.

Some empirical studies have much more complicated alphabets as measured de-
pendent variables. For example, selecting a location on a map from n optional loca-
tions or entering a real number with high precision involves a very large alphabet.
Later in Section 7.4.3, we will see an empirical study that captures 14 time series as
measured dependent variables.

From one or more measured variables, one may define a derived dependent vari-
able. For example, one may define the correct answer of Fig. 54(a) is a0 and that
of Fig. 54(b) is a3. With such defined ground truth information, one may define the
correctness of each trial as a derived dependent variable. By aggregating the cor-
rectness values of a group of trials, one can define accuracy (in percentage) as a de-
rived dependent variable for the group. Similarly, the response time of a participant
in each individual trial is a measured dependent variable, while the mean response
time for a group of trials is a derived dependent variable. The way in which the
trials are grouped together depends on the hypothesis concerned, the definition of
independent variables, and the control of extraneous variables.

In order to compute a derived dependent variable from a measured variable, one
has to use some additional definitions (e.g., the ground truth) and additional func-
tions (e.g., statistical or algorithmic functions). The variation of such a definition
or a function would have an impact on the derived dependent variable concerned.
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Hence, these definitions and functions are also variables, which are referred to as
operational variables or operational definitions [21].

7.3 Examples of Variables Used in Empirical Studies

In this section, we first provide three lists of typical variables resulting from our
surveys of the papers collected by Kijmongkolchai et al. in [22]. In particular, we
conducted close-reading of 32 papers that report controlled and semi-controlled em-
pirical studies in visualization, and identified all variables in these papers. In Section
7.4, we will detail our analysis of the variables in three examples of empirical stud-
ies, which represent quite different study designs.

7.3.1 Independent Variables

There are numerous independent variables that have been studied in different em-
pirical studies. It is not feasible to list all these variables exhaustively. Following a
careful reading of 32 papers on visualization-related empirical studies, we identified
some 50 variables, and categorize them into five classes.

7.3.1.1 Varying Values in a Single Visual Channel or Varying Types of Visual
Channels.

The first class is elementary visual channels (or elementary visual variables), which
have been often featured in studies that investigate the attentiveness, distinguishable
values, and metaphoric association of different visual channels, as well as the differ-
entiation and interaction between them. The following list gives a number of exam-
ples used in several empirical studies. Each item listed, X, can be read as “varying
X in the stimuli.”

We note that many empirical studies feature stimuli with different visual chan-
nels. When a study was not designed to evaluate any hypothesis suggesting that
varying such visual channels might have an impact, we do not consider them in-
dependent variables of the study. For example, Szafir [32] conducted an empirical
study to investigate whether varying the size of graphical primitives impacts color
perception. There were extraneous variables associated with the graphical primi-
tives, which were not part of the hypotheses. A polyline primitive, for instance,
features many data points, which are extraneous variables that determine the shape
of the polyline. The study focused on the thickness of polylines as an independent
variable, while controlling other extraneous variables such as the overall height and
width, the number of data points, and so on.

• color differences (their levels) [32];



165

• colors (of glyphs) [12];
• shapes (of glyphs) [12];
• sizes (of glyphs) [12];
• sizes (of graphical primitives) [32];
• types of visual channels (for indicating grouping) [2];
• types of visual channels (for values of missing data) [30];
• vector magnitude [36].

7.3.1.2 Varying Visual Objects Featuring Multiple Visual Channels or the
Characteristic Attributes of the Combined Variations

This class of independent variables features variations of multiple visual channels of
some visual objects in stimuli. The goal of such a study is typically to investigate the
interaction or the combined effects of more than one visual channel. In some cases,
the experimenters may focus on a single independent variable that characterizes the
combined variations of multiple visual channels, such as the ordering of colors in a
colormap [29]. Because the variation of the ordering in this case is more complicated
than the variation of a single color, we consider such an independent variable falls
into this class.

• bi-variate channels (the shape-color combinations) [12];
• bi-variate channels (the shape-size combinations) [12];
• bi-variate channels (the size-color combinations) [12];
• continuous colormaps (their key colors) [4];
• continuous colormaps (their ordering of key colors) [29];
• discrete colormaps (palette sizes) [14];
• discrete colormaps (palette scoring functions) [14];
• discrete colormaps (user-generated vs. software recommended vs. random) [14];
• discrete colormaps (with semantic association or not) [29];
• multivariate channels (the combinations of 2-5 channels used for indicating

grouping); [2];
• multivariate channels (for map textures) [24].

