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Abstract—We present a new method for visualizing 3D volumetric diffusion tensor MR images. We distinguish between linear

anisotropy and planar anisotropy and represent values in the two regimes using streamtubes and streamsurfaces, respectively.

Streamtubes represent structures with primarily linear diffusion, typically fiber tracts; streamtube direction correlates with tract

orientation. The cross-sectional shape and color of each streamtube represent additional information from the diffusion tensor at each

point. Streamsurfaces represent structures in which diffusion is primarily planar. Our algorithm chooses a very small representative

subset of the streamtubes and streamsurfaces for display. We describe the set of metrics used for the culling process, which reduces

visual clutter and improves interactivity. We also generate anatomical landmarks to identify the locations of such structures as the

eyes, skull surface, and ventricles. The final models are complex surface geometries that can be imported into many interactive

graphics software environments. We describe a virtual environment to interact with these models. Expert feedback from doctors

studying changes in white-matter structures after gamma-knife capsulotomy and preoperative planning for brain tumor surgery shows

that streamtubes correlate well with major neural structures, the 2D section and geometric landmarks are important in understanding

the visualization, and the stereo and interactivity from the virtual environment aid in understanding the complex geometric models.

Index Terms—Diffusion tensor imaging, DT-MRI, DTI, hyperstreamline, immersive virtual reality, streamsurface, streamtube,

scientific visualization, volume visualization.

�

1 INTRODUCTION

DIFFUSION tensor MR imaging (DT-MRI) of in vivo
biological tissues produces a 3D second-order tensor

field [1] describing the diffusion rate at every sample point in
a 3D volume. Water diffusion in tissue due to Brownian
motion is random, but the tissuemicrostructures restrict it. In
white matter, water motion perpendicular to axons is
restricted by the tightly packed multiple myelin membranes
encompassing them [21]. This anisotropy is evident in the
MR measurements, which can be used noninvasively to
explore the white matter structures in vivo. Although a single
axon can be as thin as a fewmicrons, many neural fiber tracts
are coherent bundles that are well above the voxel size of the
DT-MRI data. Diffusion anisotropy has been linked to the
highly structured nerve fibers in brainwhitematter [14], [10].
Several groups have confirmed that, in the heart, the
normalized major eigenvector of the diffusion tensor lies
parallel to the local fiber tract direction [7], [9]. Here, we use
the terms major eigenvector, medium eigenvector, and minor
eigenvector, or the symbols e1, e2, and e3, for the three
eigenvectors of the diffusion tensor matrix ordered by
decreasing eigenvalue. High-angular-resolution diffusion
measurements have also been explored to characterize
diverse fiber structure within a single voxel [13].

Visualizing a 3D diffusion tensor field is difficult because

of the large amount of information it contains. Each sample

point in the data set consists of a second-order tensor,

represented by a 3� 3 symmetric matrix, so that there are
six interrelated quantities at each sample point. Visualizing
these six variables separately does not show the relation-
ships among them; however, visualizing them all simulta-
neously in one image is rarely possible. While complete
visualization of diffusion tensor fields has been described
for two-dimensional data sets [12], [16], these methods
suffer from various limitations when extended to 3D, as
discussed in the next section.

Our goal, however, is to illustrate certain structures in
biological tissues; visualizing all the information is often
unnecessary for this purpose. Instead, we choose to
visualize only the information that reveals connectivity or
other microstructural details within the tissue.

Our approach distinguishes between linear and planar
structures and uses what we call streamtubes and stream-
surfaces to visualize these types of structures. Streamtubes
represent linear diffusion, which tends to be produced by
fibrous structures. The cross-section and color of each
streamtube represent the additional components of the
diffusion measurements along the trajectories of fiber tracts.
Streamsurfaces represent structures in which diffusion is
primarily planar. We first generate a large number of
streamtubes and streamsurfaces covering all the regions of
interest, then use a culling algorithm to remove most of
them while retaining a representative set. To provide a
context for the streamtubes and streamsurfaces, we also
display anatomical landmarks such as the eyes, skull
surface, and ventricles. Fig. 1 shows a visualization of a
human brain data set created using our method.

