Inferring Axon Properties with double-PGSE MRI using Analytical Water Diffusion Model

W. Zhou¹, and D. H. Laidlaw¹

¹Computer Science, Brown University, Providence, RI, United States

Introduction

We present an analytical water diffusion model for inferring axon properties using double-PGSE MRI (d-PGSE) accounting for finite gradient pulses. The MR signal attenuation obtained from single-PGSE (s-PGSE) reflects the underlying tissue structure that restricts the water molecules' diffusion within. However, high q-values must be applied to measure these tissue properties using s-PGSE, requiring high gradient strength and/or long pulse duration and diffusion times^[1]. This inhibits the clinical applications of these methods. We propose to use low-q d-PGSE MRI for white matter tissue structure modeling in order to extract axon properties including axon caliber, water diffusivity and volume fraction of intra-axonal space.

Method

The d-PGSE sequence is the simplest form of multi-PGSE^[2] with two encoding intervals of gradients G_1 and G_2 with angle ψ . The two encoding intervals are

separated by mixing time t_m , diffusion time Δ_1 and Δ_2 , and pulse duration δ_1 and δ_2 . Recently, Özarslan et al.^[3] predicted the dependence of signal decay from d-

PGSE sequence in confined geometries theoretically. Shemesh et al.^[4] validated these dependencies of signal decay with well-controlled experimental parameters using water filled microcapillaries.

<u>Model for MRI signal</u>

We propose an analytical water diffusion model for estimating axon properties based on Özarslan's theory^[3] using d-PGSE data. The model is composed of two compartments: (1) restricted diffusion in intra-axonal compartment within the axons that are modeled as cylinders (2) hindered diffusion in the extra-axonal compartment outside the axon. The two compartments are denoted with subscript *i* and *e*, respectively. The boundary of the cylinders representing the axon myelin is assumed to be impermeable. The **combined normalized MR signal attenuation** is then: $E = (1 - f)E_e + fE_i$, where *f* is the volume fraction of the intra-axonal compartment. We model the **normalized MR signal attenuation in the extra-axonal compartment** with Gaussian distribution:

 $E_e = \exp(-\gamma^2 \delta^2 D_e (G_1^2 + G_2^2)(\Delta - \frac{\delta}{3}))$. We decompose the normalized MR signal attenuation in the intra-axonal compartment

into components parallel and perpendicular to the axon orientation: $E_i = E_{i/l} \times E_{i+1}$. By discretizing the gradient waveform, we can

approximate it by train of impulses using a series of propagators and derive $E_{i/l} = \exp(-\gamma^2 \delta^2 D_i (G_1^2 \cos^2 \phi_1 + G_2^2 \cos^2 \phi_2) (\Delta - \frac{\delta}{2}))$

and $E_{i\perp} = C + A(G_1^2 \cos^2 \phi_1 + G_2^2 \cos^2 \phi_2) + B(G_1 G_2 \cos \phi_1 \cos \phi_2)$, where

•
$$C = 1 - A(G_1^2 + G_2^2) - B(G_1G_2\cos\psi)$$
, $A = 2\gamma^2 a^2 \sum_{n=1}^{\infty} S_n \times [\frac{2\delta}{\omega_n} - \frac{1}{\omega_n^2}(2 - 2e^{-\omega_n\delta} + e^{-\omega_n(\Delta - \delta)} - 2e^{-\omega_n\Delta} + e^{-\omega_n(\Delta + \delta)})]$