7.3.1.3 Varying Visual Patterns Made of Multiple Visual Objects or the
Characteristic Attributes of the Visual Patterns

This class features variations of what one common referred to as “patterns”. A pat-
tern is considered to be made of multiple visual objects. Typical examples include
a cluster in a scatter plot or dot plots, an ego or focal node in a network visualiza-
tion, a volatile section in a time series plot, etc. In general, the variation of patterns
involves the simultaneous variations of several visual objects, and is thus consid-
ered to be more complicated than the variation of a few visual channels of the same
visual object as discussed in Section 7.3.1.2.
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Because the possible number of such variations is usually excessively large and
their distribution in a context is often not well established, it is difficult to create a set
of stimuli that constitute an unbiased sampling of the space of such variations. It is
thus common to control the sampling by introducing some characteristic attributes
(e.g., levels of complexity or sparseness, types of ordering or configuration, and so
on), and making such attributes as the independent variables.

• data characteristics (level of deviation from a trend-line) [9];
• data characteristics (densities) [18];
• data characteristics (gap, flow-type outlier, spike) [10];
• data characteristics (levels of noise) [28];
• data characteristics (trend types) [9];
• feature patterns (in dot plots) [27];
• feature patterns (ordering of visual objects) [37];
• feature patterns (simple vs. complex) [22];
• highlighting methods (color, leader line) [16];
• levels of appearance fidelity (of virtual human avatars) [34];
• levels of negative emotions (time-steps) [34];
• pixel patterns (block resolutions) [4];
• pixel patterns (block sizes) [15];
• pixel patterns (pixel sizes) [15];
• pixel patterns (subset configurations) [15];
• pixel patterns (levels of variety) [17];
• pixel patterns (types of variety: color or motion) [17];
• pixel patterns (types of variety: local vs. global) [17];
• word-tag patterns (area of words) [11];
• word-tag patterns (colors of word tags) [11];
• word-tag patterns (densities of word tags) [11];
• word-tag patterns (lengths of word tags) [11];
• word-tag patterns (area of words and types of word spacing) [11].

7.3.1.4 Varying Plot Types or Plot-level Visual Designs

The independent variables in this class define variations at the plot level, and are
typically used to compare different visual representations or significant variations
of visual designs of a type of plots.

• multi-plots (multi-view compositions: map with scatter plot vs. map with parallel
coordinates plots) [16];

• plot attributes (aspect ratios) [18];
• plot attributes (chart height and virtual resolution) [19];
• plot attributes (chart height and gridline spacing) [18];
• plot types (nine types of plots) [18];
• plot types (braided graph, horizon graph, line graph, small multiples) [20];
• plot types (density plot, gap-detection histogram, dot plot) [10];
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• plot types (graph, scatter plot, storyline, treemap) [33];
• plot types (filled line chart, mirrored chart, 2-band horizon chart) [19];
• plot types (line graph, colorfield) [8];
• plot types (scatter plot, line graph, area) [9];
• visual designs (2D flow visualization) [23];
• visual designs (bar charts and difference overlays) [31];
• visual designs (for map-based flow visualization) [35];
• visual designs (with or without embellishment) [3]).

7.3.1.5 Varying Variables not in the Depicted Data

The effectiveness of visualization does not only depend on the depicted data values,
the selection of visual channels or the design of visual representations, but also
on many other factors such as user, task, application, and so on. This class thus
includes all independent variables that are used to study the impact of such factors
on visualization processes.

• display types (mono, stereo) [36];
• display types (MacOS, others) [18];
• teaching methods (bottom-up, top-down) [33];
• application contexts [22];
• color compensation configurations [26];
• statistical measures (min/max, mean, stdev) [22];
• learning approaches (passive, active) [33];
• visualization tasks (many studies, e.g., [23, 4, 18, 3, 31]).

7.3.2 Dependent Variables and Derived Variables

The variables that are to be measured in individual trials are measured dependent
variables. In most cases, the collected values of some dependent variables are pro-
cessed to yield some numerical quantities or categorical values, using, e.g., statistics
or algorithms, we consider the corresponding variables as derived dependent vari-
ables.