The conventional desktop display limits our ability to
understand complex geometric models. We have developed
a virtual environment that displays these models and
allows users to interact with them.
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2 RELATED WORK

Researchers have designed visualization methods that
represent completely a 2D slice of a 3D diffusion tensor field.
Several attempts to visualize 3DDT-MRI data have also been
made recently. Pierpaoli and Basser. use arrays of ellipsoids
to represent a two-dimensional diffusion tensor field [16].
Since the diffusion tensor matrix is symmetric and has
positive eigenvalues, an ellipsoid is its natural geometric
representation. Each axis of the ellipsoid represents one
eigenvector and its corresponding eigenvalue. Laidlaw et al.
normalize the sizes of the ellipsoids to give amore continuous
appearance and, in a second method, borrow concepts from
oil painting to display diffusion tensor images [12]. Two-
dimensional brush strokes built up in several layers represent
different features of the diffusion tensors.

The two-dimensional methods in [16] and [12] visualize a
diffusion tensor field by completely visualizing the tensors
of discrete sample points. When applied to a 3D data set,
such methods have two limitations:

. Visualizing every sample point in the 3D data set
produces so many ellipsoids or brushstrokes that
internal structures are difficult to see.

. The continuity inherent in biological tissues is not
properly represented in the final image. For exam-
ple, neural fibers in the brain are difficult to locate
within an array of ellipsoids.

Several methods for 3D diffusion tensor field visualization
have been developed to address these problems, each
making different choices about the subset of the tensor
information to represent and how to represent it.

Dickinson, in his design of visualization software for
tensor field data sets, tracks tensor field lines that are
everywhere parallel to an eigenvector of a 3D tensor field
[18]. The present work uses this same construction.
Delmarcelle and Hesselink built on this in proposing
hyperstreamlines, visual icons for representing tensor

information along a trajectory [6]. The idea behind this
method, which is analogous to using an ellipsoid to
represent one diffusion tensor, is to visualize all the
information but only at some locations. The trajectory of
the hyperstreamline is generated from the vector field
defined by the major eigenvector of the tensor. The cross-
sectional shape and color along the trajectory encode
information about the other two eigenvectors and the
magnitude of the major eigenvector. The hyperstreamline
method has been applied to both stress tensor fields and
momentum flux density tensor fields but not to diffusion
tensor fields.

Xue et al. track streamlines in themajor eigenvector field of
the diffusion tensor field to visualize DT-MRI data sets [23].
For DT-MRI data sets, the major eigenvector of the tensor
matrix is in the direction of fastest diffusion. Xue et al. use a
fiber-tracking method dubbed FACT [15] to track the linear
features in biological tissues following the major eigenvector
of each diffusion tensor. There are othermethods for tracking
linear features in diffusion tensor data sets: Weinstein et al.
stabilize the tracking in regions with nonlinear preferential
diffusion using their tensorlinesmethod [20] and Basser et al.
use numerical methods to solve a Frenet equation describing
the evolution of a fiber tract [2]. Thesemethods are, however,
constrained to visualizing only one vector field and neither
paper discusses the sampling and placement of the tracts in
the image.

Kindlmann and Weinstein take a volume-rendering
approach to the problem [11]. Their method displays only
some of the information, but displays that information
densely within a volume. A hue-ball and a barycentric map
assign color and opacity to each point based on the
diffusion measurements. The result shows the data set at
high resolution. However, the composition into a single
pixel of many data points along a ray makes it difficult to
discern any given point, and the paths of fibrous structures
are hard to see.

Our goal is to visualize connectivity and tissue micro-
structure in MR diffusion tensor images of biological tissue.
The streamtubes we use here build on hyperstreamlines but
attempt to overcome their limitations in this context:

. The cross-section of a hyperstreamline can growquite
large, limiting the density of hyperstreamlines in a
scene and, thus, the level of detail we can visualize.

. The images in hyperstreamline papers generally
contain only a few hyperstreamlines. To visualize
microstructures in biological tissues, we need more
hyperstreamlines in the scene.

. While a hyperstreamline is an intuitive visual
representation for linear structures in biological
tissue, it is not very effective for representing planar
diffusion.