- $B = 2\gamma^2 a^2 \sum_{n=1}^{\infty} \frac{S_n}{\omega_n^2} (e^{-\omega_n(t_n-\delta)} 2e^{-\omega_n t_m} + e^{-\omega_n(t_n+\delta)} 2e^{-\omega_n(\Delta + t_m-\delta)} + 4e^{-\omega_n(\Delta + t_m)} 2e^{-\omega_n(\Delta + t_m+\delta)} + e^{-\omega_n(2\Delta + t_m-\delta)} 2e^{-\omega_n(2\Delta + t_m+\delta)})$ (b) volum
 - $S_n = \frac{1}{\alpha_n^4 \alpha_n^2}$, $\omega_n = \frac{\alpha_n^2 (D_i + D_e)}{a^2}$, α_n are the roots of the derivatives of the first order Bessel function $J'(\alpha_n) = 0$. We

approximated A and B using the most important lowest 6 roots. For simplification, $\Delta_1 = \Delta_2 = \Delta$ and $\delta_1 = \delta_2 = \delta$.

• The axon properties are axon caliber a, volume fraction of the intra-axonal compartment f, water diffusivity of intra- and extraaxonal compartment D_i and D_e , and we account for the axon orientation with relative angle ϕ_1 and ϕ_2 with respect to gradients G_1 and G_2 .

Experiments

Our model was fitted into 4 diffusion experiments using Monte-Carlo random walk simulation. We used a geometric model of rectangular arrangement of cylinders (Fig. 1d) aligned on the z-axis (Fig. 1a) with the following axon properties as defined

above: $a = [1,2,3,5,7,9](\mu m)$; f = 0.7; and $D_1 = D_2 = D = 2e^{-9}(m^2/s)$. We set our experimental parameters to be: $\delta_1 = \delta_2 = 2(ms)$;

 $\Delta_1 = \Delta_2 = [10,10,20,40,60,110](ms); t_m = 3(ms); and G_{1max} = G_{2max} = [0.5,0.5,0.5,0.5,0.3,0.3](T/m) \text{ for } a = [1,2,3,5,7,9](\mu m) \text{ respectively, with SNR} = 16. We held$

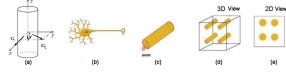
 G_1 direction constant on the x-axis and varied G_2 direction on the x-y plane ranging ψ from 0° to 360° with 18 increments to probe diffusion signals that are most sensitive to restricted diffusion (Fig. 1a).

Results

We used a Markov Chain Monte Carlo (MCMC) procedure to get samples of the posterior distribution of the model parameters given the data. Fig. 2 is our main estimation results showing the estimation-sample histograms of: (a) axon caliber a; (b) volume fraction of the intra-axonal compartment f; and (c) water diffusivity D. Each histogram combines a total number of 100 samples and the true value for each parameter is indicated with a black line. Overall, we were able to extract accurate estimates of these axon properties. It is worth noticing that when axon caliber gets smaller ($a \le 2\mu m$), we observed an underestimation of the axon caliber dimension.

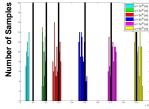
Conclusions

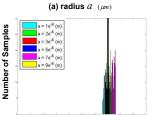
Our estimation results demonstrate the feasibility inferring axon properties using d-PGSE that utilizes signal intensity dependency on gradient-pair direction to compensate for high-q requirement in s-PGSE experiments. Since many gradient directions can be acquired in rather short time in the current MRI scanner, this approach may suggest potential for clinical *in-vivo* axon-property estimation.

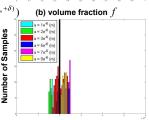


[1] Assaf et al., Magn. Reson. Med.59: 1347—1354, 2008 [2] Cory et al., Polym. Preprints, 31: 149, 1990 [3]
Özarslan et al., J. Chem. Phys. 128: 154511, 2008 [4] Shemesh et al. J. Magn. Reson., 198: 15:23, 2009

Figure 1: (a) Experimental setup. (b) Schematic view of axon. (c) single cylinder representing axon with caliber a. (d-e) 3D and 2D view of rectangular arrangement of cylinders representing axons in white matter fiber.







(c) Diffusivity $D (m^2/2)$

Figure 2: Histogram of 100 samples from posterior distribution on a, f and

D using MCMC.