There are a number of measured dependent variables that commonly defined in
many empirical studies, including:

• response time (RT) of a trial;
• a selection out of k choices (k ≥ 2);
• a value entered using a 1D scroll bar;
• a position in a 2D map entered using a pointer device (often with many optional

locations);
• a location in a 3D real or virtual environment entered using a 3D input device;
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• a sequence of action records (e.g., user interactions, and navigation actions in a
virtual environment);

• an eye-tracking record;
• one or more time series records of EEG (electroencephalography);
• one or more imagery records of fMRI (functional magnetic resonance imaging

or functional MRI).

During an empirical study, some measured dependent variables may be used to
compute some derived variables dynamically. Perhaps the most common variable
derived dynamically is correctness indicated by a measured value in order for the
experiment system to give a feedback to the participant. For example, a system
for facilitating trials with multiple-choice questions may maintain the ground truth
answer for each trial, and use it to determine the correctness of an answer. A system
for eye-tracking may maintain a set of areas of interest, and use these to determine
if a participant’s gaze has been fixated on any of the areas of interest.

Because these derived dependent variables are obtained using some predefined
operational variables such as ground truth values, threshold values, quantization
bands, etc., they are not only dependent on the input stimuli and the human actions
during trials, but also on these operational variables. Hence it is helpful to consider
them as derived dependent variables in order to be mindful about the variations of
the underlying operational variables and functions that could affect the findings of
the study.

In almost all empirical studies, the analysis of the results involve derived de-
pendent variables defined through statistical aggregation and analysis. The most
commonly used derived dependent variables are:

• accuracy and error rate (percentage values calculated based on a collection of
correctness values);

• precision and recall (for information retrieval tasks);
• just notifiable difference (JND);
• average response time (mean RT, often abbreviated as RT);
• basic statistical measures for a collection of measured or derived values (e.g.,

mean, max, mean median, mode, range, correlation coefficient, mutual informa-
tion, etc.);

• measures resulting from processes of statistical analysis, such as t-test, χ2-test,
ANOVA (analysis of variance), and so on.

In experiments designed with some specific apparatus, there are usually some
specialized dependent variables. For example, in eye-tracking experiments, one may
define (a) time from the start of a trial to the first fixation at an area of interest and
(b) the number of fixations during a trial as derived dependent variables computed
based on gaze records [16]. A number of studies measured specific types of par-
ticipants’ judgment, such as alpha contrast optimization [18], discriminability rate
[32], perceived complexity [28], perceived data quality [30], and so on. Using an
electrodermal activity (EDA) sensor, one may obtain an EDA data set as measured
dependent variables, and may compute differential emotions scale (DES) as a de-
rived dependent variable [34]. In a recent empirical study, the traditional accuracy
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and mean RT variables were transformed to information-theoretic measures of ben-
efit and cost as a new pair of derived dependent variables [22].

In general, determining a collection of variables that may affect a design pro-
vides a means for defining a design space. In visualization, some notable publica-
tions (e.g., [5]) proposed and discussed design spaces of visual representations. One
may wonder if there might be a design space for controlled empirical studies in vi-
sualization. Our enumeration of experimental variables here may begin to inform
the description of such a space. However, given the level of complexity that arises
from just this simple initial step, formulating a structured description of such a de-
sign space seems to be out of reach at the moment. We hope that a design space for
empirical studies in visualization will emerge in the future.

7.4 Case Studies

In this section, we present three case studies to show how one may extract the infor-
mation of independent, dependent, and constrained variables. In psychology, many
papers reporting empirical studies define independent and dependent variables ex-
plicitly. In those papers that do not offer explicit definitions of the study variables,
it is usually not too difficult to extract such information indirectly. In general, the
stimuli used in visualization-related experiments are more complicated, and it is
not always easy to extract the definitions about such variables. For the three papers
discussed in this section, the authors of this chapter first read the papers and wrote
down the independent and dependent variables individually. They then compared
the notes, and agreed on a common set of variables.

7.4.1 A Study on Using Visual Embellishments in Visualization

Borgo et al. presented a study on the impact of visual embellishment on participants’
ability (a) to remember the numerical data depicted, (b) to perform visual search of
visual objects, and (c) to grasp the concept conveyed by the text shown in visual-
ization images [3]. Because the tasks in such a study had to be reasonably simple in
order to control the potential confounding effects and the length of each trial, they
anticipated that the impact might not be easily detectable if the participants were
paying attention to their tasks. They thus designed a dual-task experiment, where a
secondary task was used to restrict the amount of the cognitive capability available
to the primary task in each trial, allowing the trials with embellishment and those
without more differentiable.