3 OUR APPROACH

We distinguish between regions of linear and planar
anisotropy and employ streamtubes and streamsurfaces,
respectively, to visualize these two types of regions [25].
Section 4.1 describes classifying different kinds of anisotro-
pies. In Section 4.2, we discuss issues related to streamtubes,
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Fig. 1. Visualization of a human brain using our method. Geometric
models include the red streamtubes, the green streamsurfaces, the blue
ventricle surface, and the wireframe skull surface. Large neural
structures such as the corpus callosum and the corona radiata are
represented by the red streamtubes in this view.



including their definition, the extension of the trajectories
they follow, how to sample the seed points for an initial
trajectory set so that all thedata are covered, andhow to select
a representative set from the whole trajectory set. Section 4.3
explains the strategies for generating streamsurfaces in
regions of planar anisotropy. We also generate geometric
representations of anatomical landmarks to provide context,
as discussed in Section 4.4. Finally, in Section 4.5, we describe
our virtual environment to display and interact with the
complex geometric models [24], [26].

3.1 Anisotropy Classification

Westin et al. [22] define three characteristic qualities of a
diffusion tensor value based on the three eigenvalues,
�1 � �2 � �3:

cl ¼
�1 � �2

�1 þ �2 þ �3
;

cp ¼
2ð�2 � �3Þ
�1 þ �2 þ �3

;

cs ¼
3�3

�1 þ �2 þ �3
;

where cl represents linear anisotropy, cp represents planar
anisotropy, and cs represents isotropy. Note that these
values are complementary, cl þ cp þ cs ¼ 1.

A diffusion tensor with one eigenvalue much larger than
the other two has large cl, corresponding to linear
anisotropy; white-matter tracts tend to produce tensors
with linear anisotropy [4]. A diffusion tensor with two large
and one small eigenvalue has large cp, corresponding to
planar anisotropy; sheet-like structures and crossings of
fiber tracts in biological tissues are likely to yield planar
anisotropy. Diffusion tensors whose three eigenvalues are
roughly the same imply an underlying structure with no
preferred diffusion direction; these tensors are isotropic and
have a large cs. Gray matter in the brain tends to produce
isotropic diffusion tensors [1].

There are other anisotropy metrics, such as relative
anisotropy (RA) or fractional anisotropy (FA) [16], that
measure the variance of the eigenvalues and provide a
directionless scale value. Such metrics measure differences
among anisotropies, but do not distinguish between linear

and planar anisotropies and isotropies. Westin et al.’s

metrics, on the other hand, measure these kinds of

anisotropies separately.
We define linear anisotropy regions and planar aniso-

tropy regions by setting thresholds on cl and cp. We can use

a barycentric map [11] to look at the defined anisotropy

regions (see Fig. 2). Note that this definition allows

diffusion tensors to have both linear and planar anisotropy

so that streamtubes and streamsurfaces can be generated in

the same region. From our observations, those regions are

usually where linear structures transition to planar ones,

often where neural fibers fan out or near intersecting tracts.

3.2 Streamtubes for Linear Anisotropy

We chose streamtubes as the geometric primitive to

represent linear anisotropy because they can naturally

represent the underlying linear structures, can carry

additional information provided by the diffusion tensors,

and have the potential to reduce visual clutter.
The visual mapping of the streamtube is similar to that of

the hyperstreamline. The trajectory sweeps along the major

eigenvector field and the cross-sectional shape is an ellipse

representing the ratio of the other two eigenvectors. The

radius corresponding to the medium eigenvector is set to a

constant to keep the streamtube slim, while the ratio

between the medium and the minor eigenvectors is

preserved. The color of the streamtube shows the linear

anisotropy value: Greater anisotropy is redder.
The major eigenvector field is the primary information

visualized by streamtubes. We first fill the regions of linear

anisotropy with a dense set of streamtubes and then select a

representative subset. The four steps that generate a

representative set of streamtubes are: picking the seed

points for a dense set of trajectories covering the regions of

linear anisotropy, calculating trajectories in the major

eigenvector field, selecting a sparser representative set of

trajectories from the dense set, and visualizing additional

information such as the direction of the medium and minor

eigenvectors. Fig. 3 shows the streamtubes generated from a

human brain data set.
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Fig. 2. Barycentric map for the definition of anisotropy regions. Here,
linear anisotropy regions are defined as cl > 0:3 (vertically hatched
area); planar anisotropy regions are defined as cp > 0:3 (horizontally
hatched area). The small crosshatched triangle has both linear
anisotropy and planar anisotropy by this definition.