For the primary tasks, all stimuli were designed in pairs, one with visual embel-
lishment and one without. Hence this binary variable was the most important inde-
pendent variable being studied. The experimenters had four hypotheses and they di-
vided the stimuli into four sections. Since these four sections were conducted within
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(a) A stimulus screen and its follow-on question screen

(b) A related stimulus screen and its follow-on question screen

Fig. 55 Two related trials in the empirical study. The top 80% of each screen was used for the
primary task and the bottom 20% was used for the secondary task. A stimulus without any visual
embellishment is shown in (a) and a stimulus with a similar visual representation and a similar
amount of information as well as with some visual embellishment is shown in (b). The two trials
were distributed pseudo-randomly among others to minimize any learning effect.

the same empirical study, the four topics, i.e., working memory, long-term memory,
visual search, and concept grasping were the four values of a variable about tasks.
Thus there were two independent variables for the primary tasks.

To avoid learning effects, different stimuli had to feature different data values.
These are extraneous variables that should be controlled. The experimenters care-
fully selected these values to ensure a similar level of complexity within each pair
of stimuli, while having different levels of complexity across different pairs for each
section of the experiment. Both measures provided means of controlling the poten-
tial confounding effects due to the variations of the data values.

Similarly there were variations of the designs for different visual embellishment
across different stimuli. Such variations were unavoidable since each trial featured a
different dataset and it was necessary to change the semantics featured the datasets
to avoid learning effect. The experimenters controlled the potential confounding
effects due to such an extraneous variable by using the same approach for dealing
with the variations of data values.

For the primary task, each trial presented participants with a question and four
optional answers (one correct answer and three distractors). Hence the measured
dependent variables were the selection out of four options and the time taken to
make this selection. By pre-defining the ground truth value of each trial (i.e., an
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operational variable), the experimenters obtained a derived dependent variable for
the correctness of the selected answer. Similar to numerous empirical studies, from
the correctness and response time of each trial, the two commonly-used dependent
variables were derived, i.e., the mean accuracy and the mean response time.

The stimuli for the secondary task ran continually in parallel with the stimuli for
the primary task throughout the experiment. In a rectangular area at the bottom of the
screen, a sequence of words moved horizontally from left to right, with new words
appearing from the left continually. Participants were required to point and click at
any fruit word that appeared in that area. When each word displayed was considered
as a visual object, from the perspective of the secondary task, each word had only
two states, a fruit word or a non-fruit word. Thus, the independent variable was
a binary variable. When a participant selected a word, the dependent variable was
correctness. The software for the experiment showed three counters on the screen,
keeping the count of how many fruit words had been correctly selected, how many
had been missed, and how many words had been wrongly selected. These counters
were derived dependent variables.

In addition to the aforementioned effort for controlling the potential confound-
ing effects due to the variations of data values and visual embellishment, the ex-
perimenters also discussed effort for controlling other extraneous variables, such as
knowledge bias, ordering bias, and attention bias.

7.4.2 A Study on Visual Semiotics and Uncertainty Visualization

MacEachren et al. presented two controlled empirical studies on aspects of uncer-
tainty visualization [25]. The first experiment was designed to obtain measurements
about the participants’ judgment as to the suitability of visual representations for a
given category of uncertainty. They defined their first independent variable for ten
categories of uncertainty, which were referred to as ten series in their paper [25].
The alphabet Xseries thus consists of 10 letters: (x1) general, (x2) spatial accuracy,
(x3) spatial prevision, (x4) spatial trustworthiness, (x5) temporal accuracy, (x6) tem-
poral precision, (x7) temporal trustworthiness, (x8) attribute accuracy, (x9) attribute
precision, and (x10) attribute trustworthiness.

The letters x2-x10 were defined over two elementary alphabets. One alphabet de-
fined three categories of data to be displayed (i.e., space, time, and attribute), and
the other defined three types of uncertainty associated with the data (i.e., accuracy,
precision, and trustworthiness). The letters x2-x10 were the nine combinations of the
letters of these two elementary alphabets.

The second independent variable Xlevel defined the two levels of abstraction of
the symbol sets: namely abstract or iconic. Each symbol set consisted of k glyphs
that represented different levels of uncertainty. In this experiment, k was considered
as an extraneous variable, which was fixed to k = 3.

The experimenter designed 76 symbol sets for 76 trials. They were used primar-
ily as repeated measures of the two levels of abstraction. For series x1, 22 symbol
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sets were used, and the symbol sets were designed based on different visual chan-
nels (e.g., color, size, shape, etc.). For each of series x2-x10, six symbol sets (three
abstract and three iconic) were used. The variation of symbol sets was a variable
difficult to control, because it was not easy to define the design space of the symbol
sets. The experimenters made a good effort to design various symbol sets considered
to be most representative and sensible designs heuristically. They recorded and re-
ported the impact of individual symbol set on the participants’ judgment, exhibiting
the best practice for handling such an extraneous variable.

The measured dependent variable was the subjective judgment in each trial by
a participant. The corresponding alphabet Yjudgment consists of seven levels of in-
tuitiveness of a symbol set, i.e., Yjudgment = {1,2,3,4,5,6,7}. It was implemented
using a set of clickable numbers for the seven multiple choices. From this measured
dependent variable, the experimenters computed a set of derived dependent vari-
ables, including five statistical measures (i.e., min, max, mean, median, and mode)
and two measures of the Mann-Whitney test (i.e., W and p-value).

In addition, the experimenters obtained a measured dependent variable of the
time taken to complete each trial. They reported three derived dependent variables
resulting from the independent two-group t-test with Welsh df -modification (i.e., t,
df, and p-value).

The second experiment was designed to obtain the measurements about the effec-
tiveness of the symbol sets through a typical task in map visualization. Participants
were asked to assess and compare the aggregated uncertainty in two map regions
based on the glyph representation of uncertainty in each location. The experiment
featured one independent variable that defines 20 symbol sets selected based on the
results of the first experiment. In other words, it was an alphabet with 20 letters. The
goal of the experiment was to determine the relative merits among these 20 symbol
sets.

In the context of this experiment, a map being visualized can be considered as
a background image, and the uncertainty glyphs can be placed on a w× h grid su-
perimposed on top of the background map. The variations of the map image and
the grid resolution would manifest variables with very large sampling spaces. The
experimenters considered them as extraneous variables, and controlled both of them
by using constants. The background image was simply removed from all stimuli,
while the grid resolution was fixed to 3×3.

The stimulus in each trial depicted two regions, each with 3× 3 uncertainty
glyphs. All 18 glyphs in each stimulus were selected from the same symbol sets.
The task of each participant was to aggregate the nine uncertainty values in each
of the two regions, and select the region that was less certain. Since each symbol
set had three glyphs representing three uncertainty values, there were a total of 318

possible variations of the stimuli. The experimenters controlled this extraneous vari-
able using pseudo-randomness by pre-defining 12 configurations that represented a
relatively uniform sampling of the stimuli space. Although varying the 12 config-
urations could be considered as an independent variable, they were featured in the
experiment design as an extraneous variable for supporting repeated measures for
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each symbol set. Together, the experiment had a total of 240 trials (20 symbol sets
and 12 configurations).

The measured dependent variables were the correctness of a participant’s selec-
tion and the response time in each trial. The derived dependent variables reported
in [25] included the accuracy of 20 symbol sets, and the accuracy value for each
symbol set was an aggregation of the 360 correctness values (the 30 participants
and 12 configurations). In addition, the experimenters applied the Pearson’s χ2 test
with Yates’ continuity correction to the correctness values, yielding three derived
dependent variables χ2, df, and p-value; and applied the independent two-group t-
test with Welsh df -modification to response time, yielding three derived dependent
variables t, df, and p-value.

7.4.3 An EEG Study on Visualization Effectiveness

Anderson et al. presented an empirical study on participants’ cognitive load dur-
ing visualizing different visual designs of box plots [1]. In each trial, a participant
was shown two types of box plots with different data and was asked to choose the
distribution with a larger inter-quartile range.

The main independent variable defined the variations among six visual designs
of box plots. The corresponding alphabet had six letters. Most box plots typically
depicted five statistical measures computed over a data sample, including (i) min-
imum, (ii) median, (iii) maximum, (iv) the 25th percentile, and (v) the 75th per-
centile. Most visual designs allowed the viewers to estimate the min-max range and
the inter-quartile range (between the 25th and 75th percentile). Some box plots also
depicted the distribution of data values in the sample using a visual representation
based on histogram or a density map. The experimenters selected three visual de-
signs with a density map and three without. This additional independent variable
allowed the evaluation of a hypothesis related to the absence/presence of the distri-
bution information.