Fig. 3. Streamtubes representing regions of linear anisotropy in a human

brain. The long U-shaped tubes pass through the corpus callosum and

project into the corona radiata.



3.2.1 Seed Points

Streamtube seed points are chosen so that streamtubes pass

through all regions of high linear anisotropy. Recall that we

reduce the number of trajectories later, so it is acceptable to

generate many trajectories now.
The seed points are not restricted to the sample points of

the volume image. At any point within the data volume, we

use tricubic B-spline functions to interpolate the tensor field

[2], so there is no limit on how many seed points we use or

where we put them. We generate a seed point from every

sample point by jittering it within a voxel [8].

3.2.2 Trajectories

Each streamline begins from a seed point and follows the

major eigenvector field both forward and backward. We

find the integral curve passing through the seed point using

a second-order Runge-Kutta integration method [17], [2].

(We also experimented with fourth-order Runge-Kutta,

with the results very similar to those generated by the

second-order method.) Because streamtubes represent

regions of high linear anisotropy, their trajectories are

restricted to these regions. Also, the streamtubes are clipped

to the data volume and to regions of sufficiently high

signal-to-noise ratio.

3.2.3 Culling

Our sampling method starts with 1:2 million seed points

and produces more than 150; 000 trajectories on a 256�
256� 144 human brain data set. Visualizing all the

streamtubes is not only expensive but also undesirable as

including too many streamtubes in the scene would block

the inner structures. A selection algorithm culls most of the

trajectories and keeps only a representative set. We use

three metrics for the culling process: the length of a

trajectory, the average linear anisotropy along a trajectory,

and the similarity between a trajectory and the group of

trajectories already selected. Trajectories are kept or

discarded according to their metrics. For example, a

trajectory that is too similar to a selected trajectory is

discarded.
We define the similarity between two trajectories using a

distance measure:

Dt ¼
R s1
s0
maxðdistðsÞ � Tt; 0Þds

R s1
s0
max distðsÞ�Tt

jdistðsÞ�Ttj ; 0
� �

ds
;

where s parameterizes the arc length of the shorter
trajectory, s0 and s1 are the starting and end points of s,
and distðsÞ is the shortest distance from location s on the
shorter trajectory to the longer trajectory. Tt ensures that we
label two trajectories as different if they differ significantly
over any portion of the arc length. For example, if Tt ¼ 0,
the pair of trajectories shown in Fig. 4 would have a small
Dt value because they run close together over much of their
length, making the denominator large. Setting Tt as in Fig. 4
makes Dt larger because it reduces the denominator.

Note that we use the distance between the two
trajectories as a measure of similarity. Other features such
as the curvature of the trajectories can also be used to
measure similarity. Since DT-MRI data are averaged over
the size of the voxel, the trajectories tracked are usually
smooth. Thus, the distance between the trajectories makes a
decent measurement of the similarity.

For each of the three criteria, we set a threshold to limit
the streamtubes we draw. Table 1 shows the thresholds for
this culling process for Figs. 1, 3, 10, and 11.

3.2.4 Shape and Color

The trajectory visually represents the major eigenvector
field of the diffusion tensor field. Once we have generated a
representative set of streamtube trajectories, we map
additional information to them and construct the stream-
tubes. The cross-section of a streamtube at a given point is
an ellipse representing the other two eigenvectors and
eigenvalues, as shown in Fig. 5. We set the radius along the
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Fig. 4. In order to emphasize important differences between a pair of

trajectories, we average the distance between them only over the region

where they are at least Tt apart; smaller differences are assumed to be

insignificant.

TABLE 1
Parameters Used to Select Streamtubes

for Figs. 1, 3, 10, and 11

Fig. 5. Generating a streamtube from a trajectory and cross-section. The

second and third eigenvalues of the diffusion tensor, �2 and �3, define

the relative shape of the cross-section. Its orientation is defined by the

corresponding eigenvectors.



medium eigenvector to a constant, but preserve the aspect
ratio of the second and third eigenvalues. Adjacent cross-
sections are connected to form the streamtube. The color of
the streamtube is based on the linear anisotropy value, with
saturated red for the maximum and white for the minimum.