The summary statistical measures depicted by a box plot were computed from n
values in a data sample. The variations of the data sample determined the variations
of its statistical measures, and hence the corresponding box plot. The data space for
n values was exponentially related to n. The experimenters had to control such vari-
ations. In this experiment, the extraneous variable of data samples was controlled
firstly by fixing the number of data values to 100 and the distribution of the sample
to uniform, and secondly by using randomly generated data values with controlled
ranges for the mean and standard division of the sample. A total of 500 samples
were generated, hence there was a pool of 500 box plots. In the study, each partic-
ipant performed tasks in 100 trials, each of which showed two box plots selected
from the pool.

Given two samples, the experimenters estimated the task difficulty, in the range
of [0, 1], of comparing the two corresponding box plots. This variable was not ex-
plicitly featured in the stimuli, but was used in results analysis as a possible cause
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that might impact the cognitive load. One could consider this as an independent
variable.

For each trial, the experiment captured a number of measured dependent vari-
ables, including (a) the response time, and (b) the electroencephalography (EEG)
signals in the form of 14 time series. The experimenters used a numerical func-
tion for transforming the 14 time series to a derived dependent variable to as the
estimated cognitive load per trial. From the estimated values for cognitive load for
all trials, two further derived dependent variables were computed, namely constant-
and Gaussian-weighed averages. They also applied two-tailed t-tests to compare the
cognitive load values estimated for every pair of visual designs, and obtained the 15
p-values for the corresponding derived dependent variables.

7.5 Conclusions

In this chapter, we have conducted a survey on independent and dependent variables
used in controlled or semi-controlled empirical studies on the subject of visualiza-
tion. In particular, we analyzed the variables considered in 32 publications on such
studies. We categorized independent variables into five categories. We noticed that
there are no shortage of studies on independent variables in each category. We con-
sider this a particularly encouraging sign, because this shows that visualization re-
searchers are asking many research questions about visualization at different levels
of visual designs and from many different perspectives. Meanwhile it also suggests
that there are many more research questions yet to be asked or answered, and the
scope of visualization-related empirical studies is huge.

Meanwhile, when an independent variable is examined in one study, it can be
an extraneous variable to be controlled in another study. The variety of independent
variables that have already been examined in the previous studies indicate the chal-
lenge in alleviating confounding effects since controlling many extraneous variables
is not a trivial undertaking in most visualization-related empirical studies

The large number of variables and potential experimental designs also brings up
the point that designing experiments is a creative process. As with any process that
involves design, there are many choices to be made in many trade-offs that need
to be balanced in making those choices. There is no one best design, just as there
is no one best painting, building, or software application. Learning to design good
experiments is a matter of study and practice, and there are numerous books and
other resources that teach how to do it. We have touched on a few of the design
decisions and trade-offs that we identified in the visualization literature, but this
survey is only a sparse sampling of the rich space of experimental design.

It is hence necessary for the experiment designers to be aware of the potential
impact of different extraneous variables is important, while it is helpful for the re-
viewers to appreciate the challenge of alleviating confounding effects. Occasionally,
some of us in the community may wish the stimuli in some empirical studies to be
more complex or more realistic without appreciating that more complex or more
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realistic stimuli would likely introduce more confounding effects that could under-
mine the statistical significance of the experiment results. In other occasions, some
of us in the community may wish that the stimuli in some empirical studies could
feature fewer independent variables or extraneous variables could be controlled
more stringently without being aware of the experimenters’ intention to examine
the impact of variables at a higher level (e.g., multi-object patterns or plot-level
visual designs).

It may thus be desirable for the visualization researchers who conduct empiri-
cal studies to be more coherently organized, instead of being distributed sparsely
in InfoVis, SciVis, VAST, and other areas of visualization. This will allow these
researchers to share their expertise (e.g., in the review processes) more easily and
to formulate research agenda in a more ambitious and structured manner. If one
considers different schools of thought in visualization (see Chapter 11 [6]) as high-
level hypotheses, there are indeed many ambitious research questions that may be
answered using empirical studies. By providing some opportunities to bring all these
researchers together, we may soon see the emergence of a new area of visualization
psychology.
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