3.3 Streamsurfaces for Planar Anisotropy

Diffusion tensors with planar anisotropy could result from
a surface structure, a boundary between different materials,
or a crossing of multiple linear features. Visualizing regions
of planar anisotropy may help to illustrate these kinds of
structures.

The streamsurface is the approximation of the surface
that extends along both the major eigenvector field and
medium eigenvector field. At any point on a streamsurface,
the major and medium eigenvectors lie in the tangent plane
to the surface. Given a starting point in the volume, we
expand a streamsurface by following these two vector
fields. We first generate many streamsurfaces and then
select a subset of them for display. Colors are mapped to the
surfaces to represent the planar anisotropy, cs, at each point.

3.3.1 Seed Points

As for streamtubes, we generate seed points by jittering
every sample point in the data set.

3.3.2 Surface Generation

The surface generation algorithm follows the planar
structure suggested by the planar anisotropy. We define
T ðvÞ as the diffusion tensor at point v and P ðvÞ as the plane
that contains the major and medium eigenvectors of T ðvÞ as
well as v. P ðvÞ is tangent to the streamsurface.

1. Starting from a seed point, v, we set the initial
directions radially along six evenly distributed
directions within P ðvÞ and extend curved edges to
follow the shape of the surface (see Step 3). We then
generate a triangle for every pair of the neighboring
edges (two edges are neighbors if their projections
on P ðuÞ are neighbors).

2. For every new vertex u extended from Step 1, we
project to P ðuÞ the existing triangles that are
attached to u and then extend curved edges (see
Step 3) from the initial directions on P ðuÞ that are not
covered by the existing triangles. Then, we generate
a triangle for every pair of neighboring edges. This
step is repeated for every newly generated vertex
until the terminating conditions in Step 4 are met.

3. We extend the edges from a vertex u by integrating
in the 2D vector field V , which is defined on the
plane P1 that is both perpendicular to P ðuÞ and
contains the initial direction of extension in P ðuÞ. V
is defined at every point x in P1 as the the linear
combination of the normalized major and medium
eigenvector of T ðxÞ that lies within P1. We ensure
the consistency of the integration directions by
swapping V ðxÞ if the dot product of V ðxÞ and the
initial direction is negative. We use second-order
Runge-Kutta for the integration.

4. The extension stops when it goes outside the data
boundary, hits a low planar anisotropy region,
enters a region of low signal-to-noise ratio, or incurs
a high-curvature turn.

Fig. 7 illustrates the order of the first few extensions starting

from a seed point.

3.3.3 Culling

As in streamtube selection, we use the following three

criteria in surface selection: the area of the surface, the

average planar anisotropy of the surface, and the distance

between the surface and other selected surfaces. We

eliminate a surface if it is too small, too low in average

planar anisotropy, or too close to other selected surfaces.
The distance between two surfaces is defined as:

Ds ¼
RR

� maxðdistð!Þ � Ts; 0Þd!RR
� max distð!Þ�Ts

jdistð!Þ�Tsj ; 0
� �

d!
:

Like the definition of distance between curves, this metric

gives the average above-threshold distance between two

surfaces.
Table 2 shows the thresholds for culling streamsurfaces

for Figs. 1, 6, 10, and 11.
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Fig. 6. Streamsurfaces extend along major and medium eigenvectors in
regions of planar anisotropy.

Fig. 7. Expanding a streamsurface. Begin at the point labeled Seed, add

the red edges; repeat the expansion at points 2, 3, 4, etc., as many times

as possible.



3.4 Anatomical Landmarks

Feedback from preliminary results showed that biologists
can explore images more effectively if they can see some
familiar anatomical structures. Thus, we generate isosur-
faces of a few anatomical features from T2-weighted images
using AVS [19].

Water has a higher T2-weighted intensity than white and
gray matter; white and gray matter, in turn, have higher
T2-weighted intensities than air. We generate an approx-
imate boundary between fluid and other tissue that echoes
the shape of the ventricles by generating an isosurface at a
level between the intensity of water and that of other tissue.
While these shapes are not precise, their presence makes the
images much easier to interpret. Surfaces of other anatomi-
cal structures, such as blood vessels or tumors, can also be
generated for certain applications.

3.5 Virtual Reality

Compared to still pictures and desktop display, an
immersive virtual environment such as the Cave [5] offers
the advantages of a head-tracked stereo display, a large
display surface, and interactivity. We take advantage of
these features by showing our visualization in the Cave.

Our Cave, shown in Fig. 8, is an 80 cube with rear-
projected front and side walls and a front-projected floor.
The user wears LCD shutter glasses with an attached
tracker and uses the wand, a mouse-like input device that is
also tracked, to interact with the virtual world.

We put geometric models including streamtubes,
streamsurfaces, and anatomical landmarks at approxi-
mately the center of the Cave and orient them so that the
front of the brain always faces the opening of the Cave. We
then display a 2D section that carries a slice of the

T2-weighted MRI data, the position and orientation of which
can be chosen interactively. We can also use the 2D section
to carry any other data set that is registered with the
3D models. The user clicks a wand button to choose an
axial, coronal, or sagittal section and uses two other buttons
to move it back and forth. We also draw a yellow line akin
to a laser pointer from the wand to where the wand is
pointing (since physically pointing out an object is
ineffective in the Cave).

For the environment, we texture-map the virtual walls
and the floor in the same positions as the projection walls
and floor and set up a table beneath the geometric models.

Fig. 9 shows two users interacting with the brain
visualization in the Cave.

4 RESULTS AND DISCUSSION

We applied our method to a human brain data set
with 256� 256� 40 voxels and a resolution of
0:89mm� 0:89mm� 3:2mm. Each slice of the data was
acquired at a resolution of 128� 128 and zero-filled.
Figs. 10 and 11 show a visualization of the human brain
on a desktop display (the indications of skull and eyes help
orient the image). Through the semitransparent skull
surface, we can see the ventricle (colored blue) in the
middle and the streamtubes both around it and throughout
the space.

The image shows that the streamtubes correlate well with
majorneural structures. The corpus callosum,depictedby the
streamtubes running across the top of the ventricle, contains
almost all the neurons that cross the brain from one hemi-
sphere to the other. The internal capsule, clearly shown from
the side view in Fig. 11, is the second most obvious white
matter structure visible on a myelin stain and is the major
fiber tract that carries information between the cortex and the
brainstem. The cerebral peduncles are the continuation of the
internal capsule as it runs down into the midbrain.

Several doctors and medical students who have used the
system in the Cave found it easy to use. Users who have
never used the Cave need a few minutes to become familiar
with the system and the function of the wand buttons.
Those who had also viewed images of the geometric models
on a desktop screen reported that the 3D structures were
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TABLE 2
Parameters Used to Select Streamsurfaces

for Figs. 1, 6, 10, and 11

Fig. 8. A model of the Cave viewed from behind the back wall. The user

stands inside the three rear-projected walls and sees a virtual world on

the head-tracked stereo displays.

Fig. 9. The Cave’s stereo display, large display surface, and interactivity

help users understand the brain visualization.



easier to understand in the virtual environment. The 2D

sections were considered a very valuable tool. All our users

were eager for more detail in the visualization, saying that

more anatomical detail and streamtubes in the regions of

interest would enhance their understanding. To this end,

Fig. 12 shows the visualization of the same human brain

data set used in Fig. 10 with the average linear anisotropy

threshold set to 0:20: The number of streamtubes increases

from 472 in Fig. 10 to 4; 538 in Fig. 12. Setting more seed

points will also increase the number of streamtubes.

However, the level of detail we can visualize is fundamen-

tally limited by the voxel size of the data set. Setting many

seed points within one voxel will yield redundant stream-

tubes that will be discarded by the culling algorithm. We

are also looking for methods that can switch smoothly

between geometric models with different levels of detail.

Users also made application-specific observations, dis-
cussed below.

4.1 Studying Changes in White-Matter Structures
after Gamma-Knife Capsulotomy

One of the users, a doctor from Brown University-affiliated
Butler Hospital, has been using DT-MRI data to study OCD
patients, looking particularly at changes after radiation
surgery that ablates an important white matter region. These
changes should show up in the DT-MRI data, and the
connectivity changes, which are inherently 3D, will be very
difficult to see in sections alone. This work should help
generate a number of specific hypotheses about the mechan-
ism that makes this treatment modality successful. Patients
are currently being identified to participate in the project.

4.2 Preoperative Brain Tumor Surgery Planning

We are working with two neurosurgeons from Massachu-
setts General Hospital on presurgical planning for tumor
surgery. With the virtual environment, they believe that
they can get a better spatial understanding of the critical
anatomical structures in the vicinity of a targeted tumor,
particularly white matter tracts. Their feedback suggests
that 3D relationships between the tumor and other
important structures, like vasculature and motor cortex,
are useful information, and thus they would like to be able
to display other scalar-valued images. For example,
T1-weighted or contrast-agent-enhanced 2D sections could
show the viable highly vascularized tumor regions. To-
gether with other colleagues from MGH-Radiology, they
are currently identifying surgical candidates from whom to
collect MRI/DT-MRI for study in our virtual environment
before surgery.

4.3 Further Discussion

Several issues in our methods warrant further discussion.
First, we use thresholds to define regions of anisotropy. The
thresholds lack a physiological basis, but nonetheless
introduce an abrupt visual change between regions with
diffusion values that are arbitrarily close. A model that
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Fig. 10. Front view of the human brain data set visualization. The culling

parameters are shown in Tables 1 and 2.

Fig. 11. Side view of the human brain data set visualization. The culling

parameters are the same as those used in Fig. 10.

Fig. 12. Human brain data set visualization with average linear

anisotropy threshold set to 0.20 instead of 0.30. The number of

streamtubes increases from 472 to 4,538.



transitions smoothly within and among all three regimes,
isotropic, planar, and linear, could avoid these abrupt
changes.

A second issue is that the surface-generation algorithm
assumes that the first two eigenvector fields define a locally
Euclidean surface. This is true if and only if the Lie bracket
of the major and medium eigenvector fields lies within the
plane determined by the major and medium eigenvectors
[3]. We have yet to test if the condition is satisfied by the
first two eigenvector fields because calculating the Lie
bracket is nontrivial. Significant errors are likely to be
visually obvious; we have seen no such errors and also note
that the features found are consistent with neural anatomy.

Third, the models our methods produce are sensitive to
not only the information in the imaging data but also
artifacts of the imaging process, including noise and
averaging due to limited resolution. The averaging can
hide the information from smaller features and create
composite “features” that are not real. Noise can also
perturb the models in inaccurate ways, particularly when
coupled with the threshold effects described; a small
amount of noise can cause a feature to disappear entirely
or split into two smaller features. We avoid some of these
problems by eliminating small features and regions of
anisotropy likely to be solely due to noise. Expert feedback
suggests that many of the features present in our models
correlate well with known neural anatomy, but some
artifacts certainly remain.

5 CONCLUSIONS

We have presented a new visualization method for second-
order diffusion tensor fields acquired with DT-MRI. We
separate different classes of anisotropy and map them to
different visual icons: streamtubes and streamsurfaces. We
generate a large set of visual icons and then select from
them a representative subset for display. Anatomical
landmarks and 2D sections showing T2-weighted
MR images are also displayed to provide context. Display
is on a traditional desktop computer and also within an
immersive virtual reality application running in a Cave.
These environments provide different advantages for
interacting with the models and facilitate a better under-
standing of the anatomy and connectivity they represent.

Our experiments and feedback from several medical
practitioners who used the models show that the stream-
tubes correlate well with major white-matter structures: The
corpus callosum, internal capsule, and a number of other
neural structures can be identified within the streamtubes.
Users also report that the anatomical landmarks and 2D MR
sections help them in exploring the data. The culling
process is essential in reducing the overall number of
geometric models while retaining a representative sample.
Users have expressed interest in modifying the several user-
defined thresholds involved in the generation and culling of
the geometric models to select different subsets of the
streamtubes and streamsurfaces for different purposes.
Virtual reality has helped users understand the complex
geometric models and several of our collaborative projects
will continue to build on these models for specific
biomedical applications.
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